Introduction to
Recursive Filtering and Estimation

Spring 2010

Problem Set:
Introduction to estimation

Notes:

• **Notation:** Unless otherwise noted, x, y, and z denote random variables, $f_x(x)$ (or the short hand $f(x)$) denotes the probability density function of x, and $f_{x|y}(x|y)$ (or $f(x|y)$) denotes the conditional probability density function of x conditioned on y. The expected value is denoted by $E[\cdot]$, the variance is denoted by $\text{Var}(\cdot)$ and $\text{Pr}(Z)$ denotes the probability that the event Z occurs. A normally distributed random variable x with mean μ and variance σ^2 is denoted by $x \sim \mathcal{N}(\mu, \sigma^2)$.

• Please report any error that you may find to the teaching assistants (strimpe@ethz.ch or aschoellig@ethz.ch).
Problem Set

Problem 1
Find the maximum likelihood (ML) estimate \(\hat{x}_{ML} := \arg \max_x f(z|x) \) when
\[
z_i = x + w_i, \quad i = 1, 2,
\]
where \(w_i \) are assumed to be independent with \(w_i \sim \mathcal{N}(0, \sigma_i^2) \) and \(z_i, w_i, x \in \mathbb{R} \).

Problem 2
Solve Problem 1 for independent \(w_i \) uniformly distributed on \([-1, 1]\).

Problem 3
Find the ML estimate \(\hat{x}_{ML} \) when
\[
z = H x + w, x, z, w \in \mathbb{R},
\]
where \(x \in \mathbb{R}^n \) and \(z, w \in \mathbb{R}^m, n \leq m \). The matrix \(H \) has full rank.
The components of the vector \(w \) are assumed to be independent with \(w_i \sim \mathcal{N}(0, \sigma_i^2), \quad i = 1, \ldots, m \).
How does this relate to weighted least squares?

Problem 4
Find the maximum a posteriori (MAP) estimate \(\hat{x}_{MAP} := \arg \max_x f(z|x)f(x) \) when
\[
z = x + w, \quad x, z, w \in \mathbb{R},
\]
where \(x \) is exponentially distributed,
\[
f(x; \lambda) = \begin{cases} \lambda e^{-\lambda x}, & x \geq 0, \\ 0, & x < 0, \end{cases}
\]
with \(\lambda = 1 \) and \(w \sim \mathcal{N}(0, 1) \).

Problem 5
Prove that
\[
\frac{\partial}{\partial A} \text{Tr}(ABA^T) = 2AB \quad \text{if} \quad B = B^T,
\]
for \(A, B \in \mathbb{R}^{2 \times 2} \), where \(\text{Tr}(\cdot) \) denotes the trace of a matrix.

Problem 6
Prove that
\[
\frac{\partial}{\partial A} \text{Tr}(AB) = B^T,
\]
for \(A, B \in \mathbb{R}^{2 \times 2} \).
Problem 7

Apply the recursive least squares algorithm when

\[z(k) = x + w(k), \quad k = 1, 2, \ldots, \]

where

\[\mathbb{E}[x] = 0, \quad \text{Var}(x) = 1, \quad \text{and} \quad \mathbb{E}[w(k)] = 0, \quad \text{Var}(w(k)) = 1. \]

The random variables \(\{x, w(1), w(2), \ldots\} \) are assumed to be independent and \(z(k), w(k), x \in \mathbb{R} \).

a) Solve for \(K(k) \) and \(P(k) \).

b) Simulate the algorithm for normally distributed continuous random variables \(w(k) \) and \(x \) with the above properties (1). Choose \(k \) up to 10000.

c) Simulate the algorithm for \(x \) and \(w(k) \) being discrete random variables that take the value 1 and \(-1\) with equal probability. Note that \(x \) and \(w(k) \) satisfy (1). Choose \(k \) up to 10000.

d) For the distribution in part c), what is the optimal minimum mean-squared error (MMSE) estimate?
Problem Set 3

Problem 1

\[f(w_i) \propto \exp \left(-\frac{1}{2} \frac{w_i^2}{\sigma_i^2} \right) \]

(proportional)

\[f(z_{a1}, z_{a2} | x) = f(z_{a1} | x) f(z_{a2} | x) \quad \text{(conditional independent)} \]

\[\propto \exp \left(-\frac{1}{2} \left(\frac{(z_{a1} - x)^2}{\sigma_{a1}^2} + \frac{(z_{a2} - x)^2}{\sigma_{a2}^2} \right) \right) \]

\[
\Rightarrow \text{Differentiate with respect to } x \text{ and set to 0:} \\
\left(\frac{(z_{a1} - x)}{\sigma_{a1}^2} \right) + \left(\frac{(z_{a2} - x)}{\sigma_{a2}^2} \right) = 0 \iff \hat{x} = \frac{z_{a1} \sigma_{a2}^2 + z_{a2} \sigma_{a1}^2}{\sigma_{a1}^2 + \sigma_{a2}^2}
\]

Interpretation:
\[\sigma_{a1}^2 = 0 : \hat{x} = z_{a1} \]
\[\sigma_{a2}^2 = 0 : \hat{x} = z_{a2} \]

Problem 2

\[w_i = \begin{cases} 1/2 & \text{if } w_i \in [-1, 1] \\ 0 & \text{otherwise} \end{cases} \]

\[f(z_{a1} | x) = \begin{cases} 1/2 & \text{for } -1 \leq z_{a1} - x \leq 1 \text{ or } z_{a1} - 1 \leq x \leq z_{a1} + 1 \\ 0 & \text{otherwise} \end{cases} \]

\[f(z_{a1}, z_{a2} | x) = f(z_{a1} | x) f(z_{a2} | x) \]
Consider different cases:

I) $|z_1 - z_2| > 2$

$f(z_1, z_2 | x) = 0$ \implies no value for x can explain z_1, z_2
given the model $z_c = x + w_i$

II) $|z_1 - z_2| \leq 2$

$f(z_1, z_2 | x) = \begin{cases} \mathbf{1/4} & \text{for } x \in [z_1-1, z_1+1] \cap [z_2-1, z_2+1] \\ 0 & \text{otherwise} \end{cases}$

\implies $x \in [z_1-1, z_1+1] \cap [z_2-1, z_2+1]$

all equally optimal

Problem 3

Proceed similarly as in class: $z, w \in \mathbb{R}^m, x \in \mathbb{R}^n$

$$H = \begin{bmatrix} h_1 & h_2 & \cdots & h_n \end{bmatrix}, \quad H_i = \begin{bmatrix} h_{i1} & \cdots & h_{in} \end{bmatrix}, \quad \text{scalars}$$
\[f(z|\mathbf{x}) \propto \exp \left(-\frac{1}{2} \sum_{i=1}^{n} \frac{(z_i - h(x))^2}{\sigma_i^2} \right) \]

Differentiate w.r.t. \(x_j \), set to 0:

\[\frac{\partial}{\partial x_j} \sum_{i=1}^{n} \frac{z_i - h(x)}{\sigma_i^2} h_{ij} = 0 \quad j = 1, 2, \ldots, n \]

\[\text{Lin} \quad h_{ij} \quad \begin{bmatrix} \frac{\partial z_i}{\partial x_j} & 0 \\ 0 & 1/\sigma_i^2 \end{bmatrix} \begin{bmatrix} 1/\sigma_i^2 \\ 0 \end{bmatrix} (z - h(x)) = 0 \quad j = 1, \ldots, n \]

\[\text{Column of } H \quad \begin{bmatrix} \mathbf{w} \end{bmatrix} \]

\[\Rightarrow \quad H^T \mathbf{w} (z - h(x)) = 0 \quad \text{with } \mathbf{w} \text{ weight matrix} \]

\[\Rightarrow \quad \mathbf{x} = \left(H^T \mathbf{w} H \right)^{-1} H^T \mathbf{w} z \]

Weighted least square:

\[w(x) = z - h(x) \quad x \text{ again} \quad w(x)^T \mathbf{w} \text{ would weight of measurements} \]

Problem 4

Exponential distribution:

\[f(x) = \begin{cases} 0 & x < 0 \\ \exp(-x) & x \geq 0 \end{cases} \]

\[f(z|x) = \frac{4}{\sqrt{2\pi}} \exp \left(-\frac{1}{2} \left(z - x \right)^2 \right) \]

\[\int f(z|x) f(x) = \begin{cases} 0 & x < 0 \\ \frac{4}{\sqrt{2\pi}} \exp(-x) \exp \left(-\frac{1}{2} (z - x)^2 \right) & x \geq 0 \end{cases} \]
Differentiate \((x)\) w.r.t. \(x\) and set to 0:

\[-1 + (z-x) = 0 \implies \frac{\hat{z}}{z} = z-1 \quad \text{if } z \geq 1\]

\[\implies \frac{\hat{z}}{z} = 0 \quad \text{if } z < 1 \quad \text{(cf. f(y,w))}\]

Problem 5

\[
A = [a_{ij}] \quad \text{with } a_{ij} = 1,2
\]

\[
B = [b_{ij}] \quad \text{with } b_{ij} = b_{ij}
\]

\[
(AB)_{ij} = \sum_{r=1}^{N^2} a_{ir} b_{rj}
\]

\[
(ABA^T)_{ij} = \sum_{s=1}^{N^2} (\sum_{r=1}^{N^2} a_{is} b_{rs}) a_{js}
\]

\[
\text{Tr}(ABA^T) = (ABA^T)_{11} + (ABA^T)_{22}
\]

\[
= \sum_{s=1}^{N^2} \sum_{r=1}^{N^2} \sum_{t=1}^{N^2} a_{is} b_{rs} a_{ts}
\]

\[
\frac{\partial \text{Tr}(ABA^T)}{\partial a_{ij}} = \sum_{s=1}^{N^2} b_{js} a_{is} + \sum_{r=1}^{N^2} a_{ir} b_{rj} \frac{\partial }{\partial a_{ij}} b_{rj}
\]

\[
\implies \frac{\partial \text{Tr}(ABA^T)}{\partial A} = 2AB \quad \text{q.e.d.}
\]
Problem 6

Similar way of proceeding:

\[\text{Tr}(AB) = \frac{2}{s} \sum_{r=1}^{2} a_{sr} b_{rs} \]

\[\frac{\partial \text{Tr}(AB)}{\partial A} = \text{b}_{ji} \]

\[\Rightarrow \frac{\partial \text{Tr}(AB)}{\partial A} = \text{b}_{ji} T = [\text{b}_{ji}] \]

Problem 7

a) \(P(0) = 1 \), \(\gamma'(0) = 0 \)

\(P(k) = (1 - K(k)) P(k-1) + K(k)^2 \)

\(= \frac{P(k-1)}{(1+P(k-1))^2} + \frac{P(k-1)}{(1+P(k-1))^2} \times \frac{K(k)^2}{(1+P(k-1))^2} \)

\(= \frac{P(k-1)}{1+P(k-1)} \) (**)\n
\(P(0) = 1 \), \(P(1) = \frac{1}{2} \), \(P(2) = \frac{1}{3} \) \ldots \(P(k) = \frac{1}{1+k} \)

proof by induction - see below

\[\Rightarrow P(k) = \frac{1}{1+k} \]

\(K(k) = \frac{1}{1+k} \) from (**)
Proof by induction.
 * Assume \(P(k) = \frac{1}{1+k} \) (1)
 * Start with \(P(0) = \frac{1}{1+0} = 1 \)
 * Show \(P(k+1) = \frac{1}{1+k+1} = \frac{1}{k+2} = P(k) \) from (4 * k)

\[
\frac{1}{1+k} = \frac{1}{k+2} \quad \text{q.e.d.}
\]

Assumption (4)

b) see code attached...
 - recursive least squares works, needs around 3500 iterations (measurements) to converge
 - recursive least squares is optimal estimator for Gaussian noise

c) see code attached
 - recursive least squares work, but we can do much better with the proposed nonlinear estimator

d) The only possible combinations are

<table>
<thead>
<tr>
<th>(x)</th>
<th>(w)</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

\(x_{MMSE} = E(x|z) \)

if \(z = -2 \) or \(z = 2 \), we know \(x \) precisely: \(x = -1 \) or \(x = 1 \), respectively. if \(z = 0 \) it is equally likely that \(x = 1 \) or \(x = -1 \)
Note that we do not have continuous random variables; that is, we have to use the original definition.

\[\hat{x}_{\text{MMSE}} := \arg\min_x \mathbb{E} \left[(z - x)^2 | z \right] \] for scalar case.

* for \(z = 2 \), \(\hat{x}_{\text{MMSE}} = 1 \) since \(f(x = -1 | z = 2) = 0 \)

* for \(z = -2 \), \(\hat{x}_{\text{MMSE}} = 1 \) since \(f(x = 1 | z = -2) = 0 \)

* for \(z = 0 \), \(\hat{x}_{\text{MMSE}} = \arg\min_x \left(f(x = 1 | z = 0) \cdot (x - 1)^2 + f(x = -1 | z = 0) \cdot (x + 1)^2 \right) \)

\[= \arg\min_x \left(\frac{4}{2} (x - 1)^2 + \frac{4}{2} (x + 1)^2 \right) \]

\[= \pm 1 \]
clear

% Use 0 for normally distributed, CRV, 1 for DRV equally likely at +-1
DISTRIBUTION_TYPE = 0;

% Set the state of the normally distributed random number generator.
randn('state',0);

% Number of time samples. 100, 1000, or 10000
N = 1e4;
xEstLin = zeros(N+1,1);
xEstNL = zeros(N+1,1);

% Generate the true value of x
if DISTRIBUTION_TYPE == 0
 xActual = randn;
else
 xActual = sign(randn);
end

% Simulation
xEstLin(1) = 0;
xEstNL(1) = 0;
for k = 1:N
 if DISTRIBUTION_TYPE == 0
 w = randn;
 else
 w = sign(randn);
 end

 % Generate simulated measurement
 z = xActual + w;

 % The optimal linear estimator
 K = 1/(1+k);
xEstLin(k+1) = xEstLin(k) + K*(z - xEstLin(k));

% The nonlinear estimator, which only makes sense for discrete random
% variables. Case 1: we have already determined what x is
if (abs(xEstNL(k)) > 0.5)
 xEstNL(k+1) = xEstNL(k);
else
 % Otherwise, we have to look at the measurement. If z = 0, then it
 % is equally likely that x = 1 or -1. If z = 2, then x must be 1.
 % If z = -2, then x must be -1
 if (abs(z) < 1)
 xEstNL(k+1) = 0;
 elseif (z > 1)
 xEstNL(k+1) = 1;
 else
 xEstNL(k+1) = -1;
 end
else
end

% Plot the results
figure(1)
plot(0:N,xEstLin,'*',0:N,xEstNL,'o',0:N,xActual,'r.);
legend('Linear Estimate','Non-linear Estimate','Actual');

findfigs