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Problem 1 20%

A group of friends have plans to go sailing on Sunday, but their plans are dependent on the
weather. They consider both wind and rainfall and assume rain and wind do not influence each
other. The sailing conditions are best if there is wind but no rain. If it is windy and not raining,
then there is a 90% chance that they will go sailing. If it is not windy and not rainy, then there
is a 50% chance of going, since it is likely that wind conditions change quickly. If it is raining,
then, no matter what the wind conditions are, the probability that they will go sailing drops to
10%.

The weather prediction on Saturday calls for a 40% chance of rain and a 10% chance of wind
on Sunday.

Given that we know that the friends eventually did go sailing, how likely is it that it was windy
and not raining on Sunday?
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Solution 1

Introduce the discrete random variables r, w, and g representing rainfall, wind conditions, and
the friends’ decision, where r ∈ {1, 0} = {raining, not raining}, w ∈ {1, 0} = {windy, not windy},
and g ∈ {1, 0}{going sailing, not going sailing}. From the text, the following probabilities can
be extracted:

Pr(g = 1|r = 0, w = 1) = 0.9

Pr(g = 1|r = 0, w = 0) = 0.5

Pr(g = 1|r = 1) = 0.1

Pr(r = 1) = 0.4

Pr(w = 1) = 0.1.

We are interested in the probability Pr(r = 0, w = 1|g = 1). With Bayes’ Theorem and assuming
independence between r and w, the probability Pr(r = 0, w = 1|g = 1) can be related to the
given probabilities,

Pr(r = 0, w = 1|g = 1) =
Pr(g = 1|r = 0, w = 1)Pr(r = 0, w = 1)

Pr(g = 1)

=
Pr(g = 1|r = 0, w = 1)Pr(r = 0)Pr(w = 1)

Pr(g = 1)
.

With the law of total probability,

Pr(g = 1) = Pr(g = 1|r = 0, w = 1)Pr(r = 0)Pr(w = 1)

+ Pr(g = 1|r = 0, w = 0)Pr(r = 0)Pr(w = 0)

+ Pr(g = 1|r = 1)Pr(r = 1)

= 0.9 · (1− 0.4) · 0.1 + 0.5 · (1− 0.4) · (1− 0.1) + 0.1 · 0.4

= 0.364.

Then,

Pr(r = 0, w = 1|g = 1) =
0.9 · (1− 0.4) · 0.1

0.364
=

27

182
≈ 15%.

Note that
Pr(r = 0, w = 1) = 0.06 = 6%.

The decision of the friends to go sailing (which is based on the weather on Sunday) gives us
additional information about the weather conditions on Sunday.
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Problem 2 20%

In a manufacturing process, the mass m of a part is to be estimated using measurements from
two different scales.

The mass can take on positive integer values {0, 1, 2, 3, . . . } corresponding to the mass quantiza-
tion units. The measurements z1 and z2 of the part’s mass from scale 1 and scale 2, respectively,
are affected by the additive measurement errors w1 and w2, that is

z1 = m+ w1

z2 = m+ w2.

The measurement errors can be modeled as independent discrete random variables taking integer
values with the probability density functions given in Fig. 1.
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Figure 1: Measurement error probability density functions.

a) Calculate the maximum likelihood estimate of the part’s mass for the following measure-
ments

i) z1 = 8, z2 = 10

ii) z1 = 8, z2 = 11.

The part under consideration is taken from a set of parts whose mass is know to be distributed
according to the probability density function in Fig. 2.

f m
(m

)

m

0 2 4 6 8 10 12 14 16
0

1/8

1/4

Figure 2: Mass probability density function.

b) Calculate the maximum a-posteriori estimate of the part’s mass taking into account the
part’s distribution in Fig. 2 and given the measurements z1 = 8, z2 = 11.
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Solution 2

a) The maximum likelihood estimate is defined by

m̂ML = argmax
m

fz1,z2|m(z1, z2|m).

Since the measurement errors w1 and w2 are independent, the measurements z1 and z2 are
conditionally independent; hence

fz1,z2|m(z1, z2|m) = fz1|m(z1|m) fz2|m(z2|m).

Using wi = zi −m, i = 1, 2, we obtain

fz1,z2|m(z1, z2|m) = fw1
(z1 −m) fw2

(z2 −m),

which is to be maximized over m. In the following, we present a graphical solution for the
optimization problem.

i) For the measurements z1 = 8, z2 = 10 the corresponding functions fw1
(z1 − m),

fw2
(z2 −m) and their product is shown in Fig. 3. From the graph on the right, it is
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Figure 3: Left: likelihood functions fw1
(8−m) (blue) and fw2

(10−m) (red). Right: the product
of the two, fw1

(8−m) fw2
(10−m), which is to be maximized.

obvious that the maximum is attained at m = 8. Therefore,

m̂ML = argmax
m

fw1
(8−m) fw2

(10−m) = 8.
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ii) For the measurements z1 = 8, z2 = 11, the same graphs as in (i) are shown in Fig. 4.
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Figure 4: Left: likelihood functions fw1
(8−m) (blue) and fw2

(11−m) (red). Right: the product
of the two, fw1

(8−m) fw2
(11−m), which is to be maximized.

In this case, obviously,

m̂ML = argmax
m

fw1
(8−m) fw2

(11−m) = {9, 12}.

b) The maximum a posteriori estimate is defined by

m̂MAP = argmax
m

fz1,z2|m(z1, z2|m) fm(m).

Using the result from part (a) for z1 = 8, z2 = 11 in Fig. 4, we obtain the likelihood
function fz1,z2|m(z1, z2|m) = fw1

(z1 − m) fw2
(z2 − m) and probability density function

fm(m) as shown in Fig. 5.
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Figure 5: Left: likelihood function fw1
(8 − m) fw2

(11 − m) (blue) and parameter distribution
fm(m) (red). Right: the product of the two, fw1

(8 − m) fw2
(11 − m) fm(m), which is to be

maximized.
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From this, it is obvious that

m̂MAP = argmax
m

fz1,z2|m(8, 11|m) fm(m)

= argmax
m

fw1
(8−m) fw2

(11−m) fm(m)

= 12.
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Problem 3 20%

Recall the basic particle filtering algorithm we derived in class:

• Initialize the algorithm by randomly drawing N samples from fx(0)(x(0)), that is, the
probability density function of the initial state x(0).

Obtain x(n, 0|0), n = 1, 2, . . . , N .

• Step 1: Simulate the N particles via the process equation.

Obtain the a priori particles x(n, k|k − 1).

• Step 2: After a new measurement z(k) at time k, scale each a priori particle by the
measurement likelihood, normalize the resulting relative likelihoods, and obtain a corre-
sponding weight βn for each particle.

Resample to get the a posteriori particles x(n, k|k) that have equal weights. Go to Step 1.

Suppose you have a measurement z(k) = x(k)/w(k), where w(k) is uniformly distributed on the
interval [0.9, 1.1]. Suppose that, at time k, five a priori particles x(n, k|k − 1), n = 1, 2, 3, 4, 5 ,
are given as 0.6, 0.8, 1, 1.2, and 1.4, and that the measurement is obtained as z(k) = 1.

a) What are the weights βn of the particles given the measurement z(k) = 1?

b) Which particles are obtained after the resampling step?

c) How would you improve the basic algorithm? Give one possible improvement.
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Solution 3

a) The weights βn are given as

βn = αf(z(k)|x(n, k|k − 1)) with α =

(
5∑

n=1

f (z(k)|x(n, k|k − 1))

)−1

.

From the measurement equation, we obtain the relation

w(k) = x(k)/z(k)

and, thus,

fz(k)|x(n,k|k−1) (z(k)|x(n, k|k − 1)) = fw(k) (w(k) = x(n, k|k − 1)/z(k) ) .

For the given particles,

n x(n, k|k − 1)/z(k) = x(n, k|k − 1) f(z(k)|x(n, k|k − 1))

1 0.6 0
2 0.8 0
3 1 1/0.2 = 5
4 1.2 0
5 1.4 0

Finally, α = 0.2 and β1,2,4,5 = 0, β3 = 1.

b) Given that all weight is put on particle 3, resampling results in x(n, k|k) = 1 for n =
1, 2, 3, 4, 5, where, now, each particle has a probability of 1/5.

c) In order to avoid sample impoverishment, i.e. all particles converge to the same value,
we can perturb the particles x(n, k|k) by an additive noise. This is called roughening.
Another possibility is to adapt the noise parameters. For this problem, the noise interval
[0.9, 1.1] could be extended to increase the robustness of the algorithm. Other options
(not covered in class) are prior editing, Markov chain Monte Carlo resampling, regularized
particle filtering, and many more, cf. ‘Optimal State Estimation’ by Dan Simon.
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Problem 4 20%

You have two accounts at a bank; their balances are denoted by x1 and x2, respectively, and
assumed to be real numbers (negative values are allowed).
Every day k, there is a flow of money (inflow or outflow) on each of the accounts that you cannot
control. The money flows are independent and can be modeled relatively accurately as Gaussian
random variables with zero mean and unit variance.
Your accountant informs you about your financial situation every day. However, he does not
disclose the actual balances of your accounts, but only tells you the sum of the two and the
difference of the two, that is, the first account minus the second. Moreover, since his arithmetic
skills are not very well developed, he usually miscalculates the sum and the difference. His
calculation mistakes can be modeled as additive errors that are independent Gaussian random
variables with zero mean and variance equal to two. The numbers the accountant tells you for
the sum and the difference of your two accounts are denoted z1(k) and z2(k), respectively.
Since you are dissatisfied with the accountant’s information, but you do not want to change your
bank, you decide to build an estimator to keep track of the balances x1(k) and x2(k) of your
two accounts.

a) Derive the Kalman filter equations for the given problem, that is, state the prior update
equations and the measurement update equations for the mean and the variance of the
estimates of x1(k) and x2(k).

After opening your accounts on day k = 0, you know for sure that there is no money on
your accounts at the end of that day. On the following two days, the accountant discloses the
information given in Table 1 to you.

day k z1(k) (erroneous account sum) z2(k) (erroneous account difference)

1 1 0
2 2 −1

Table 1: The accountant’s information.

b) Using your estimator from part (a) calculate the Kalman filter estimates x̂1(k|k) and
x̂2(k|k) for k = 1, 2, that is, the Kalman filter estimates of the account balances x1 and
x2, respectively, at the end of day k using all the information the accountant has disclosed
up to and including day k.

Now, you want to implement an account balance estimator on your mobile phone in order to
always have your account information available. Since your phone is an older model you are
concerned with the computational efficiency of your algorithm. You decide to implement a
steady-state estimator, that is, an estimator of the form

[
x̂1(k)
x̂2(k)

]

= A

[
x̂1(k−1)
x̂2(k−1)

]

+B

[
z1(k)
z2(k)

]

,

where A and B are constant matrices of appropriate dimensions and x̂1(k) and x̂2(k) are the
estimates of x1(k) and x2(k).

c) How would you design this estimator, that is, how would you choose the matrices A and
B?

Hint: It is enough to state the equations that uniquely define the matrices A and B; you
do not have to solve them.
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Solution 4

a) The process equation for the given problem reads

x(k) = x(k − 1) + v(k), (1)

where x(k) := [x1(k), x2(k)]
T is the state vector and v(k) is process noise (the random

inflow and outflow) with E[v(k)] = 0 and E[v(k)(v(k))T ] = I. The measurement equation
reads

z(k) =

[
1 1
1 −1

]

︸ ︷︷ ︸

=:H

x(k) + w(k), (2)

where z(k) := [z1(k), z2(k)]
T and w(k) is measurement noise (the accountant’s calculation

errors) with E[w(k)] = 0 and E[w(k)(w(k))T ] = 2I.

Using the notation introduced in class, the Kalman filter equations for the system (1), (2)
are as follows:

Prior update (S1):

x̂(k|k − 1) = x̂(k − 1|k − 1)

P (k|k − 1) = P (k − 1|k − 1) + I

Measurement update (S2):

K(k) = P (k|k − 1)HT
(
HP (k|k − 1)HT + 2I

)−1

x̂(k|k) = x̂(k|k − 1) +K(k)
(
z(k)−Hx̂(k|k − 1)

)

P (k|k) =
(
I −K(k)H

)
P (k|k − 1)

(
I −K(k)H

)T
+ 2K(k)KT (k).

b) Since both account balances are known to be 0 at initial time k = 0, we have the initial
conditions x̂(0|0) = 0 and P (0|0) = 0 to start the Kalman filter recursion. We obtain the
following numbers for the first two recursion steps:

Step k = 0:

x̂(0|0) = 0

P (0|0) = 0

Step k = 1:

x̂(1|0) = x̂(0|0) = 0

P (1|0) = P (0|0) + I = I

K(1) = HT
(
HHT + 2I

)−1

=
1

4
HT

x̂(1|1) = x̂(1|0) +K(1)

([
1
0

]

−Hx̂(1|0)

)

=
1

4
HT

[
1
0

]

=
1

4

[
1
1

]

P (1|1) =
(
I −

1

4
HTH

)
I
(
I −

1

4
HTH

)T
+ 2

1

4
HT 1

4
H

=
1

2
I
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Step k = 2:

x̂(2|1) = x̂(1|1) =
1

4

[
1
1

]

P (2|1) = P (1|1) + I =
3

2
I

K(2) =
3

2
HT
(
3I + 2I

)−1

=
3

10
HT

x̂(2|2) =
1

4

[
1
1

]

+
3

10
HT

([
2
−1

]

−H
1

4

[
1
1

])

=

[
0.4
1

]

Hence, the sought estimates are x̂1(1|1) = 0.25, x̂2(1|1) = 0.25, x̂1(2|2) = 0.4, and
x̂2(2|2) = 1.

c) We design a steady-state Kalman filter. This filter yields the same performance as the
standard Kalman filter in steady state.

The steady-state Kalman filter for the given problem is given by

x̂(k) =
(
I −KH

)
x̂(k − 1) +Kz(k),

where K is defined as
K := P∞HT

(
HP∞HT + 2I

)−1
,

and P∞ is the symmetric, positive semi-definite solution to the discrete algebraic Riccati
equation (DARE)

P∞ = P∞ − P∞HT
(
HP∞HT + 2I

)−1
HP∞ + I.

Note that the DARE has a unique solution P∞ ≥ 0 since (I,H) is detectable (in fact,
observable) and (I, I) is stabilizable (in fact, controllable).
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Problem 5 20%

Consider the scalar system

x(k) = x(k − 1) + v(k)

z(k) = x(k) + w(k) , k = 1, 2, . . . ,

where v(k), w(k) ∈ [−1, 1] are uniformly distributed random variables. The initial state x(0)
is uniformly distributed on the interval [−1, 1]. All random variables v(k), w(k), and x(0) are
assumed to be mutually independent and independent over time.

Suppose the first measurement is z(1) = 1.

a) Use Bayesian tracking to find fx(1)|z(1)(x(1)|z(1)), that is, the probability distribution of
x(1) given z(1).

b) Calculate the Kalman filter estimate x̂(1|1), that is, the Kalman filter estimate of x(1)
given z(1).

c) How is x̂(1|1) related to fx(1)|z(1)(x(1)|z(1)) for the given problem?
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Solution 5

a) Bayesian tracking proceeds in two steps:

(i) a prior update of the probability density function of x(k) based on the process equa-
tion, given all measurements up to and including time (k − 1), and

(ii) the measurement update of the probability density function of x(k) given the mea-
surement z(k) at time k.

For the given problem, that is:

(i) For k = 1, the prior update is based on the initial distribution of x(0),

f (x(1)) =

∫

x(0)
f (x(1)|x(0)) f (x(0)) dx(0)

=
1

2

∫ 1

−1
f (x(1)|x(0)) dx(0) .

Note that x(k) is a continuous random variable and, thus, the formulas taught in
class (that consider a discrete random variable x(k)) have to be adapted accordingly.
Basically, the sums are replaced by integrals.

Recalling the process equation, we get

f (x(1)|x(0)) =

{
1/2 for x(1)− 1 ≤ x(0) ≤ x(1) + 1

0 otherwise.

Therefore,

f (x(1)) =







0 for x(1) < −2 and x(1) ≥ 2

1/4 (x(1) + 2) for − 2 ≤ x(1) < 0

−1/4 (x(1)− 2) for 0 ≤ x(1) < 2 ,

which is a triangular distribution as shown in Fig. 6.
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Figure 6: The prior probability distribution of x(1).

(ii) Given z(1) = 1, the measurement update can be calculated as

f (x(1)|z(1) = 1) =
f (z(1) = 1|x(1)) f (x(1))

c
,
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where c is a normalization constant and

f (z(1) = 1|x(1)) =

{
1/2 for 0 ≤ x(1) ≤ 2

0 otherwise .

Then,

f (x(1)|z(1) = 1) =

{
0 for x(1) < 0 and x(1) > 2

−1/(8c) (x(1)− 2) otherwise .

The normalization constant is computed as

c = −
1

8

∫ 2

0
(x(1)− 2) dx(1) =

1

4
.

Fig. 7 shows f (x(1)|z(1) = 1).
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Figure 7: The updated probability distribution of x(1) given z(1) = 1.

b) From the probability density functions of x(0), v(k), and w(k), we obtain the statistical
properties needed for computing the Kalman filter estimate, namely,

x̂(0|0) = E[x(0)] = 0

P (0|0) = Var (x(0)) =
1

3

and, similarly,

Q(k) = Var (v(k)) =
1

3

R(k) = Var (w(k)) =
1

3
.

The system is given by A = 1, B = 0, and H = 1. The Kalman filter equations give

x̂(1|0) = A x̂(0|0) = 0

P (1|0) = AP (0|0)AT +Q(1) = 2/3

K(1) = P (1|0)HT
(
HP (1|0)HT +R(1)

)−1
= 2/3

and, finally,
x̂(1|1) = x̂(1|0) +K(1) (z(1)−Hx̂(1|0)) = 2/3.
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c) Calculating the expected value of (x(1)|z(1)) with f(x(1)|z(1)) from part a) gives

E [x(1)|z(1)] = −
1

2

∫ 2

0
(x(1)− 2)x(1) dx(1) = 2/3.

That is, for this problem, the Kalman filter estimate x̂(1|1) is the expected value of
(x(1)|z(1)) as determined from the probability density function that was found in part
a).


