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Abstract

This paper describes an algorithm to calculate near-optimal minimum time trajectories for four wheeled omnidirectional vehicles, which can
be used as part of a high-level path planner. The algorithm is based on a relaxed optimal control problem. It takes limited friction and vehicle
dynamics into account, as encountered in high-performance omnidirectional vehicles. The low computational complexity makes the application
in real-time feasible. An implementation of the algorithm on a real vehicle is presented and discussed.
c© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Omnidirectional vehicles have some desirable properties:
they are very maneuverable, able to navigate tight quarters,
and have few constraints on path planning. The small-size
league of the annual RoboCup competition is an example of
a highly dynamic environment where omnidirectional vehicles
have been employed extremely successfully since 2000 [5,6].

Path planning in general is a difficult task, especially
when considering vehicle dynamics and moving obstacles.
Rapidly changing environments require a re-computation of
the path in real-time. There are many approaches to solve this
problem, which are based on different assumptions about the
hardware and the environment. Paromtchik and Rembold [10]
and Muñoz et al. [11], for example, used a sequence of
splines to generate a path which includes waypoints. The
splines contained time information, so that the vehicle’s desired
velocity could be limited depending on the hardware used. Faiz
and Agrawal [12] approximated the set of all feasible states
of the system with polytopes, which took the dynamics and
other constraints into account. Moore and Flann [7] presented
a trajectory generation algorithm for an off-road vehicle. The
basis for the path generator was a set of mission goals that
had to be achieved. They used an A∗ algorithm to determine
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trajectories as a combination of steps, ramps, decaying
exponentials, and sinusoidal functions. Watanabe et al. [8]
used a resolved acceleration approach on their omnidirectional
robotic platform. They inverted the dynamics of the system and
implemented a PI or PD controller with a feedforward term to
minimize the error between desired and achieved trajectory. Liu
et al. [13] implemented a method called trajectory linearization
control (TLC), which is based on linearization along the desired
trajectory and inversion of the dynamics. Kalmár-Nagy et al. [4]
developed a trajectory generation algorithm which computed a
minimum time path based on the dynamics of the vehicle and
the motor characteristics.

With the recent advancements in robot hardware, some
of the basic assumptions for generating optimal paths have
changed. Robots can accelerate at much higher rates than
they used to. Some robots are no longer power but friction
limited, since the drive motors can deliver enough torque to
make the wheels slip even at high velocities. Furthermore,
due to the high accelerations the effect of weight transfer
becomes more significant. Weight transfer can cause the normal
forces between the wheels and the ground to change, thus
altering the available amount of traction and the maximum
acceleration.

The objective of this paper is to present a trajectory
generation algorithm for high-performance omnidirectional
vehicles. The algorithm computes the minimum time trajectory
from a given initial state to a given final state while taking
limited friction and weight transfer into account. The output

http://www.elsevier.com/locate/robot
http://www.people.cornell.edu/pages/op24/
http://www.people.cornell.edu/pages/op24/
http://www.people.cornell.edu/pages/op24/
http://www.people.cornell.edu/pages/op24/
http://www.people.cornell.edu/pages/op24/
http://www.people.cornell.edu/pages/op24/
http://www.people.cornell.edu/pages/op24/


14 O. Purwin, R. D’Andrea / Robotics and Autonomous Systems 54 (2006) 13–22
Fig. 1. 2003 Cornell RoboCup robot (left), robot wheelbase (right).
is a sequence of velocities for the vehicle, which have to be
tracked by low-level control. This algorithm can readily be used
as part of a high-level path planning algorithm, for example as
the obstacle-free guidance system in [9].

The algorithm is designed for vehicles with four powered
wheels moving on a plane surface. These vehicles are
overactuated, which means that different combinations of
control inputs can have the same net effect on the system.
The problem of overactuated vehicles is discussed in [16] and
several techniques are given of how to allocate the control
efforts in order to cause the desired system response.

In the derivation of the presented algorithm ideal control
of the actuators is assumed, i.e., motor torques can be chosen
arbitrarily within the physical limits. On a real vehicle the wheel
forces would be determined by a dedicated controller [5], which
is beyond the scope of this paper.

This paper is organized in the following way. Section 2
describes the assumptions made and covers the derivation
of the vehicle equations of motion. In Section 3 the model
of the vehicle dynamics is simplified and the rotational and
translational degrees of freedom (DOFs) are decoupled. The
result is an acceleration profile, which is independent of the
vehicle orientation. Section 4 presents a solution to the relaxed
optimal control problem, i.e., finding a minimum time solution
to drive the system to the desired final destination given the
previously derived vehicle characteristics. Section 5 describes
the performance of the algorithm in simulation, while Section 6
covers results from the implementation on a real vehicle of the
Cornell RoboCup system.

2. Vehicle dynamics

The basis for the following derivations is a four wheeled
omnidirectional vehicle; see Fig. 1. The drive modules are
equally spaced at 90◦. The center of mass (CM) is assumed to
be exactly above the geometrical center of the drive system.
2.1. Motor characteristics

The main assumption here is that the acceleration of the
vehicle is friction limited, which means that the maximum
acceleration can be achieved over the entire velocity range.
This is a reasonable approximation for vehicles which are
equipped with strong drive motors and do not have much room
to accelerate or decelerate, as discussed in [5].

2.2. Friction force and weight transfer

Friction has been modelled as Coulomb friction. For more
sophisticated friction models, see Olsson et al. [14], for
example. The maximum acceleration force a wheel can exert
is fa = µn, where n is the normal force between the wheel
and the ground, and µ is the coefficient of friction. In general,
the normal force n is not only a function of vehicle mass and
geometry but it depends on the current acceleration vector of
the vehicle. This effect is called weight transfer [1]. It means
that during an acceleration phase the weight distribution on
the wheels changes due to the inertia of the robot mass. For
example, when accelerating in the forward direction the normal
force of the front wheels is reduced while at the same time the
rear wheels are loaded more heavily.

2.3. Derivation of equations of motion

The first step is to derive the equations of motion which gov-
ern the vehicle’s dynamics. Fig. 2 depicts the free-body diagram
of the vehicle. The global coordinate system is defined by x , y,
and z. The vehicle frame of reference is defined by xr, yr, and zr.
The angle θ is the rotation of the vehicle in the x–y plane, i.e., it
is the rotation of the local coordinates with respect to the global
coordinate system. The mass of the vehicle is m. The forces ni
are the normal forces between the wheels and the ground, and
the forces fi are the friction forces. The positions of the wheels
with respect to the CM are defined by the vectors Pi :
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Fig. 2. Free-body diagram.
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(1)

The parameter l describes the distance from the geometrical
center to the wheels. The driven directions Di of the wheels are
orthogonal to the position vectors Pi
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0
1
0
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−1
0
0
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−1
0
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0
0

 . (2)

The CM of the vehicle is at

PM = h

0
0
1

 . (3)

The rotation matrix R(θ) relates the local (vehicle) frame of
reference (FOR) to the global (Newtonian) FOR:

R(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (4)

Taking the force and moment balance in the global FOR yields
two sets of equations that define the vehicle dynamics:mẍ

m ÿ
mz̈

 = R(θ)

∑
i

fi Di +

∑
j

n j

0
0
1

+ mg

 0
0

−1


(5)Jx θ̈x

Jy θ̈y

J θ̈

 = R(θ)

×

∑
i

(−PM + Pi ) × fi Di +

∑
j

(−PM + P j ) × n j

0
0
1


(6)

where J is the moment of inertia. Subscripts •x and •y indicate
rotation about the coordinates x and y respectively. At this
point the assumption is made that the normal forces are always
positive, i.e., the vehicle does not tip. Thus

z̈ = θ̈x = θ̈y = 0. (7)

The equations of motion in the x–y plane are

mẍ = cos θ( f4 − f2) − sin θ( f1 − f3) (8)

mÿ = sin θ( f4 − f2) + cos θ( f1 − f3) (9)

J θ̈ = l
∑

i

fi (10)

where the wheel forces fi can be arbitrarily chosen within the
limits posed by the maximum friction forces

| fi | ≤ fi,max = µni . (11)

The acceleration envelope A0 is defined as the boundary of
the set of all feasible combinations of ẍ , ÿ, and θ̈ . Within the
envelope, every combination of ẍ , ÿ, and θ̈ can be achieved by
the vehicle.

In order to find the acceleration envelope of the vehicle, (8)
through (10) have to be solved in terms of the friction forces
fi , which are functions of the normal forces ni . Therefore,
expressions for the normal forces have to be found first.
Eqs. (5) and (6) only yield six equations for the seven
unknowns. In addition to the equations of motion it is assumed
that the normal forces are distributed as follows:

n1 + n3 = n2 + n4. (12)

For a derivation of (12), see Appendix A. In order to find
explicit expressions for the normal forces ni , the moment
balances (6) have to be pre-multiplied by R−1(θ). The inverse
of R(θ) always exists, since R(θ) is non-singular for all θ ∈

[0, 2π ] [3]. With assumption (7) this leads to

f1h − f3h + n2l − n4l = 0 (13)

f2h − f4h − n1l + n3l = 0. (14)

The system of equations consisting of (12)–(14), and the force
balance in the z direction from (5) is solved for ni in order to
yield

n1
n2
n3
n4

 =
1
4l


2h( f2 − f4) + lmg
2h( f3 − f1) + lmg

2h(− f2 + f4) + lmg
2h(− f3 + f1) + lmg

 . (15)

At this point the control inputs ui are introduced, which are a
measure of how much torque the motors provide.

fi = ui fi,max, ui ∈ [−1, 1]. (16)

Eqs. (11) and (15) are substituted into (16), which leads to
implicit expressions for fi . At the same time, the terms f2 − f4
and f3 − f1 are replaced by acceleration terms from (8) and (9):

f1
f2
f3
f4

 =
mµ

4l


u1(−2h(ẍ cos θ + ÿ sin θ) + lg)

u2(−2h(−ẍ sin θ + ÿ cos θ) + lg)

u3(2h(ẍ cos θ + ÿ sin θ) + lg)

u4(2h(−ẍ sin θ + ÿ cos θ) + lg)

 ,

ui ∈ [−1, 1]. (17)
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Table 1
Sample values for an omnidirectional vehicle

Parameter µ g m J l h

Value 0.8 9.81 m/s2 2.7 kg 0.0085 m2 kg 0.08 m 0.05 m
The goal is to find expressions for ẍ , ÿ, and θ̈ which are only
functions of ui , µ, m, h, l, g, and θ . In order to achieve this,
(17) is substituted back into the equations of motion (8)–(10).
The result is a system of coupled differential equations, which
is only dependent upon accelerations and the control efforts.
All terms containing normal or friction forces have been
eliminated.

ẍ =
µ

4l
[lg((u4 − u2) cos θ − (u1 − u3) sin θ)

+ 2h(ẍ(u1 + u3 − u2 − u4) cos θ sin θ

+ ÿ((u2 + u4) cos2 θ + (u1 + u3) sin2 θ))] (18)

ÿ =
µ

4l
[lg((u4 − u2) sin θ + (u1 − u3) cos θ)

+ 2h(ẍ(−(u2 + u4) sin2 θ − (u1 + u3) cos2 θ)

+ ÿ(−u1 − u3 + u2 + u4) cos θ sin θ)] (19)

θ̈ =
µm

4J
[lg(u1 + u2 + u3 + u4)

+ 2h(ẍ((u3 − u1) cos θ + (u2 − u4) sin θ)

+ ÿ((u4 − u2) cos θ + (u3 − u1) sin θ))]. (20)

Solving (18) through (20) explicitly for ẍ , ÿ, and θ̈ yieldsẍ
ÿ

θ̈

 = R(θ)
lgµ

4l2 + h2µ2(u2 + u4)(u1 + u3)
l(u4 − u2) + 0.5µh(u1 − u3)(u2 + u4)

l(u1 − u3) + 0.5µh(u2 − u4)(u1 + u3)

m/J

(
h2µ2

∑
i

u1u2u3u4

ui
+ l2

∑
i

ui

)
 ,

ui ∈ [−1, 1]. (21)

These nonlinear equations in ui describe the set of admissible
accelerations of the vehicle in the global frame of reference.
The acceleration envelope is discussed in more detail in the next
section.

3. Simplification of the acceleration envelope

Since (21) is nonlinear in ui , a numerical approach is chosen
in order to find the envelope. Discretizing the control efforts
ui , solving the equations using sample parameters, and plotting
the results yields a discretized set of admissible accelerations.
This approximation can be arbitrarily close to the continuous
envelope, depending on the resolution of the discretization.
Table 1 holds the parameters for the omnidirectional vehicle
depicted in Fig. 1, which is also used in Section 6 to show
the implementation of the trajectory generation on an actual
vehicle. Fig. 3 shows the envelope for the sample case with
θ = 0. Depending on the given parameters the dimensions vary,
but the characteristic shape is always the same. The resulting
Fig. 3. Acceleration envelopeA0.

acceleration envelope A0 is not rotationally symmetric, which
means that the maximum magnitude of the acceleration is
determined by the direction of the acceleration vector. This
dependency makes it harder to compute the vehicle’s minimum
time trajectory. In order to find a closed form solution, the
acceleration envelope is restricted, similarly to [4]. By taking
the intersection of the acceleration envelopes for all directions
θ , the influence of the orientation is removed:

Q =

⋂
θ∈[0,2π]

R(θ)A0. (22)

Q defines the admissible set of accelerations that the vehicle
can achieve, independent of the current orientation θ . The result
for the sample envelope is depicted in Fig. 4. Within Q, any
arbitrary combination of the three acceleration components
can be chosen. It should be noted that the accelerations are
coupled through the control efforts ui . In order to make
the optimal control problem in Section 4 faster to solve for
real-time applications, the envelope is further simplified by
decoupling the rotational DOF θ from the two linear DOFs.
This is achieved by imposing a limit on the rotational and
translational accelerations: |θ̈ | ≤ θ̈max and

√
ẍ2 + ÿ2 ≤ amax,

where amax is the maximum linear acceleration at θ̈ = θ̈max.
This reduces the envelope to a cylinder with radius amax, as
illustrated in Fig. 4. The presented algorithm therefore assumes
independent control of translation and rotation, as described
in [5]. However, the algorithm can easily be extended to not
making this simplification.

In the following section, the resulting optimal control
problem for the simplified envelope is posed and a solution is
presented.
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Fig. 4. Reduced envelopeQ (left), final cylindrical envelope (right).
4. The optimal control problem

For the remainder of this paper the vehicle rotation will
be neglected, since it can be treated as a simplification of the
translational cases. The objective is to find the minimum time
path for the two linear DOFs, x and y, from a given initial state
to a desired final state. The dynamics have been simplified to
a double integrator subject to limitations on the acceleration
and velocity. The state of the system consists of positions and
velocities. The final velocity is always chosen to be zero in
order to avoid discontinuities in the solutions when approaching
the desired final state; see [2,4]. It should be noted that when
applying the algorithm in practice the vehicle hardly ever slows
down to zero velocity since the destination will be changed
continually depending on the environment [5,6].

By definition, all accelerations inside the acceleration
envelope can be achieved. With the simplifications made in
Section 3 individual wheel forces are no longer required to
describe the system dynamics. The inputs to the simplified
system are the accelerations in x and y directions instead. The
allocation of torques to the wheels is the task of a separate
controller, which is not within the scope of this paper.

The optimal control problem is to minimize the time tf for
the system

ẍ(t) = qx (t) (23)

ÿ(t) = qy(t) (24)

with initial and final conditions

x(0) = 0, x(tf) = xf, ẋ(0) = ẋ0, ẋ(tf) = 0 (25)

y(0) = 0, y(tf) = yf, ẏ(0) = ẏ0, ẏ(tf) = 0 (26)

subject to constraints on the control effort and the state√
q2

x (t) + q2
y (t) ≤ amax (27)√

ẋ2(t) + ẏ2(t) ≤ vmax (28)

where qx (t) and qy(t) are the control efforts in the x and
y directions, tf is the execution time, xf and yf are the final
positions, and ẋ0 and ẏ0 are the initial velocities. The maximum
acceleration amax is the radius of the cylindrical envelope from
the previous section (see Fig. 4); the maximum velocity vmax is
defined by the motor specifications.

In order to make the problem more tractable, each DOF is
handled independently at first. In the end, the final times of
both DOFs are synchronized. Introducing a general DOF w,
the problem can be written as

ẅ(t) = qw(t) (29)

w(0) = 0, w(tf) = wf, ẇ(0) = ẇ0, ẇ(tf) = 0 (30)

|ẇ(t)| ≤ vw,max, |qw(t)| ≤ aw,max. (31)

The minimum time solution to this problem occurs on the
boundary of the velocity and/or acceleration constraints [2].
This means that at any time the vehicle is following one of three
strategies:

• accelerating: qw(t) = aw,max
• decelerating: qw(t) = −aw,max
• cruising: |ẇ(t)| = vw,max, qw(t) = 0.

In order to find a complete solution the problem can be
broken down into a combination of several distinct cases. Each
case represents a possible state or condition of the system.
These conditions are mutually exclusive: at any given time
the system is in one and only one of these cases, depending
on ẇ0, wf, vw,max, and aw,max. Each case has a control effort
associated with it (e.g. case 1: qw(t) = aw,max). The strategy
is to apply this control effort until the conditions for a different
case are satisfied or the final destination is reached with zero
final velocity. The complete solution is therefore a sequence of
cases.

The problem is normalized to wf ≥ 0 by inverting the signs
of wf and ẇ0 if wf is negative. Thus, the possible cases are
reduced to the five cases shown in Fig. 5. Case 1 covers all
initial conditions where ẇ0 < 0: the vehicle is initially moving
away from the destination and has to accelerate with qw(t) =

aw,max in order to reverse direction. Case 3 is applicable if ẇ0 >

vw,max. The vehicle is moving too fast and has to decelerate
with maximum control effort. This case is possible since vw,max
is not necessarily a hard physical constraint, but rather a desired
maximum velocity which should not be exceeded. Furthermore,
the constraint vw,max can be decreased artificially as part of
the synchronization process of the final times; see below. For
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Fig. 5. Possible optimal control cases.

all other instances there are three choices left (acceleration,
deceleration, coasting) depending on how far the destination is
and how fast the vehicle moves initially. These three choices are
covered by cases 2.1, 2.2, and 2.3. A possible sequence could
look as follows.

Example 1. The vehicle is far away from the destination and
moving slowly towards it. It will accelerate until it reaches
vw,max (case 2.1), cruise at vw,max (case 2.2), and finally
decelerate such that it reaches the destination with exactly zero
final velocity (case 2.3).

Given the applied control effort and the initial conditions,
it is possible to find a closed form solution for the final state
of each case. The following list contains the requirements for
each particular case, the applied control effort qw(t) associated
with that case, the execution time t ′, the travelled distance
w′

= w(t ′), and the final velocity ẇ′
= ẇ(t ′).

Case 1. ẇ0 < 0

The initial velocity is negative; the vehicle has to accelerate
with maximal control effort until it reaches ẇ(t) = 0.

qw(t) = aw,max, t ′ = −
ẇ0

aw,max
(32)

w′
= ẇ0t ′ +

aw,max

2
t ′2 = −

ẇ2
0

2aw,max
, ẇ′

= 0. (33)

Case 2.1. vw,max > ẇ0 ≥ 0 and wf >
ẇ2

0
2aw,max

.

The vehicle has to accelerate, either because the destination
is far away or the initial velocity is small. This case has two
subcases. In subcase I, case 2.1 is followed by case 2.2; the
vehicle reaches vw,max and is cruising. In subcase II, case 2.1 is
followed by case 2.3 and the vehicle decelerates until it reaches
the final destination; see Fig. 6. Define t1 as the time when the
vehicle has to start decelerating in order to avoid overshooting
the destination. Also define w1 = w(t1) and ẇ1 = ẇ(t1). It
follows that

w1 = ẇ0t1 +
aw,maxt2

1

2
, t1 =

ẇ1 − ẇ0

aw,max

= ẇ0
ẇ1 − ẇ0

aw,max
+

(ẇ1 − ẇ0)
2

2aw,max
(34)
Fig. 6. The subcases of case 2.1.

wf − w1 =
ẇ2

1

2aw,max
. (35)

Adding (34) and (35) and solving for ẇ1 yields

ẇ1 =

√
wfaw,max +

ẇ2
0

2
(36)

where ẇ1 has to be positive by definition. The decision, which
of the two subcases is applicable, is based on a comparison of
the time tI to reach vw,max and the time tII when the vehicle has
to decelerate.

tI =
vw,max − ẇ0

aw,max
, tII =

ẇ1 − ẇ0

aw,max
. (37)

If tI < tII then the vehicle reaches vw,max and

qw(t) = aw,max, t ′ = tI (38)

w′
= ẇ0t ′ +

aw,max

2
t ′2 =

v2
w,max − ẇ2

0

2aw,max
, ẇ′

= vw,max; (39)

otherwise it has to brake before it reaches vw,max and

qw(t) = aw,max, t ′ = tII (40)

w′
= w1 =

wf

2
+

ẇ2
0

2aw,max
, ẇ′

= ẇ1. (41)

Case 2.2. ẇ0 = vw,max and wf >
ẇ2

0
2aw,max

.

The vehicle is cruising at maximum velocity until it has to
decelerate.

qw(t) = 0, t ′ =
wf

vw,max
−

vw,max

2aw,max
(42)

w′
= wf −

v2
w,max

2aw,max
, ẇ′

= vw,max. (43)

Case 2.3. vw,max ≥ ẇ0 > 0 and wf ≤
ẇ2

0
2aw,max

.

The vehicle has to decelerate until it reaches zero final velocity.

qw(t) = −aw,max, t ′ =
ẇ0

aw,max
(44)

w′
=

ẇ2
0

2aw,max
, ẇ′

= 0. (45)

Case 3. ẇ0 > vw,max.

The vehicle moves faster than the allowed maximum velocity.
This can be caused by the iterative solution procedure presented
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below. The vehicle has to decelerate until it reaches the allowed
velocity.

qw(t) = −aw,max, t ′ =
ẇ0 − vw,max

aw,max
(46)

w′
=

1
2aw,max

(ẇ2
0 − v2

w,max), ẇ′
= vw,max. (47)

The procedure to find the complete solution is as follows.

(1) Define initial and final states, set t = 0
Normalize: ẇ0 = sign(wf)ẇ0, wf = sign(wf)wf

(2) Check which case is applicable, based on the initial
conditions

(3) Compute: qw(t), t ′, w′, and ẇ′

(4) Set: t = t + t ′, wf = wf − w′, ẇ0 = ẇ′

Normalize: ẇ0 = sign(wf)ẇ0, wf = sign(wf)wf
(5) If the destination is not reached with zero final velocity: Go

to (2)
(6) Total time to destination tf,w = t .

The result of this algorithm is a minimum time trajectory
for a single DOF. Given a particular instance of the problem
(23) through (28), the solutions in x and y will yield different
execution times tf,x and tf,y in general. In order to get the
minimum time to destination for the vehicle the solutions have
to be synchronized. This is done by adjusting the maximum
allowed control effort and velocity for both DOFs via the
parameter α ∈ (0, π/2):

ax,max = amax cos α, vx,max = vmax cos α (48)

ay,max = amax sin α, vy,max = vmax sin α. (49)

Eqs. (48) and (49) satisfy the constraints (27) and (28).
If either xf = 0 or yf = 0 with zero initial velocity,
no synchronization is needed. Thus the exclusion of 0 and
π/2 from α. The execution times tf,x and tf,y are continuous
and strictly monotonously increasing/decreasing functions of
α [17]. Therefore it is possible to use a bisection algorithm to
find α.

(1) Initial guess: α = π/4, αmin = 0, αmax = π/2
(2) Find minimum time trajectories for both x and y

coordinates, given α

(3) If |tf,x − tf,y | is sufficiently small, keep the solutions and
stop the search

(4) If (tf,x > tf,y), set α = (α − αmin)/2, αmax = α

(5) If (tf,x < tf,y), set α = (αmax − α)/2, αmin = α

(6) Go back to step (2).

Using bisection the difference between the two execution
times can be made arbitrarily small. An alternative is to keep
the number of iterations constant, effectively limiting the search
time in a real-time application. The optimal value αopt is defined
as the α for which tf,x = tf,y . The difference between αopt and
α is bounded by

|α − αopt| ≤
π

2N+1 (50)

where N is the number of iterations of the bisection. Therefore,
the order of the search algorithm is O(log2 N ). It should be
noted that the solution depends continuously on the initial
and final conditions, i.e., small changes in the initial and
final conditions only cause small changes in the solution. This
property makes the solution robust to disturbances and noise.

5. Performance of the algorithm in simulation

This section describes how the implementation of the
algorithm performs. One important aspect is the computation
time. The recursive algorithm presented in the previous chapter
was implemented in C ++ and tested on a Pentium 4 (1.7 GHz
clock speed). A Monte Carlo simulation yielded average
computation times of 94 µs, with a standard deviation of 28 µs.
Note that there are guarantees on the maximum number of
operations per iteration, since a sequence can only consists of a
maximum of five cases in a row.

Another point is the quality of the solutions of the proposed
algorithm in terms of the execution time tf. The derivation of
the algorithm involves several simplifications and assumptions,
which greatly reduce the required computational effort but
at the same time increase the execution times of the found
trajectories. The solution of the proposed algorithm tf,approx
is compared against two different benchmarks. Both are
computed using RIOTS [18], an optimal control toolbox written
in Matlab and C. The Matlab code for the simulation can be
found at the author’s web site [19]. It should be noted that
parts of the simulation can only be run in conjunction with the
RIOTS engine which is a commercial product and is therefore
not included.

RIOTS can solve optimal control problems with constraints
on the state and the control effort. The first benchmark is the
execution time tf,full of the full problem, i.e., (21) subject to the
velocity constraint (28). The second benchmark is the execution
time tf,2D of the two-dimensional problem (23) to (28). The
parameters of the sample vehicle (Fig. 1, Table 1) are used
in all simulations. The maximum velocity and acceleration
are limited to vmax = 2.0 m/s and amax = 3.92 m/s2.
The velocity limit is required to maintain the friction limit
assumption. The maximum acceleration is found by limiting the
rotational acceleration to θ̈max = 44.9 rad/s2 and determining
the intersection with the envelope (see Fig. 4). If the rotational
acceleration was any larger it would reduce the maximum
allowed translational acceleration.

A Monte Carlo simulation was performed by generating
random initial conditions and computing tf,approx, tf,full, and
tf,2D. Fig. 7 shows the simulation results. The abscissa depicts
the ratio rtf of the execution times tf,full/tf,approx or tf,2D/tf,approx
respectively. The ordinate shows the fraction ni/ntot, where ntot
is the total number of solutions. The variable ni is the number
of solutions for which the execution time ratio tf,RIOTS/tf,approx
is smaller than or equal to rtf. That means that a fraction of
ni/ntot of all solutions have a ratio of final times of rtf or better.
Summarizing, the abscissa depicts the quality of the results,
while the ordinate shows what fraction of the solutions achieves
that quality.

As expected, the solution of the full problem yielded the
smallest execution times, since it used the unreduced accelera-
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Fig. 7. Comparison of execution times.

Fig. 8. Comparison of trajectories.

tion envelope. Due to the simplifications and relaxations the ex-
ecution times tf,approx are longest, but not by much. More than
94% of tf,approx are within 96% of tf,2D. When comparing to
the solutions of the full problem, more than 85% of tf,approx are
within 82% of tf,full. On the other hand, the reduction in com-
putation time is significant: on the same computer the average
RIOTS solution (both the full and the 2D solution) took more
than 2 minutes while the simplified algorithm was executed in
about 100 µs.

Fig. 8 shows a comparison of a RIOTS trajectory (using the
full envelope) and the trajectory generated by the presented
algorithm. Plotted are x versus y positions of the following
representative example:

x(0) = 1.143 m, x(tf) = 0.0 m, ẋ(0) = 0 m/s,

ẋ(tf) = 0 m/s (51)

y(0) = 0.5 m, y(tf) = 0.0 m, ẏ(0) = −1.0 m/s,

ẏ(tf) = 0 m/s. (52)

6. Implementation

The new trajectory generation algorithm was implemented
on the Cornell RoboCup system. RoboCup is a game of
completely autonomous robotic soccer. The main sensor of
the system is an overhead camera which takes pictures of
the playing field at a rate of 60 Hz. The vision system
Table 2
Destinations for implementation test

Destination x-Coord (m) y-Coord (m)

A −1.0 −0.5
B 1.0 −0.5
C 0.0 0.5

Fig. 9. Implementation on robot.

analyzes these frames and determines the robots’ positions
and velocities. This data is passed on to the strategy module,
which makes the decisions where to move the robots. Trajectory
generation then computes minimum time paths, which are
recomputed every frame in order to give immediate feedback.
The velocity commands corresponding to these paths are sent
to the robots. The robots track the velocity commands using
essentially PI controllers for the wheel speeds.

In order to test the performance of the proposed trajectory
generation algorithm, a robot was commanded to move along a
line from A to B, using trajectory generation. The rotation was
held fixed at θ = 0 rad. When the robot crossed a particular
x coordinate xc, the final destination was changed to C, so that
the robot had to alter its course while moving. Four different
situations were tested, with xc,1 = −0.6 m, xc,2 = −0.2 m,
xc,3 = 0.2 m, and xc,4 = 0.6 m. Table 2 contains the
destinations, and Fig. 9 depicts the results. Video clips of the
vehicle executing the test pattern can be found at [19]. The
figure shows two paths for each xc. The solid lines stand for
the paths actually taken by the robots. The trajectories and
vehicle commands are recomputed every frame to compensate
for process and sensor noise. The dashed lines are the paths that
were computed in the frame when the destination was changed
from B to C.

The theoretical and actual paths deviate at most by about
0.1 m. This might seem a large error in comparison to the length
of the entire trajectory, but it should be kept in mind that the
vehicle is not tracking the dashed trajectories for more than
one frame. The trajectories are recomputed every frame, which
means that errors enter only in the form of slightly changed
initial conditions. On the other hand, for a short time horizon
(≈ 0.3 s) the deviations between precomputed and actually
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Fig. 10. Torque-speed graphs.

taken trajectories are about an order of magnitude smaller. The
errors are sufficiently small for effective obstacle avoidance
and ball control in the small-size league of the RoboCup
competition, where the algorithm was very successfully
applied [5].

7. Conclusion

A trajectory generation algorithm for omnidirectional
vehicles has been presented. The algorithm takes the vehicle
dynamics, limited friction, and weight transfer into account. It
is tailored to high-performance vehicles that are mainly friction
limited. It offers a computationally efficient way to calculate
minimum time trajectories, which are close to the optimal
solutions. In order to prove the feasibility of the concept, the
algorithm was successfully applied to a real vehicle of the
Cornell RoboCup system.

During the derivation of this algorithm certain assumptions
were made about the location of the center of mass and
the wheel positions. In practice, these locations are subject
to manufacturing tolerances and therefore are not perfectly
well known. These deficiencies could be the topic of further
investigations. In the case that the CM is not centered, for
example, additional terms are introduced in (6).

During the derivation of the vehicle dynamics it was
assumed that the motors could always provide sufficient torque
to make the wheels slip. In reality, this assumption will break
down for most vehicles at high speeds. An interesting approach
would be to combine limited friction with a motor model such
as presented in [4]. This would mean that at low speeds the
motors can provide enough torque τ to make the wheels slip
(τfric), but if the wheel velocity v gets larger than a certain
threshold the maximum torque drops linearly; see Fig. 10.

Also, this paper could be extended to non-zero final
velocities. This would require finding means of handling
the discontinuities that arise when approaching the final
destination. There still remains great potential for future
research in the area of trajectory generation for omnidirectional
vehicles.

Appendix A. Assumption about vehicle weight distribution

During the derivation of the vehicle equations of motion it is
assumed that

n1 + n3 = n2 + n4. (A.1)

This is motivated by the rigid pillar problem as presented
in [15]. A vehicle with four wheels is statically undetermined if
Fig. A.1. Normal force model.

he wheels and suspension are considered to be rigid. In order
o derive (A.1), the wheels are treated as linear springs with a
ery large spring constant k, such that z̈ = θ̈x = θ̈y = 0 still
olds to first order. The exact magnitude of the spring constant
s not relevant (as long as it is positive and not infinite), since it
ill cancel out. The vehicle chassis is modelled as a rigid body,

s shown in Fig. A.1.
For small rotations, the displacements di of the springs can

e written as functions of the linear robot displacement zr
nd the two rotations about the xr and yr axes, θx,r and θy,r
espectively.

1 = zr − lθy,r (A.2)

2 = zr + lθx,r (A.3)

3 = zr + lθy,r (A.4)

4 = zr − lθx,r (A.5)

di = ni . (A.6)

Solving (A.2) through (A.6) for the normal forces and
dding n1 and n3 (n2 and n4 respectively) yields

1 + n3 = 2kzr (A.7)

2 + n4 = 2kzr (A.8)

hich completes the derivation of (A.1).
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