Extended Kalman Filter for Tracking a Two-wheeled Robot

An Extended Kalman Filter is to be designed for tracking the position and orientation of a two-wheeled robot that is moving on a plane. A schematic drawing of the robot is shown in Fig. 1.

Figure 1: Top view of the two-wheeled robot (left) and relevant physical quantities (right).

The robot can command its left and right wheel angular velocities, $u_L(t)$ and $u_R(t)$ (in rad/s), respectively, which are assumed to be followed instantaneously. The left and right wheel radii, W_L and W_R (in m), are not known perfectly; they are modeled as random variables according to

$$ W_L = W_0 (1 + \xi_L), $$
$$ W_R = W_0 (1 + \xi_R), $$

with the known nominal wheel radius W_0 (in m) and the uniformly distributed random variables $\xi_L, \xi_R \in [-\xi, \xi]$. The wheel radii are assumed constant with time.

The translational speed $v_t(t)$ (in m/s) of the vehicle is

$$ v_t(t) = \frac{v_R(t) + v_L(t)}{2}, $$

with $v_R(t) = W_R u_R(t)$ and $v_L(t) = W_L u_L(t)$.

The rotational speed $v_r(t)$ (in rad/s) of the vehicle is

$$ v_r(t) = \frac{v_R(t) - v_L(t)}{2B}, $$

where B is the known wheel base (distance of the wheels from the robot center), see Fig. 1. With these quantities, the kinematic equations read as follows:

$$ \dot{x}(t) = v_t(t) \cos(r(t)), $$
$$ \dot{y}(t) = v_t(t) \sin(r(t)), $$
$$ \dot{r}(t) = v_r(t). $$

where \((x(t), y(t))\) is the position of the robot (in m) and \(r(t)\) its orientation (in rad). The robot is assumed to start at \((x(0), y(0)) = (x_0, y_0)\) with orientation \(r(0) = r_0\), where \(x_0, y_0 \in [-\bar{r}, \bar{r}]\) and \(r_0 \in [-\bar{r}, \bar{r}]\) are uniformly distributed random variables.

At varying instances of time, the robot may receive measurements of its position and orientation that are corrupted by sensor noise, i.e.

\[
\begin{align*}
z_x &= x + w_x \\
z_y &= y + w_y \\
z_r &= r + w_r,
\end{align*}
\]

with \(w_x, w_y \in [-\bar{w}_x, \bar{w}_x], w_r \in [-\bar{w}_r, \bar{w}_r]\) uniformly distributed. At any instance of time \(t_k\), measurements may be available from one, two, three, or none of the sensors.

All random variables \(\xi_L, \xi_R, r_0, x_0, y_0, w_x, w_y,\) and \(w_r\) are assumed to be mutually independent and independent over time.

Objective

The objective is to design an Extended Kalman Filter to estimate the position and orientation of the two-wheeled robot. The estimator will be implemented in discrete time. At time \(t_k\), the estimator has access to the time \(t_k\), the control inputs \(u_L(t_k)\) and \(u_R(t_k)\), and possibly the measurements \(z_x(t_k), z_y(t_k)\), or \(z_r(t_k)\). Furthermore, the values of all physical constants \(W_0, \bar{v}, B, \bar{w}_x, \bar{w}_r, \bar{r}\) are known to the estimator. The orientation, the position, and the wheel radii are estimator states.

Provided Matlab Files

A set of Matlab files is provided on the class website. Please use them for solving the above problem.

- `script.m` Matlab script that is used to simulate the truth system, run the estimator, and display the results.\(^1\)
- `Estimator.m` Matlab function template to be used for your implementation of the Extended Kalman Filter.
- `PhysicalConstants.m` Physical constants, known to the estimator.
- `SimulationConstants.m` Sample problem data, not known to the estimator.
- `CalculateInputs.m` Matlab function used to calculate the input wheel speeds.
- `Uniform.m`, `UniformMinMax.m` Uniform random number generators.

\(^1\)In `script.m` the following one-step method for numerical integration is implemented: Assuming \(v_t(t)\) and \(v_r(t)\) are constant over the sampling interval \([t_k, t_{k+1}]\) (which they are since piecewise constant inputs are considered in the simulation), we have from (3) for \(t \in [t_k, t_{k+1}]\)

\[
\begin{align*}
\dot{r}(t) &= v_r \\
\Rightarrow \quad r(t) &= r(t_k) + (t-t_k)v_r
\end{align*}
\]

and (1), we write for \(x(t), t \in [t_k, t_{k+1}]\)

\[
\begin{align*}
\dot{x}(t) &= v_t \cos(r(t_k)) + (t-t_k)v_t \\
&= v_t (\cos(r(t_k)) \cos((t-t_k)v_r) - \sin(r(t_k)) \sin((t-t_k)v_r)) \\
&\approx v_t \cos(r(t_k)) - v_t v_r \sin(r(t_k))(t-t_k), \quad \text{for small} \; (t-t_k) \\
\Rightarrow \quad x(t_{k+1}) &= x(t_k) + v_t \cos(r(t_k))(t_{k+1} - t_k) - \frac{1}{2} v_t v_r \sin(r(t_k))(t_{k+1} - t_k)^2,
\end{align*}
\]

where \(v_t = v_t(t)\) for all \(t \in [t_k, t_{k+1}]\), and similarly for \(y(t), t \in [t_k, t_{k+1}]\)

\[
y(t_{k+1}) = y(t_k) + v_t \sin(r(t_k))(t_{k+1} - t_k) - \frac{1}{2} v_t v_r \cos(r(t_k))(t_{k+1} - t_k)^2.
\]

Clearly, one may also employ other integration schemes such as forward Euler (less accurate) or higher-order methods (e.g. in the Matlab ODE suite; usually slower).
Task

Implement your solution for the Extended Kalman Filter in the file `Estimator.m`. Your code has to run with the Matlab script `script.m` and problem data as for example given in `PhysicalConstants.m` and `SimulationConstants.m`. For your estimator, use the function definition as given in the template `Estimator.m`.

For evaluating your solution, we will test it on the given problem data. Moreover, we will do suitable modifications of the parameters in `PhysicalConstants.m` and `SimulationConstants.m` and also test your estimator on those.

For judging your own solution, a typical performance of an Extended Kalman Filter implementation for the given problem is shown in Fig. 2 and 3.

Deliverables

Please hand in by e-mail your implementation of the Extended Kalman Filter in `Estimator.m`. Include the file into a zip-file, which you name `RFE10Ex1_Names.zip`, where `Names` is a list of the **pre- and surnames** of all students\(^2\) who have worked on the solution (for example `RFE10Ex1_AngelaSchoellig_SebastianTrimpe.zip`).

Send your file to Sebastian (strimpe@ethz.ch) until the due date indicated above. We will send a confirmation e-mail upon receiving your solution. You are ultimately responsible that we receive your solution in time.

\(^2\)Up to three students are allowed to work together on the programming exercise. They will all receive the same grade.
tracking error: 0.6817 meters

Figure 2: Typical tracking performance of an estimator for the given problem data.

Figure 3: Typical estimation errors with +/- one standard deviation for the given problem data.