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Extended Kalman Filter

for Tracking a Two-wheeled Robot

An Extended Kalman Filter is to be designed for tracking the position and orientation of a
two-wheeled robot that is moving on a plane. A schematic drawing of the robot is shown in
Fig. 1.
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Figure 1: Top view of the two-wheeled robot (left) and relevant physical quantities (right).

The robot can command its left and right wheel angular velocities, uL(t) and uR(t) (in rad/s),
respectively, which are assumed to be followed instantaneously. The left and right wheel radii,
WL and WR (in m), are not known perfectly; they are modeled as random variables according
to

WL = W0(1 + ξL)

WR = W0(1 + ξR),

with the known nominal wheel radius W0 (in m) and the uniformly distributed random variables
ξL, ξR ∈ [−ξ, ξ]. The wheel radii are assumed constant with time.
The translational speed vt(t) (in m/s) of the vehicle is

vt(t) =
vR(t) + vL(t)

2
with vR(t) = WRuR(t) and vL(t) = WLuL(t).

The rotational speed vr(t) (in rad/s) of the vehicle is

vr(t) =
vR(t)− vL(t)

2B
,

where B is the known wheel base (distance of the wheels from the robot center), see Fig. 1.
With these quantities, the kinematic equations read as follows:

ẋ(t) = vt(t) cos(r(t)) (1)

ẏ(t) = vt(t) sin(r(t)) (2)

ṙ(t) = vr(t), (3)



where (x(t), y(t)) is the position of the robot (in m) and r(t) its orientation (in rad). The robot
is assumed to start at (x(0), y(0)) = (x0, y0) with orientation r(0) = r0, where x0, y0 ∈ [−p, p]
and r0 ∈ [−r, r] are uniformly distributed random variables.
At varying instances of time, the robot may receive measurements of its position and orientation
that are corrupted by sensor noise, i.e.

zx = x+ wx

zy = y + wy

zr = r + wr,

with wx, wy ∈ [−wp, wp], wr ∈ [−wr, wr] uniformly distributed. At any instance of time tk,
measurements may be available from one, two, three, or none of the sensors.
All random variables ξL, ξR, r0, x0, y0, wx, wy, and wr are assumed to be mutually independent
and independent over time.

Objective

The objective is to design an Extended Kalman Filter to estimate the position and orientation
of the two-wheeled robot. The estimator will be implemented in discrete time. At time tk,
the estimator has access to the time tk, the control inputs uL(tk) and uR(tk), and possibly the
measurements zx(tk), zy(tk), or zr(tk). Furthermore, the values of all physical constants W0, ξ,
B, wp, wr, p, and r are known to the estimator. The orientation, the position, and the wheel
radii are estimator states.

Provided Matlab Files

A set of Matlab files is provided on the class website. Please use them for solving the above
problem.

script.m Matlab script that is used to simulate the truth system, run
the estimator, and display the results.1

Estimator.m Matlab function template to be used for your implementation
of the Extended Kalman Filter.

PhysicalConstants.m Physical constants, known to the estimator.
SimulationConstants.m Sample problem data, not known to the estimator.
CalculateInputs.m Matlab function used to calculate the input wheel speeds.
Uniform.m,
UniformMinMax.m

Uniform random number generators.

1In script.m the following one-step method for numerical integration is implemented: Assuming vt(t) and vr(t)
are constant over the sampling interval [tk, tk+1] (which they are since piecewise constant inputs are considered
in the simulation), we have from (3) for t ∈ [tk, tk+1]

ṙ(t) = vr ⇒ r(t) = r(tk) + (t−tk)vr ⇒ r(tk+1) = r(tk) + (tk+1−tk)vr,

where vr = vr(t) for all t ∈ [tk, tk+1]. With this and (1), we write for x(t), t ∈ [tk, tk+1]

ẋ(t) = vt cos(r(tk) + (t−tk)vr)

= vt
(

cos(r(tk)) cos((t−tk)vr)− sin(r(tk)) sin((t−tk)vr)
)

≈ vt cos(r(tk))− vtvr sin(r(tk))(t−tk), for small (t−tk)

⇒ x(tk+1) = x(tk) + vt cos(r(tk))(tk+1−tk)−
1

2
vtvr sin(r(tk))(tk+1−tk)

2
,

where vt = vt(t) for all t ∈ [tk, tk+1], and similarly for y(t), t ∈ [tk, tk+1]

y(tk+1) = y(tk) + vt sin(r(tk))(tk+1−tk)−
1

2
vtvr cos(r(tk))(tk+1−tk)

2
.

Clearly, one may also employ other integration schemes such as forward Euler (less accurate) or higher-order
methods (e.g. in the Matlab ODE suite; usually slower).



Task

Implement your solution for the Extended Kalman Filter in the file Estimator.m. Your
code has to run with the Matlab script script.m and problem data as for example given in
PhysicalConstants.m and SimulationConstants.m. For your estimator, use the function def-
inition as given in the template Estimator.m.
For evaluating your solution, we will test it on the given problem data. Moreover, we will do
suitable modifications of the parameters in PhysicalConstants.m and SimulationConstants.m

and also test your estimator on those.
For judging your own solution, a typical performance of an Extended Kalman Filter implemen-
tation for the given problem is shown in Fig. 2 and 3.

Deliverables

Please hand in by e-mail your implementation of the Extended Kalman Filter in Estimator.m.
Include the file into a zip-file, which you name RFE10Ex1 Names.zip, where Names is a list
of the pre- and surnames of all students2 who have worked on the solution (for example
RFE10Ex1 AngelaSchoellig SebastianTrimpe.zip).

Send your file to Sebastian (strimpe@ethz.ch) until the due date indicated above. We will
send a confirmation e-mail upon receiving your solution. You are ultimately responsible that we
receive your solution in time.

2Up to three students are allowed to work together on the programming exercise. They will all receive the
same grade.
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Figure 2: Typical tracking performance of an estimator for the given problem data.
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Figure 3: Typical estimation errors with +/- one standard deviation for the given problem data.


