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Abstract
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2019

As robots become more integrated into everyday society, an increasing emphasis is being placed on

their ability to execute complex tasks while maintaining safety. One of the most fundamental tasks

in motion planning and control is the coordination of multiple robots to safely and efficiently reach

target destinations. In recent years, a hybrid systems approach, that which combines both continuous

and discrete system descriptions, has proven to be an attractive methodology for control with complex

specifications. Although there is extensive literature on both the design of continuous time feedback

controllers and discrete motion planning algorithms, relatively few works address the rigorous integration

of these two components, especially in the context of multi-vehicle coordination. In this dissertation, we

leverage the hybrid systems paradigm to formulate a novel framework for motion planning and control

of multi-vehicle systems that is modular, robust, and provably safe.

This dissertation contains three distinct contributions. The first contribution considers the synthesis

of low level continuous time feedback controllers for guiding system trajectories along a desired direction;

to this end, an open problem in classical linear quadratic control was solved. The second contribution

broadens the scope to develop a modular motion planning framework that combines low level feedback-

based motion primitives with high level planning algorithms. Finally, the third contribution extends

this modular framework towards a multi-hierarchy of motion primitives in order to improve scalability

with respect to the number of vehicles. Both the second and third contributions include experimental

validation on a collection of quadrocopters.
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Chapter 1

Introduction

With advancements in electronic and computer technology, robotic systems are becoming more embedded

into our society due to their increasing capabilities and affordability. Robotic systems have the potential

to transform many aspects of both the industrial and commercial domains. Among the many platforms

that are currently available, some of the most exciting are flying vehicles such as the quadrocopter.

Forthcoming applications are expected in a wide variety of domains such as agriculture, cinematography,

construction, entertainment, environmental monitoring, health care, military, mining, search and rescue,

sports, transportation, and so on. Developing a sufficient level of autonomy in these systems will be

central in enabling them to perform these various functions in an efficient and safe manner.

Control theory has provided the foundations for the control of robotic systems. One can observe

that the predominant method of control has been based on some form of reference trajectory tracking.

However, real systems often involve complex specifications such as multiple modes of operation, safety

requirements, other performance requirements like liveness, or temporal logics as specification languages.

While reference trajectory tracking can be adapted to address such problems on a case-by-case basis,

more systematic methods are highly desirable.

A fairly recent methodology aimed towards addressing complex models and specifications for control

systems involves the notion of a hybrid system. Informally, a hybrid system consists of a collection

of discrete modes, where each mode contains a continuous time model of the dynamics and a specified

region of operation. Moreover, transitions between modes are enabled only when the continuous behavior

achieves a certain condition, such as reaching the boundary of the region of operation. In this way,

complex specifications can be formally accommodated during the design process of the hybrid system.

In this thesis, we explore these ideas in the context of developing a novel framework for the au-

1



Chapter 1. Introduction 2

Figure 1.1: Typical workflow for the design of hybrid controllers. First, the safety constraints are
modelled on the state space (left). Next, the safety region is partitioned into polytopes, typically
simplices (middle). Finally, feedback controllers are designed on each polytope, driving trajectories
along a specified sequence of polytopes (right).

tonomous motion planning and control of multiple robotic agents. There is a wealth of literature on

this fundamental problem in robotics, which involves many aspects such as perception, mapping, state

estimation, planning, and controller design. However, relatively few works have focused on ensuring the

compatibility between all these components, especially on real systems. The hybrid system formalism

provides a suitable medium in which these compatibilities can be described and analyzed. In this work,

we focus primarily on the tight integration of the planning and control components, and make basic

assumptions on the other components. We also aim to provide a framework of sufficient modularity

so that existing tools for each of the components can be integrated in an effective and consistent way.

Inspired by the techniques in the literature, we have also implemented our own versions of the controller

design and planning modules to highlight the customizability of our approach as well as its effectiveness

on a collection of quadrocopters.

1.1 Hybrid Systems Paradigm

Hybrid systems fall into the broader class of partition-based methods, which are based on modelling the

system dynamics and safety constraints, followed by subdividing the problem into smaller components

[47]. First, the safety constraints are modelled on the state space of the system. Second, the safety region

is partitioned into polytopes, inducing a sequence of polytopes for the required temporal sequencing of the

control specification. Finally, a feedback controller is designed on each polytope, driving state trajectories

along the required sequence of polytopes. Figure 1.1 illustrates the main steps. The methodology is

fully general and is not restricted to just the robotics domain, although it typically assumes a priori

knowledge of the system dynamics and safety constraints as well as complete knowledge of the state

during execution.

A number of works have targeted the various components of this methodology. Starting from the
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lowest level, the reachability problem on polytopes has been studied extensively [46, 90, 16, 18]. The

Reach Control Problem (RCP) for affine systems has proved to be a powerful method for synthesizing

feedback controllers within a hybrid system framework. It assumes a given polytope within the temporal

sequence, so that facets are designated either as restricted or exit facets. The main goal is to design a

feedback controller so that all state trajectories within the polytope leave through only the exit facet

in finite time. By exploiting convexity in the problem, existence of such controllers as well as their

construction relies only on the polytope vertices and the system dynamics. Specialized results are

available when the polytope is a simplex. Various other low level controller design methods also exist,

based on potential fields [25] and reachability analysis [39].

The partitioning and sequencing of polytopes is closely intertwined and has typically been performed

manually or through the guide of the control specifications. Several works have devised automated

partition and sequencing strategies based on Linear Temporal Logic (LTL) specifications [58, 32, 42],

relying on the existing reachability-based controller synthesis techniques, and have also been implemented

in the robotics domain [11]. Our first implementation of these techniques also appears in our first

experimental work [108].

There are two main drawbacks to the techniques described above. First, to the author’s knowledge

there does not exist a complete systematic methodology for constructing a partition into polytopes and

a temporal sequencing such that the reachability problem is guaranteed to be solvable on each polytope.

Typically, the partition and temporal sequence are designed first, followed by verification of reachability

on each polytope. If the latter fails on even one polytope, the partition and sequencing step must be

revised. Second, as the state space dimension grows due to modelling complexity, the methodology

suffers from the curse of dimensionality because the number of polytopes grows exponentially.

To address the first issue, necessary and sufficient conditions for the solvability of the RCP have been

investigated. Recently, work on affine and topological obstructions have attempted to fully characterize

the issue [77, 82]. However, these considerations still do not provide a constructive procedure for obtain-

ing a sequence of polytopes in the state space. The second issue has received even less consideration.

1.2 Proposed Approaches

Our work has been motivated by the two issues described above of systematic construction and scalability.

We initially began with an investigation of using optimal control to devise an alternative way of obtaining

reach controllers on higher dimensional systems. A second direction was later pursued to address both

issues simultaneously, leading to our modular framework for multi-agent systems.
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Figure 1.2: Cost level sets generated by a parabolic cost with decreasing level sets (red to blue) aligned
towards the exit facet (diagonal).

1.2.1 An Optimal Control Approach to RCP

Suppose that a sequence of contiguous simplices has been specified in the state space corresponding to

some complex control specification. As discussed earlier, a typical hybrid control scheme involves solving

the RCP on each simplex, which generates feedback controllers driving trajectories from one simplex

to the next. In higher dimensional state spaces, the hard safety constraints imposed by the RCP may

result in the lack of existence of a controller over some simplex in the sequence. This led to the idea of

using optimal control as an alternative method for generating feedback controllers over simplices.

Since the RCP is concerned with affine systems on simplices, we restricted ourselves to considering

cost functionals similar to the standard linear quadratic optimal control formulation, but with features

that would simulate the effects of solving the RCP. Namely, if we were to view the cost level sets in the

state space over a given simplex, we would expect decreasing level sets in the direction of the exit facet,

and increasing level sets as we approach the restricted facets, see Figure 1.2. In analogy to standard

optimal control where the designer can tradeoff between the relative importance of regulation to the

equilibrium and control effort, ideally we would obtain a form for the cost that can easily allow the

designer to tradeoff between the relative importance of reaching the exit facet, not exiting through

restricted facets, and also the control effort. This idea is somewhat reminiscent of barrier functions often

encountered in optimization [14]. However, barrier functions are nonlinear and we would like for the

resulting optimal control to be an affine feedback, as obtained when solving the RCP.

In formulating an appropriate cost, it was soon discovered that there was a relationship to existing
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literature on indefinite linear quadratic optimal control [114, 105], which was less understood but more

general than the standard linear quadratic problem. For a given cost, it is necessary to be able to

characterize when the optimal control problem is solvable, and if so, to calculate an optimal control.

Surprisingly, none of the existing results provided a solution for the costs we were interested in. Figure

1.2 shows an example with parabolic cost level sets that exhibits the desired features with respect to

a simplex. Viewing this as an opportunity, we diverted our attention from the original motivation of

hybrid control onto this long-standing unresolved theoretical problem, and solved it. Details are given

in Chapter 3.

1.2.2 Modular Framework for Motion Planning

The hybrid system paradigm described above is very general and has potentially a wide range of appli-

cation domains. Perhaps one source of the drawbacks on systematic construction and scalability is that

the general hybrid system framework aims to be too general. Our idea was that by specializing to a

particular domain and by introducing suitable assumptions, we could exploit additional structure in the

problem to overcome these drawbacks.

To this end, we restricted our attention mainly to control of robotic agents, or more specifically,

general nonlinear systems with symmetries in the output space (typically the positions of the agents).

We introduced several assumptions to help streamline the design of the underlying hybrid system:

(i) The control specifications are described only on the lower-dimensional output space of the system.

(ii) The partition of the safety region, described in the output space, consists of a uniform grid of

boxes.

(iii) A finite number of pre-computed feedback controllers is available to be implemented on any box.

These assumptions are fairly reasonable for the robotics domain, as we now justify. First, (i) implies

that the designer only needs to specify the higher level task of where vehicles must go; additional

constraints such as velocity and actuation limits are addressed within the implementation of low-level

controllers. Second, (ii) enables us to avoid the computational complexity associated with storing the

details of an arbitrary partition; moreover, it becomes very easy to determine in real-time which element

of the partition the system is in. Finally, (iii) enables us to systematize the implementation of feedback

controllers on any element of the partition, as well as the transition between controllers.

Together, these assumptions imply that we can design a finite number of feedback controllers, called

motion primitives, over a single box of the partition, and then apply them to any box. The allowable
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transitions between motion primitives is modelled by a hybrid system called the maneuver automaton,

similarly to [33] from which we adopted this term. Moreover, motion primitives can often be designed

for independent subsystems and then composed, as in the case of a multi-robot system. These notions

enable us to simultaneously address both the issues of systematic construction and scalability.

Our approach is modular, theoretically rigorous, and experimentally validated. Modularity refers to

the feature that the design of motion primitives (controller design) is decoupled from the selection of

motion primitives over the grid to achieve the temporal specification (planning). As such, the designer

may employ different synthesis techniques on these components. For example, in our applications we use

the RCP to design motion primitives and standard graph search algorithms for planning. Theoretical

rigor refers to the compatibility that we establish between the planning and control design components

in order to enforce safety and satisfaction of the overall specification. Finally, these ideas have been

demonstrated on a variety of experiments involving up to eight quadrocopters, showing that these ideas

apply in practice.

While there are several existing works that have explored the idea of motion primitives [33, 93], to

the author’s knowledge this work is the first rigorous treatment of feedback-based motion primitives on

a gridded output space. Chapter 4 provides details, including a comparison to related literature.

Given that there is a wealth of literature for synthesizing feedback controllers at the low-level and

discrete planning algorithms at the high-level, it was observed that the “middle-layer” gluing the two

levels had the most potential for additional research and impact. Recognizing the uniqueness of our

approach in combining motion primitives within the hybrid systems framework, we extended these ideas

in the direction of obtaining a multi-hierarchy of motion primitives. Hierarchy has been explored in a

variety of forms and contexts [74, 53]. Our work is the first to consider a multi-hierarchy of motion

primitives on a gridded output space. Chapter 5 provides details on this direction.

1.3 Thesis Organization

This thesis is mainly organized according to how the ideas developed. We began with tools such as the

Reach Control Problem and optimal control, and first focused on low-level control synthesis (Chapter 3).

Realizing some of the limitations for real world problems, we broadened our scope by using the general

framework of hybrid systems and by exploiting symmetries, modularity, and eventually hierarchy, to

address simultaneously low-level control design and higher-level planning (Chapters 4 and 5). We now

highlight the contents of each chapter in more detail.

Chapter 2 covers basic mathematical notions used in the remainder of the thesis. We note that it
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is not comprehensive, and instead serves to establish basic results and notation needed for the later

chapters.

Chapter 3, based on [110], is devoted to addressing a gap we identified in the existing literature on

indefinite linear quadratic optimal control. We begin by reviewing the related literature and showing

that although the problem was solved under the assumption of controllability [105], the case when the

dynamics are merely stabilizable was unresolved and fundamentally a non-trivial extension. We then

motivate the problem in terms of the hybrid control scheme and the Reach Control Problem. Following

a formal problem statement and some preliminaries, we solve the main problem, which involves charac-

terizing the existence of optimal controls and calculating the optimal feedback controller. Afterwards,

we show that our result recovers known classical results in the optimal control literature. Although not

presented in [110], we provide two numerical examples that highlight the utility of our main results.

Finally, we conclude the chapter and make a brief remark on its applicability in the context of hybrid

control.

Chapter 4, based on [111], presents the modular framework for motion planning with feedback-based

motion primitives. First the work is motivated and compared within the existing robotics literature in

order to highlight the areas of novelty. A formal problem statement is given on the motion planning

problem of reach-avoid, where the system must safely reach a target region. Then we present the compo-

nents of the modular framework: the partition of the output space; motion primitives and the maneuver

automaton; the product automaton of the partitioned output space and the maneuver automaton; and

the high-level plan. Using the modular framework, we provide a set of design constraints on the individ-

ual components, a set of initial conditions, and a feedback controller that solves the reach-avoid problem.

Following this main result, we concentrate on motion primitives and maneuver automata, first describing

the parallel composition of maneuver automata, and then providing a specific design of motion primi-

tives for integrator systems. We then describe how these motion primitives can be parallel composed

to control a multi-agent system, and we provide three illustrative implementations of a high-level plan.

Finally, the methodology is demonstrated experimentally on quadrocopters in various scenarios.

Chapter 5, based on [112], is a natural extension of Chapter 4 towards a multi-hierarchy of motion

primitives. The main objective of this work was to provide the designer of motion primitives with a

concrete set of rules in which to explore new designs that can lead to better organization and significant

computational savings. Although Chapter 5 is organized similarly and generalizes the results of Chapter

4, it is presented as independently as possible and contains many notable differences, which we now

highlight. First, the work is again motivated and compared with literature, emphasizing new works in

the context of hierarchy and abstractions. Next, we present a novel variation to the reach-avoid objective,
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which includes the notion of a behavioral constraint. In contrast to Chapter 4, the framework is now

structured as a collection of maneuver automata at various hierarchical levels. This framework is used

to solve the main problem, which again involves providing a set of conditions on the design of motion

primitives at each hierarchical level, a set of initial conditions, and a hierarchical feedback controller.

Following the main result, we sketch out some composition procedures at higher levels and provide a

specific design of higher level motion primitives. We then describe two different strategies of hierarchy

applied to multi-agent control, resulting in very efficient methods for formation control and formation

morphing. These strategies are demonstrated experimentally on quadrocopters in various scenarios,

which are much more complex than those considered in Chapter 4.

Chapter 6 supplies some analysis of the motion primitives introduced in Chapter 5, motivated from

an observed phenomenon of convergence to a limit cycle behavior. The problem is introduced, followed

by some preliminaries on the underlying motion primitives. A specialized result is proven for a collection

of single integrators using the contraction principle from real analysis, showing the existence of a limit

cycle in certain settings. The result is conjectured to be true for a collection for double integrators.

Finally, Chapter 7 concludes the thesis with a summary and some remarks on possible future research

directions.

1.4 Main Contributions

1.4.1 Chapter 3

The principal contributions of this chapter are the identification of an open gap in the existing literature

on linear quadratic optimal control with indefinite cost functionals, and the solution to this open problem.

More specifically:

• Theorem 3.5.9 gives necessary and sufficient conditions for the existence of optimal controls, and

the form of the optimal feedback controller.

• Section 3.6 discusses how our general theory recovers known results in linear quadratic optimal

control as special cases.

1.4.2 Chapter 4

The principal contributions of this chapter are the formulation of a modular framework for motion

planning, the rigorous proof that the framework can solve the reach-avoid objective, and experimental

work demonstrating its effectiveness. Importantly, we note that this chapter shares a significant portion
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of the content presented earlier in a chapter of the thesis of Zach Kroeze [61], who was a coauthor for

[109, 111]. While it is difficult to split the contributions exactly as the effort was highly collaborative,

we highlight the main contributions of the author of this thesis:

• Theorem 4.5.1 ties together the various modules and design assumptions in order to solve the

reach-avoid problem.

• Theorem 4.6.2 proves that our proposed construction for parallel composition of maneuver au-

tomata preserves the design assumptions.

• Section 4.7 includes the design of various motion primitives along with a formal verification of the

design assumptions, and features a novel extension to multi-speed motion primitives.

• Section 4.8 discusses various implementation details for high-level planning and illustrates the

results experimentally on up to eight Crazyflie quadrocopters. The associated videos are:

– http://tiny.cc/modular-3alg,

– http://tiny.cc/quad5scenes, and

– http://tiny.cc/quadrocopterPlanar.

1.4.3 Chapter 5

The principal contributions of this chapter are the extension of the modular framework into a multi-

level hierarchy, the rigorous proof on its correctness, and experimental work demonstrating its additional

benefits over the plain modular framework. More specifically:

• Theorem 5.5.2 ties together all the levels in the hierarchy and design assumptions in order to solve

the reach-avoid problem with behavioral constraints.

• Section 5.7 provides the design of higher level motion primitives, which are used for multiple agents

to maintain a formation.

• Section 5.8 discusses various implementation details for using the proposed higher level motion

primitives for formation flight and formation morphing, while Section 5.9 illustrates the results

experimentally on up to eight Crazyflie quadrocopters. An associated video can be found at

http://tiny.cc/hier-moprim.
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1.4.4 Chapter 6

The principal contributions of this chapter are the motivation for the observed hybrid limit cycle, the

precise mathematical formulation, and a proof of its existence. More specifically:

• Theorem 6.3.1 proves the existence of a hybrid limit cycle for a collection of single integrators

executing a constant sequence of formation motion primitives.



Chapter 2

Mathematical Preliminaries

In this chapter we establish notation and recount some notions that are used throughout the thesis. We

also discuss modelling of quadrotors. For the sake of brevity and understanding, we only identify those

concepts that are not already well-known in the control-theoretic and basic mathematical literature.

Standard notions of topology are assumed. Some specific results are given that will be needed later;

results with proofs are contributed by the author (Lemmas 2.2.1 and 2.4.2). A list of notation is provided

at the beginning of the thesis.

2.1 Basic Notation

Let Z denote the integers and R denote the real numbers. Let | · | denote the cardinality of a set. If A

is a set, let P(A) denote its power set. The set difference of A and B is denoted A \B. For a collection

of sets {Ai}ni=1, the cartesian product is denoted
∏n
i=1Ai; when n = 2, we may write A1 × A2, and

when Ai = A for all i = 1, . . . , n, we may write An (which in general should not be confused with

superscripts for indexing in other contexts). Given a function f : A→ B, the image of A1 ⊂ A under f

and the preimage of B1 ⊂ B under f are defined in the usual way, and are denoted as f(A1) ⊂ B and

f−1(B1) ⊂ A, respectively. Let co{v1, . . . , vm} denote the convex hull of the vectors v1, . . . , vm ∈ Rn.

Given two vectors v, w ∈ Rn, we denote the component-wise multiplication (or Hadamard product) as

v ◦w. Let X (Rn) denote the set of globally Lipschitz vector fields on Rn. Let <(s) denote the real part

of a complex number s. Let In be the n×n identity matrix (the subscript is omitted if the dimension is

clear from the context). Let P † denote the (unique) pseudo-inverse of P ∈ Rn×m. The set of eigenvalues

of A ∈ Rn×n is denoted by σ(A).

11
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2.2 Linear Geometric Theory

The following notions are needed for Chapter 3.

A subspace V ⊂ Rn is A−invariant if AV ⊂ V. We use the following subsets of the complex plane:

C− := {s ∈ C | <(s) < 0}, C0 := {s ∈ C | <(s) = 0}, and C+ := {s ∈ C | <(s) > 0}. Given a

real monic polynomial p there is a unique factorization p = p− · p0 · p+ into real monic polynomials

with p−, p0, and p+ having all roots in C−, C0, and C+, respectively. Then if A ∈ Rn×n and if p is

its characteristic polynomial, then we define the spectral subspaces X−(A) := Ker(p−(A)), X 0(A) :=

Ker(p0(A)), and X+(A) := Ker(p+(A)). Each of these subspaces are A−invariant and the restriction of

A to X−(A)(X 0(A),X+(A)) has characteristic polynomial p−(p0, p+). For two subspaces V and W, let

V ⊕W denote their direct sum and let V ∼ W denote that they are isomorphic. For an arbitrary matrix

A ∈ Rn×n and subspace V ⊂ Rn we define the subspace 〈A | V〉 := V +AV + . . . An−1V, and by further

writing V = Ker(W ) for some W ∈ Rp×n we also define 〈V | A〉 := Ker(W )∩Ker(WA) . . .∩Ker(WAn−1).

For a linear time-invariant system, ẋ = Ax+Bu, the controllable subspace will be denoted in the usual

way 〈A | Im(B)〉. If there is an output y = Cx, then 〈Ker(C) | A〉 denotes the unobservable subspace of

(C,A). If M is a real n× n matrix and V is a subspace of Rn, then M−1V := {x ∈ Rn |Mx ∈ V}. If V

is a subspace of Rn then V⊥ denotes its orthogonal complement with respect to the standard Euclidean

inner product.

The following results on observability can be established.

Lemma 2.2.1. Let A =


A1 A12

0 A2


 with σ(A2) ⊂ C− and C =

[
C1 C2

]
. Then

(i) All of the eigenvalues of A on the imaginary axis are (C,A) observable if and only if all of the

eigenvalues of A1 on the imaginary axis are (C1, A1) observable.

(ii) An eigenvalue of A is (C,A) observable if and only if it is (C>C,A) observable.

Proof. Recall that an eigenvalue λ of A is said to be (C,A) observable if rank


A− λI

C


 = n (equivalently,

Ker(A− λI) ∩Ker(C) = 0), see page 46 of [106].

(i) (⇒) Assume that Ker(A−λI)∩Ker(C) = 0 for all λ ∈ σ(A) such that <(λ) = 0. Let λ ∈ σ(A1) and

<(λ) = 0, and show Ker(A1−λI)∩Ker(C1) = 0. Equivalently, let p1 satisfy A1p1 = λp1 and C1p1 =

0, and show that p1 = 0. Now we define p =


p1

0


, and first show that p ∈ Ker(A− λI)∩Ker(C).
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We have

(A− λI)p =


A1 − λI A12

0 A2 − λI




p1

0


 =


(A1 − λ)p1

0


 = 0.

since A1p1 = λp1. Also Cp = C1p1 = 0. Thus p ∈ Ker(A − λI) ∩ Ker(C). Since Ker(A − λI) ∩

Ker(C) = 0, λ ∈ σ(A1) ⊂ σ(A), and <(λ) = 0, we can use the assumption to conclude that p = 0

and hence p1 = 0.

(⇐) Assume that Ker(A1−λI)∩Ker(C1) = 0 for all λ ∈ σ(A1) such that <(λ) = 0. Let λ ∈ σ(A)

and <(λ) = 0, and show Ker(A − λI) ∩ Ker(C) = 0. Equivalently, let p satisfy Ap = λp and

Cp = 0, and show that p = 0. Write p =


p1

p2


. Then

Ap = λp⇒


A1 − λI A12

0 A2 − λI




p1

p2


 = 0

Since σ(A2) ⊂ C−, σ(A) = σ(A1)]σ(A2), and <(λ) = 0, we have λ ∈ σ(A1) and λ 6∈ σ(A2). Thus

the second equation A2p2 = λp2 implies p2 = 0. Then the first equation reduces to A1p1 = λp1.

Also Cp = 0 reduces to C1p1 = 0. We have established that p1 ∈ Ker(A1 − λI) ∩Ker(C1), which

by assumption is the trivial subspace and hence p1 = 0. Together p1 = 0 and p2 = 0 imply p = 0,

as desired.

(ii) Using the equivalent characterization, it is enough to show that KerC = Ker(C>C). If Cx = 0,

then C>Cx = 0. Conversely, let C>Cx = 0. We have that (Cx)2 = x>C>Cx = 0. Thus Cx = 0.

2.3 Real Analysis

The material below is needed for Chapters 3 and 6.

Let R+ := {t ∈ R | t ≥ 0} and Re := R ∪ {−∞,+∞}. Additionally, given a function f : R→ R, the

statement that limt→∞ f(t) exists in Re means that limt→∞ f(t) is either equal to a real number, ∞, or

−∞ in the usual sense.

We denote the space of all measurable vector-valued functions on R+ that are locally square integrable

as Lm2,loc(R+) =
¶
u : R+ → Rm | (∀T ≥ 0)

∫ T
0
u(t)>u(t) dt <∞

©
. Let dL : Rn → [0,∞) denote the

function giving the minimum Euclidean distance from a point to a set L ⊂ Rn.
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We also recall the Mean Value Theorem (see Theorem 3 in Chapter 3 of [86]). Let f : [a, b] → R

be a continuous function that is differentiable on (a, b). There exists a point c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a).

Finally, we make use of the well known contraction principle. The following is taken from Exercise 27c

in Chapter 4 of [86], which is a more loose statement than the standard contraction principle (compare

with Theorem 24 in Chapter 4).

Definition 2.3.1. Let M be a metric space with metric d : M ×M → R. A weak contraction of M is

a mapping f : M →M such that for all x, y ∈M , if x 6= y, then d(f(x), f(y)) < d(x, y). If there exists

some x∗ ∈M such that f(x∗) = x∗, then x∗ is a fixed-point of f .

Theorem 2.3.2 ((Weak) Contraction Principle). Suppose that f : M → M is a weak contraction and

the metric space M is compact. Then f has a unique fixed-point, x∗, and for all x ∈ M , the iterate

fn(x) = f ◦ · · · ◦ f(x) converges to x∗ as n→∞.

2.4 Symmetric Matrices

The material in this section is needed for Chapter 3.

Given a quadratic form on Rn, ω : Rn → R, it is said to be positive definite if for all x ∈ Rn, ω(x) ≥ 0,

and ω(x) = 0 if and only if x = 0; positive semidefinite if for all x ∈ Rn, ω(x) ≥ 0; negative definite if

−ω is positive definite; negative semidefinite if −ω is positive semidefinite; and indefinite if ω is neither

positive semidefinite nor negative semidefinite. Writing ω(x) := x>Px for some symmetric matrix

P ∈ Rn×n, we say that the matrix P is positive definite if the quadratic form ω is positive definite and

so on. We write P > 0, P ≥ 0, P < 0, and P ≤ 0 if the matrix is positive definite, positive semidefinite,

negative definite, and negative semidefinite, respectively. Given symmetric matrices P,Q ∈ Rn×n, we

write P < Q if Q− P > 0, and likewise for the other inequalities.

Let Λ denote a subset of the set of all symmetric matrices in Rn×n. We say that M+ (M−) is the

maximal (minimal) element on Λ if M+ ∈ Λ (M− ∈ Λ) and for all M ∈ Λ, M ≤M+ (M ≥M−). The

maximal and minimal elements, which are called the extremal elements on Λ, are unique if they exist

since Λ forms a partially ordered set.

The following standard result relates the positive semidefiniteness of a matrix in terms of its block

components.

Theorem 2.4.1 (Theorem 1, [2]). Given a real symmetric matrix P =


 P1 P12

P>12 P2


, the following

conditions are equivalent:
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1. P ≥ 0.

2. P1 ≥ 0, (I − P1P
†
1 )P12 = 0, P2 − P>12P

†
1P12 ≥ 0.

3. P2 ≥ 0, (I − P2P
†
2 )P>12 = 0, P1 − P12P

†
2P
>
12 ≥ 0.

The following result is easily established.

Lemma 2.4.2. Let M be a symmetric positive semidefinite matrix with the block form

M =


M1 M12

M>12 M2


 =




0 0 M12,1

0 M1,22 M12,2

M>12,1 M>12,2 M2



.

Then M12,1 = 0.

Proof. Since M ≥ 0, Theorem 2.4.1 in particular implies that (I−M1M
†
1 )M12 = 0. Using the properties

of the pseudo-inverse, it can be shown that M†1 =


0 0

0 M†1,22


. Then the result follows from


0

0


 =

Ö
I −


0 0

0 M1,22




0 0

0 M†1,22




è
M12,1

M12,2


 =


I 0

0 I −M1,22M
†
1,22




M12,1

M12,2


 .

2.5 Discrete and Hybrid Systems

In our work on motion planning, we describe the relevant structures typically as a discrete or hybrid

system. The following notions are used in Chapters 4 and 5.

Informally a discrete system contains nodes, edges, and occasionally additional structure such as

labels, relations, or initial conditions. Alternative names include transition system, graph, or automaton;

as there are many variations on the definitions, we use the formulation from [3] as a basic reference.

Definition 2.5.1 (Transition System). A transition system T = (Q,Π,→, |=, Q0) consists of

• a (possibly infinite) set Q of states;

• a finite alphabet Π of propositions;

• a transition relation →⊂ Q×Q;
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• a satisfaction relation |=⊂ Q×Π;

• a set Q0 ⊂ Q of initial states.

Next, a hybrid system contains the basic elements of a transition system, but associates continuous-

time data to each discrete state. Again, many variations exist, so we refer to [3] here.

Definition 2.5.2 (Hybrid System). A hybrid system is a tuple H = (V, n,X0, F, Inv,R) where

• V is a finite set of locations, and n ≥ 0 is the dimension of H. The state space is X = V × Rn.

Each state has the form (l, x), where l ∈ V is the discrete part and x ∈ Rn is the continuous part.

• X0 ⊂ X is the set of initial states.

• F : X → P(Rn) assigns to each state (l, x) ∈ X a set F (l, x) ⊂ Rn, which constrains the time

derivative of the continuous part of the state; in the discrete location l, the continuous part of the

state satisfies the differential inclusion ẋ ∈ F (l, x).

• Inv : V → P(Rn) assigns to each location l ∈ V an invariant set Inv(l) ⊂ Rn, which constrains

the value of the continuous part of the state while the discrete part is l.

• R ⊂ X ×X is a relation capturing the discontinuous state changes.

Semantics of a hybrid system involve the notion of trajectories, often called executions. Executions

begin at an initial state in X0. The continuous component evolves according to the differential inclusion

F within the invariant Inv while the discrete component makes discrete jumps according to R. More

formal details on our specialized hybrid system (called a Maneuver Automaton) and its executions will

be presented in Chapters 4 and 5.

Typically a linear temporal logic (LTL) formula is specified over a transition system [3, 58, 116].

Although we refer to LTL many times throughout the thesis, we omit these details since we do not

explicitly study a problem with LTL specifications.

2.6 Reach Control

Reach Control is used in the design of motion primitives in Chapter 4. We review only the aspects that

are used directly, which are adapted from [51, 82].

Let S := co{v0, v1, . . . , vn} ⊂ Rn be an n-dimensional simplex with vertices v0, . . . , vn. Its facets shall

be denoted by F0, . . . ,Fn, where each facet is indexed by the vertex it does not contain. Furthermore,
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for each i ∈ {0, . . . , n} let hi be the unit normal vector to the facet Fi pointing outside the simplex. Let

Ii := {1, . . . , n} \ {i}.

Consider the system

ẋ = Ax+Bu+ a, x ∈ S, u ∈ Rm, (2.1)

where A ∈ Rn×n, B ∈ Rn×m, and a ∈ Rn. Let φu(·, x0) be the trajectory generated by system (2.1),

with control law u and initial condition x0.

The Reach Control Problem aims to find a closed-loop control feedback which results in every tra-

jectory of (2.1) leaving S through F0 in finite time.

Problem 2.6.1 (Reach Control Problem (RCP)). Consider system (2.1) defined on a simplex S. Find

a state feedback u(x) such that for every x0 ∈ S, there exist T ≥ 0 and ε > 0 such that

(i) φu(t, x0) ∈ S for all t ∈ [0, T ].

(ii) φu(T, x0) ∈ F0.

(iii) φu(T + ε, x0) 6∈ S for all t ∈ (T, T + ε).

The main result is the following:

Theorem 2.6.2. Given the system (2.1) on a simplex S and an affine feedback u(x) = Kx + g, then

u(x) solves the RCP if and only if

• The invariance conditions hold:

hj · (Ax+Bu(x) + a) ≤ 0, j ∈ Ii, i ∈ {0, . . . , n}, x ∈ S. (2.2)

• There is no equilibrium in S.

Using the affine feedback u(x) = Kx+g, let ui := u(vi) for i ∈ {0, . . . , n}. The following relationship

is useful for designing the gains K and g:


K
>

g>


 =




v>0 1

...
...

v>n 1




−1 


u>0
...

u>n



. (2.3)

2.7 Quadrotor Modelling and Control

In this section we describe a standard model for a quadrotor and some basic techniques for control.
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Figure 2.1: The inertial world frame W and quadrocopter body-fixed frame B are shown. The quadro-
copter is actuated by varying the thrusts Fi, i ∈ {1, 2, 3, 4} produced by each motor. This results in
changes to its body rotation rates, (p, q, r) and vertical acceleration, which then causes a change to the
quadrocopter’s position and attitude.

2.7.1 Model

The standard model is discussed in many works [73, 91, 69, 122]; this section is adapted from [73]. The

quadrotor has three positional and three rotational degrees of freedom. Define a world frame W and

vehicle body frame B, as shown in Figure 2.1. The position in the world frame is r = (x, y, z), and time

derivatives are denoted with overhead dots. We use the ZXY Euler angles to define the roll, pitch, and

yaw angles (φ, θ, ψ), although other conventions may be used. The rotation matrix from B toW is given

by Rwb. The angular velocity of B with respect to W is ω = (p, q, r), with components expressed in B;

it can be related to the time derivatives of the Euler angles. Each vehicle rotor, i ∈ {1, 2, 3, 4}, has an

angular speed ωi and produces a force Fi = kFω
2
i and moment Mi = kMω

2
i , for constants kF and kM .

Motor dynamics are relatively fast and are ignored, and aerodynamic effects are neglected. The control

input to the system can be written as u = (u1, u2, u3, u4), where u1 is the net body force (thrust) and

uM = (u2, u3, u4) are the net body moments, and they can be mapped to the rotor speeds.

Using Newton’s equations of motion, the translational equation is

mr̈ = −mge3 + u1Rwbe3

where m is the vehicle mass, g is the acceleration due to gravity and e3 = (0, 0, 1). The forces are

gravity and the sum of the forces of the rotors in the vertical direction of the body frame. The rotational

equation is

ω̇ = I−1 (−ω × Iω + uM ) ,

where I is the moment of inertia matrix at the center of mass along the B axes. The full state is

(r, ṙ, Rwb, ω).
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Figure 2.2: The typical cascaded control architecture for quadrotors.

2.7.2 Basic Control Techniques

The quadrotor has complex nonlinear dynamics and many control techniques have been devised. We do

not give a comprehensive survey here, but highlight some key developments. Feedback linearization on

the full state space to achieve a path tracking objective is studied in [91, 1]. Given that most control

objectives are given in terms of the desired position, a more common approach employs a cascaded

controller structure, in which the attitude can be stabilized independently of the position [66, 92, 69].

Figure 2.2 shows the cascaded controller structure, which consists of an outer position control module

followed by an attitude control module, and assumes that the full state of the vehicle can be measured.

Typically, the attitude control module runs at a high frequency onboard the vehicle, while the position

control module may run either offboard or onboard and at a lower frequency. The position control

module receives a desired reference trajectory, or can generate these internally as a feedback on the

states. Intermediate reference trajectories for the attitude control module are generated by the position

control module, typically the desired rotation matrix (and sometimes also the desired angular velocity).

The attitude control module computes the input uM , which is mapped along with the thrust u1 from

the position control module to the rotor speeds for the quadrotor.

An important feature is that the quadrotor is differentially flat [73], in which the full state and control

can be mapped bijectively to a carefully chosen set of flat outputs and their derivatives [89]. In particular,

suitable flat outputs for a quadrotor are the position and yaw, σ = (σ1, σ2, σ3, σ4) = (x, y, z, ψ). In this

way, arbitrary signals (of sufficient smoothness) for the flat outputs can be prescribed and achieved,

despite the underactuation of the quadrotor.

This feature is related to the cascaded control architecture described above, namely that the desired

position is prescribed for the outer position control module, and then transformed to intermediate

references for the attitude control module. Interestingly, in [73] it is shown that the rotation matrix Rwb

is a function of the linear accelerations and yaw. Specifically, write the columns Rwb =
[
xb yb zb

]
,
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and define t = (σ̈1, σ̈2, σ̈3 + g) and xc = (cosσ4, sinσ4, 0). Then

zb =
t

‖t‖ , yb =
zb × xc
‖zb × xc‖

, xb = yb × zb, (2.4)

provided that the singularity zb × xc = 0 is avoided. Moreover, u1 = m‖t‖.

Here we do not present specific implementation details of the position and attitude control modules,

of which many have been proposed [66, 73, 92, 69]. The strength of this approach is that one can

focus on the difficult aspects of motion planning through suitable design of the position control module,

and rely on the attitude control module for low level implementation. In this dissertation we provide

a novel design for the position control module through the use of feedback-based motion primitives on

double integrator systems and the observation (2.4) above, and rely on existing attitude control modules.

Details are given in Section 4.8.

In summary, one first designs the flat outputs σ as a reference trajectory directly or shapes them

by designing a closed-loop vector field according to some higher level objective. Then the flat outputs

and their derivatives determine desired angular quantities of the quadrotor, which can finally be used to

compute the low-level input rotor speeds.



Chapter 3

Feedback controller synthesis via

indefinite linear quadratic optimal

control

3.1 Introduction

A key step in the hybrid systems methodology is the synthesis of feedback controllers on a given subset

of the safe set. The Reach Control Problem (RCP), as described in Section 2.6, has become the standard

method for the case of affine dynamics defined over a polytopic subset. The RCP provides necessary

and sufficient conditions for the existence of such feedback controllers as well as a synthesis procedure.

In this chapter we focus on an alternative approach for feedback controller synthesis based on optimal

control. Our motivation is to soften the strict invariance conditions associated with the RCP and the

underlying partition in order to broaden the situations in which a controller can be found. The main

idea is to design a cost function that encourages trajectories of the closed-loop system to flow towards

and along a desired direction in the given subset.

In our development, we discovered that the form of such cost functions, combined with the considera-

tion of affine dynamics over the given subset in the state space, could be generally expressed in a similar

form to the usual linear quadratic optimal control with linear dynamics. We aimed to leverage existing

results to provide answers as to when the optimal control problem was solvable and how to synthesize

the associated optimal controller.

21
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To this end, in this chapter we consider the regular, infinite-horizon linear quadratic optimal control

problem in which the cost functional is the integral of an indefinite quadratic form. The regular linear

quadratic (LQ) problem, when the quadratic form in the cost functional is positive definite in the control

variables, has been studied extensively in the literature [15, 118, 7]. It has been especially well studied

under the standard assumption, the so-called positive semidefinite case, when the quadratic form in

the cost functional is positive semidefinite in the control and state variables simultaneously. The more

general indefinite case imposes no definiteness condition in the control and state variables simultaneously

[114, 105]. The LQ problem is termed infinite-horizon if the cost functional is integrated over time from

zero to infinity. Finally, the most typical treatment of the LQ problem is the fixed-endpoint problem

where the state is required to converge to zero as time tends to infinity. The case when no such condition

is imposed has also been studied and is referred to as the free-endpoint problem [105, 99, 38]. In fact,

an entire family of LQ problems can be obtained by requiring that the state converges to a subspace.

This so-called stability-modulo-a-subspace family of LQ problems includes the fixed- and free-endpoint

problems as special cases [99, 38]. For the remainder of this chapter, we restrict our attention to the

regular and infinite-horizon versions of the problem, for otherwise the optimization problem may yield

optimal controllers that are not static linear state feedbacks [115, 7]. Also, we focus on stability-modulo-

a-subspace, since it is the more general case.

Traditionally, a complete solution of any variant of the LQ problem requires to find necessary and

sufficient conditions for the existence of a finite optimal cost and optimal controls. Existence of a finite

optimal cost is called well-posedness, while existence of an optimal control is called attainability. Further,

when they exist, a complete solution involves determining the optimal cost and an optimal control. Both

should be expressed in terms of the given problem data; that is, the system matrices, the instantaneous

cost matrices, and the desired subspace.

In the regular, infinite-horizon, fixed-endpoint, positive semidefinite case, the LQ problem was fully

resolved in 1968 by Wonham [117, 118], resulting in the well known necessary and sufficient conditions

involving stabilizability and detectability. The corresponding free-endpoint LQ problem was fully char-

acterized much later [36, 106], resulting in conditions involving output stabilizability, a condition less

strict than stabilizability [36, 106]. In the regular, infinite-horizon, indefinite case, the fixed-endpoint

problem was solved in 1971 by Willems [114], while the free-endpoint problem and general stability-

modulo-a-subspace were addressed in 1989 by Trentelman [105, 99]. Importantly, all of the indefinite

cases made use of the assumption that the dynamics are controllable. Moreover the solutions are in-

complete in that only sufficient conditions for the existence of a finite optimal cost were given (except

for the fixed-endpoint problem). The main contribution of this chapter is to extend the above results
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for the regular, infinite-horizon, stability-modulo-a-subspace, indefinite case of the LQ problem. Rather

than assuming controllability, we only require stabilizability.

It is well known that in both the positive semidefinite and indefinite cases of the regular, infinite-

horizon, stability-modulo-a-subspace LQ problem, the optimal cost and optimal controls are given in

terms of a particular solution of the algebraic Riccati equation (ARE) [106, 105]. In the treatment of

the regular, infinite-horizon, indefinite LQ problem, the controllability assumption is crucial in order to

utilize the geometry of the set of all real symmetric solutions of the ARE [114, 64]. In particular, if this

solution set is nonempty, there exist a maximal and minimal solution of the ARE [64]. The regular,

infinite-horizon, fixed-endpoint LQ problem, both definite and indefinite cases, has always been easier

in the sense that the optimal cost and feedback control law are given in terms of the maximal solution,

which is the only solution that can stabilize the closed-loop system [114, 117]. For the regular, infinite-

horizon, stability-modulo-a-subspace, indefinite case and under the assumption of controllability, the

optimal cost and feedback control law are given by a real symmetric solution to the ARE that depends

on both its maximal and minimal solutions [99]. In contrast, under the stabilizability assumption, it

is unclear which solution of the ARE to select because the geometry of the set of all real symmetric

ARE solutions is less well-behaved. In particular, the minimal solution may no longer exist [41, 64].

This ambiguity of the correct choice of ARE solution for the regular, infinite-horizon, stability-modulo-

a-subspace, indefinite LQ problem under merely stabilizable dynamics was discussed by Geerts [37, 38],

but it has remained elusive.

In this chapter we give the exact form of the optimal feedback that solves the regular, infinite-horizon,

stability-modulo-a-subspace, indefinite LQ problem under stabilizable dynamics. Thus we resolve the

ambiguity regarding which solution of the ARE to take. Our result requires two assumptions, which are

precisely our sufficient conditions for well-posedness: existence of a negative semidefinite solution to the

algebraic Riccati inequality (ARI) and stabilizability of the system dynamics. These assumptions may

be compared to the sufficient conditions for well-posedness in [105]: existence of a negative semidefinite

solution to the ARE and controllability of the system dynamics. The first assumption on existence of

a negative semidefinite solution of the ARE or ARI provides for a lower bound on the value function,

based on a result of Molinari [78]. Our generalization to the ARI is based on an observation by Geerts

[37]. The generalization to the case when the dynamics are stabilizable proves to be the more difficult

challenge, as discussed above. This extension constitutes the central contribution of the chapter. Finally,

we give necessary and sufficient conditions for optimal controls to exist, which, as pointed out in [105],

are nontrivial for regular, infinite-horizon, non-fixed-endpoint, indefinite LQ problems.

As a further validation of the correctness of our results, we recover known results for other variants of
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the regular, infinite-horizon LQ problem by adding assumptions to match those problems. In the regular,

infinite-horizon, stability-modulo-a-subspace, indefinite case, if we assume controllable dynamics, we

obtain the same necessary and sufficient conditions for the existence of optimal controls, the same form

of the optimal cost, and the same form of the optimal control as stated in [114, 105, 99]. In the regular,

infinite-horizon, positive semidefinite LQ problem, for both the fixed- and free-endpoint cases, if we

assume positive semidefiniteness, then we again obtain the same necessary and sufficient conditions for

the existence of optimal controls, the same form of the optimal cost, and the same form of the optimal

control as stated in [106].

Our resolution of the gap in the LQ literature provides more than just an answer to an academic

question. First of all, it provides the foundations for synthesizing feedback controllers along a desired

direction, as motivated at the beginning of this chapter. Moreover, these results may also find application

to other domains. Recently, the work in [83] considered a linear term in the state of the cost functional

and a free-endpoint objective, albeit over the finite-horizon; with a transformation, this cost can be

converted to an indefinite problem with stabilizable but not controllable dynamics. The gap was also

recently discussed in [30], which deals with the cooperative indefinite LQ problem. As such, our result

has application to game theoretic formulations and economics. Although this chapter can potentially

have many applications, we have aimed to present the majority of this interesting new development in

LQ theory in a transparent and application-free manner.

The outline of this chapter is as follows. In the next section, we motivate the cost functional of

an indefinite form with stabilizable dynamics. In Section 3.3 we present the problem statement. In

Section 3.4 we summarize the key ingredients needed regarding the geometry of the ARE solutions. In

Section 3.5 we state and prove our main results. In Section 3.6 we compare our main result to existing

results in the literature. Section 3.7 supplies two examples highlighting the utility of the new theory.

Finally, we conclude in Section 3.8, making a connection back to the original motivation from hybrid

control.

3.2 Motivation

Consider an affine system

ẋ = Ax+Bu+ a, x(0) = x0,

where x ∈ Rn and u ∈ Rm. For a control function u ∈ Lm2,loc(R+), let x(·;x0, u) denote the state

trajectory of the system starting at x0 ∈ Rn.
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Next, consider a unit vector ξ ∈ Rn that points in a desired direction in the state space. For example,

if there is an underlying simplex S ⊂ Rn with exit facet F0 characterized by the outward normal h0, we

may impose that ξ ·h0 > 0. By using a coordinate transformation to orient the simplex to the canonical

simplex with vertices given by unit vectors in the positive orthant [8], we can assume without loss of

generality that the base of ξ is at the origin. The direction ξ may also be compared with the notion of

a flow condition [51].

Now we devise a cost functional in terms of the directional vector ξ. We consider an infinite horizon,

discounted cost functional of the form

J(x0, u) =

∫ ∞

0

e2αtω(x(t;x0, u), u(t)) dt,

where α ≤ 0 is a discount factor and ω : Rn+m → R is an instantaneous cost. In the standard linear

quadratic formulation, a linear system is considered (a = 0), there is no discounting (α = 0), and

ω(x, u) = x>Qx + u>Ru, with Q ≥ 0 and R > 0. The symmetric cost matrices Q and R enable the

designer to tradeoff the aggressiveness of regulation of the state to the origin with the control effort. The

discount factor is utilized to help achieve a finite cost, which weighs future performance less. Motivated

by the fact that the RCP synthesizes a feedback that causes trajectories to flow out only through the

exit facet, our proposed form of the instantaneous cost is

ω(x, u) = d1(x)2 − d2(x) + u>Ru, R > 0.

This cost is a tradeoff between two terms related to the direction ξ and the control effort. To describe

d1(x) and d2(x), first we decompose the state as x = x‖ + x⊥, with x‖ = λξ for λ ∈ R and x⊥ · ξ = 0.

Then d1(x) := ‖x⊥‖ is the perpendicular distance of the state to the line in the direction of ξ through

the origin and d2(x) := x · ξ = λ is the signed distance of the state along the direction of ξ, which grows

positively in the direction ξ. Hence this cost aims to minimize d1(x),−d2(x), and the control effort. It

is easy to show that d1(x)2 = x>Q(ξ)x, with Q(ξ) = (In − ξξ>). An n = 2 example of the level sets for

d1(x)2 − d2(x) is shown in Figure 1.2, with ξ pointing in the positive orthant.

We would like to obtain an analytic solution to this problem and to leverage, if possible, existing

results. Several complications arise, namely that the term d2(x) introduces a linear term in the state

and may be negative, and the dynamics are affine. We can transform the problem to an equivalent one

in which the dynamics are linear and the cost has only quadratic terms [7]. Let x̂ := eαt
[
x> z

]>
with



Chapter 3. Indefinite Linear Quadratic Optimal Control 26

ż = 0 and x̂0 = x̂(0) =
[
x>0 1

]>
, and û := eαtu. We obtain linear dynamics

˙̂x =


A+ αIn a

0 α


 x̂+


B

0


 û,

with cost functional

J(x̂0, û) =

∫ ∞

0

Ö
x̂(t)>


 Q(ξ) −ξ/2

−ξ>/2 0


 x̂(t) + û(t)>Rû(t)

è
dt.

We can see that the augmented linear system is only stabilizable if α < 0 and (A,B) is controllable,

highlighting the role of the discount factor. Moreover, the instantaneous cost is not bounded below,

and consequently the quadratic term on the augmented state is indefinite (alternatively Theorem 2.4.1

may be used). From this, we observed that the existing LQ literature could not resolve this case of

stabilizable dynamics with an indefinite cost, leading to our general study of this problem.

3.3 Problem Statement

We consider the linear control system

ẋ = Ax+Bu, x(0) = x0, (3.1)

where x ∈ Rn and u ∈ Rm. For a control function u ∈ Lm2,loc(R+), let x(·;x0, u) denote the state

trajectory of (3.1) starting at x0 ∈ Rn. Then for T ≥ 0, the cost function is

JT (x0, u) =

∫ T

0

ω(x(t;x0, u), u(t)) dt (3.2)

with a quadratic instantaneous cost

ω(x, u) := x>Qx+ u>Ru =
[
x> u>

]
W


x

u


 , W :=


Q 0

0 R


 , R = Im. (3.3)

We allow Q to be indefinite, whereas R := Im > 0. More general quadratic cost functions can be

considered, but they can be converted via a feedback transformation to the form we use here, as in

Chapter 10 of [106]. This feedback transformation does not affect solvability of the problem; hence,
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there is no loss of generality in our choice of W .

Because W may be indefinite, we define the set of control inputs that yield a cost that is either finite,

∞, or −∞:

U(x0) :=
{
u ∈ Lm2,loc(R+)

∣∣ lim
T→∞

JT (x0, u) exists in Re
}
. (3.4)

Let L ⊂ Rn be a subspace. Recalling that dL gives the minimum distance from a point to the set L, the

set of permissible control inputs such that the state asymptotically converges to L is

UL(x0) :=
{
u ∈ U(x0) | lim

t→∞
dL(x(t;x0, u)) = 0

}
. (3.5)

For u ∈ UL(x0), we define

J(x0, u) := lim
T→∞

JT (x0, u). (3.6)

We define the optimal cost or value function to be

VL(x0) := inf{J(x0, u) | u ∈ UL(x0)} . (3.7)

Now we define the linear quadratic optimal control problem with stability-modulo-L (LQCP)L .

Problem 3.3.1 ((LQCP)L ). Consider the system (3.1) with the quadratic cost criterion (3.2). Let

L ⊂ Rn be a given subspace. For all x0 ∈ Rn, find the optimal cost VL(x0) and an optimal control

u? ∈ UL(x0) such that VL(x0) = J(x0, u
?).

The (LQCP)L is called regular (as opposed to singular) if R > 0. It is called positive semidefinite

if ω is positive semidefinite on Rn+m, and indefinite otherwise. If L = Rn, the (LQCP)L is called a

free-endpoint problem, and if L = 0, it is called a fixed-endpoint problem. We are particularly interested

in characterizing two properties of the (LQCP)L .

Definition 3.3.2. We say the (LQCP)L is well-posed if for all x0 ∈ Rn, VL(x0) ∈ R. We say the

(LQCP)L is attainable if for all x0 ∈ Rn, there exists a control u? ∈ UL(x0) such that VL(x0) = J(x0, u
?).

Such an input is called optimal. We say the (LQCP)L is solvable if it is both well-posed and attainable.

3.4 Preliminaries

The main results on the (LQCP)L are centered on the algebraic Riccati equation (ARE):

φ(K) := A>K +KA+Q−KBB>K = 0 . (3.8)
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The algebraic Riccati inequality (ARI) is given by φ(K) ≥ 0. For convenience, we define

A(K) := A−BBTK. (3.9)

Also we define the following solution sets:

Γ := {K ∈ Rn×n | K = K>, φ(K) ≥ 0},

∂Γ := {K ∈ Rn×n | K = K>, φ(K) = 0},

Γ− := {K ∈ Γ | K ≤ 0}.

The geometry of the solutions to the ARE can be studied in both the controllable and stabilizable cases;

see, in particular, Chapters 7 and 8 of [64] and also [105]. First we consider the case when (A,B) is

controllable. The next result summarizes what is known about the extremal solutions in Γ and in ∂Γ.

Theorem 3.4.1. Suppose (A,B) is controllable.

(i) If Γ 6= ∅, then the maximal and minimal solutions in Γ exist, ∂Γ 6= ∅, its maximal and minimal

solutions exist, and they are identical to the maximal and minimal solutions in Γ.

(ii) If ∂Γ 6= ∅, then its maximal and minimal solutions K+,K− ∈ ∂Γ satisfy: ∀K ∈ ∂Γ, K− ≤

K ≤ K+. Moreover, they are the unique solutions in ∂Γ such that σ(A(K+)) ⊂ C− ∪ C0 and

σ(A(K−)) ⊂ C+ ∪ C0.

Proof. The first statement is Theorem 14(b) in [94]. The second statement was proved in [114]. See also

Theorem 7.5.1, p. 168, in [64].

If ∂Γ 6= ∅, define the gap of the ARE to be ∆ := K+ − K−. Let Ω denote the set of all

A(K−)−invariant subspaces contained in X+(A(K−)). The following theorem was first proven by

Willems [114]; see also [64].

Theorem 3.4.2 (Theorem 3.1, [105]). Let (A,B) be controllable and suppose ∂Γ 6= ∅. If V ⊂ Ω, then

Rn = V ⊕∆−1(V⊥). There exists a bijection γ : Ω→ ∂Γ defined by

γ(V) := K−PV +K+(In − PV), (3.10)

where PV is the projection onto V along ∆−1(V⊥). If K = γ(V), then X+(A(K)) = V, X 0(A(K)) =

Ker(∆), and X−(A(K)) = X−(A(K+)) ∩∆−1(V⊥).
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An application of Theorem 3.4.2 is the main result of [99], which provides a solution of the (LQCP)L

when (A,B) is controllable. To state the sufficient condition for well-posedness, an additional definition

is needed from [99]: for a given subspace L ⊂ Rn and symmetric matrix K ∈ Rn×n, K is said to be

negative semidefinite on L if for all x ∈ L, x>Kx ≤ 0, and x>Kx = 0 if and only if Kx = 0. Notice

that K ≤ 0 implies that for all L ⊂ Rn, K is negative semidefinite on L. To see this, fix L ⊂ Rn and

note that K ≤ 0 implies that there exists H ∈ Rp×n for some p such that K = −H>H. Then for all

x ∈ L ⊂ Rn, obviously x>Kx ≤ 0, Kx = 0 implies x>Kx = 0, and

x>Kx = −(Hx)>(Hx) = 0 ⇔ Hx = 0 ⇒ −H>(Hx) = Kx = 0. (3.11)

Theorem 3.4.3 (Theorem 4.1, [99]). Let (A,B) be controllable. Assume ∂Γ 6= ∅ and K− is negative

semidefinite on L. Then we have

(i) For all x0 ∈ Rn, VL(x0) is finite.

(ii) For all x0 ∈ Rn, VL(x0) = x>0 K
?x0, where K? := γ(N (L)) and N (L) := 〈L∩Ker(K−) | A(K−)〉∩

X+(A(K−)).

(iii) For all x0 ∈ Rn, there exists an optimal input u? if and only if Ker(∆) ⊂ L ∩Ker(K−).

(iv) If Ker(∆) ⊂ L ∩ Ker(K−), then for each x0 ∈ Rn, there exists exactly one optimal input u?, and

it is given by the feedback u? = −B>K?x.

The results of this chapter can be regarded as a generalization of the previous result to the stabilizable

case. That is, we require weaker assumptions for the sufficient condition of well-posedness to be able

to provide the form of the value function, necessary and sufficient conditions for attainability, and the

form of the optimal control. Our new assumptions involve the stabilizability of (A,B) rather than

controllability, and the existence of a negative semidefinite solution to the ARI rather than imposing

that specifically K−, a solution to the ARE, is negative semidefinite on L. Because necessary and

sufficient conditions for well-posedness are still an open problem, note that we have not attempted to

generalize our second condition in terms of the existence of an ARI solution that is negative semidefinite

on L. Regardless, the main technical obstacle is that there is no direct generalization of Theorem 3.4.2

to the stabilizable case; indeed the minimal solution K− may not exist in this case.

Now supposing that (A,B) is stabilizable, we can write the system (3.1) in the Kalman controllability

decomposition. Let C = 〈A | Im(B)〉 ⊂ Rn be the controllable subspace with dimension n1 ≤ n. Also,

let X2 be any complement such that

Rn = C ⊕ X2. (3.12)
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Then the system matrices have the block form:

A =


A1 A12

0 A2


 , B =


B1

0


 . (3.13)

It can be shown that coordinate transformations only affect the solutions K ∈ ∂Γ of the (LQCP)L (in

any endpoint case) up to a congruent transformation, so there is no loss of generality to assume that

(A,B) already has the form (3.13). If we write the symmetric matrices Q and K in block form

Q =


Q1 Q12

Q>12 Q2


 , K =


K1 K12

K>12 K2


 , (3.14)

then φ(K) also can be decomposed in block form:

φ(K) =


φ1(K1) A1(K1)>K12 +K12A2 +K1A12 +Q12

∗ A>2 K2 +K2A2 +K>12A12 +A>12K12 +Q2 −K>12B1B
>
1 K12


 . (3.15)

We note that φ(K) is symmetric, and φ1(K1) is defined below in (3.17). Let

A1(K1) := A1 −B1B
>
1 K1. (3.16)

Then φ(K) = 0 gives rise to three equations

φ1(K1) := AT1 K1 +K1A1 +Q1 −K1B1B
>
1 K1 = 0, (3.17)

A1(K1)>K12 +K12A2 = −(Q12 +K1A12), (3.18)

A>2 K2 +K2A2 = K>12B1B
>
1 K12 −K>12A12 −A>12K12 −Q2 . (3.19)

The first equation (3.17) is a quadratic equation with (A1, B1) controllable. Its solutions K1 are decou-

pled from K12 and K2, so this lower order (n1 × n1) ARE equation can be solved first. The relevant

solution sets are denoted as:

Γ1 := {K1 ∈ Rn1×n1 | K>1 = K1, φ1(K1) ≥ 0},

∂Γ1 := {K1 ∈ Rn1×n1 | K>1 = K1, φ1(K1) = 0},

Γ1− := {K1 ∈ Γ1 | K1 ≤ 0},

∂Γ1− := {K1 ∈ ∂Γ1 | K1 ≤ 0}.
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Using any solution K1 ∈ ∂Γ1, if it exists, (3.18) is a linear (Sylvester) equation for K12 which may have

no solutions, infinitely many solutions, or a unique solution. The third equation (3.19) is also a linear

(Sylvester) equation. Using any solution K12, if it exists, gives a unique solution to K2. To see this,

recall that if M1 ∈ Rn1×n1 , M2 ∈ Rn2×n2 , and M3 ∈ Rn1×n2 are given matrices, then the Sylvester

equation M1X+XM2 = M3 has a unique solution X ∈ Rn1×n2 exactly when σ(M1)∩σ(−M2) = ∅ [34].

Because stabilizability of (A,B) implies σ(A2) ⊂ C−, then by applying the Sylvester solvability criteria

to (3.19), we have that σ(A>2 ) ∩ σ(−A2) = ∅, and so K2 is unique for any given K12.

In preparation for characterizing the existence and form of the value function analogously to Theorem

3.4.3 (i) and (ii), we consider existence of extremal solutions in ∂Γ. It is known that when (A,B) is

stabilizable, then the maximal solution K+ ∈ ∂Γ exists, whereas the minimal solution K− may not

exist.

Theorem 3.4.4 (Theorem 2.1, [41]; Theorem 7.9.3, p. 195, [64]). Suppose (A,B) is stabilizable and

∂Γ 6= ∅. Then the unique maximal solution K+ ∈ ∂Γ exists. Moreover, σ(A(K+)) ⊂ C− ∪ C0.

To obtain a generalization of Theorem 3.4.3 to the stabilizable case, one of the major steps in the

sequel is to apply Theorem 3.4.3 to the controllable subsystem (A1, B1) and its ARE (3.17). Theo-

rem 3.4.3 requires that the minimal solution K−1 of (3.17) exists and is negative semidefinite on L within

the controllable subspace. The following lemma provides for the existence of this minimal, negative

semidefinite solution.

Lemma 3.4.5. Suppose (A,B) is stabilizable, Γ− 6= ∅, and the state space is decomposed as in (3.12).

Then the minimal solution K−1 ∈ ∂Γ1− exists.

Proof. Let K ∈ Γ− so that φ(K) ≥ 0 and K ≤ 0. Consider K, Q, and φ(K) in block form (3.14)-

(3.15). Applying Theorem 2.4.1 to both K and φ(K), we obtain φ1(K1) ≥ 0 and K1 ≤ 0, which

implies K1 ∈ Γ1− 6= ∅. Since also (A1, B1) is controllable, we can apply Theorem 3.4.1(i) to conclude

K+
1 ,K

−
1 ∈ Γ1, the maximal and minimal solutions, exist. Moreover ∂Γ1 6= ∅ and its maximal and

minimal elements are precisely K+
1 and K−1 . Because K1 ≤ 0, K−1 ∈ Γ1 is minimal, and K1,K

−
1 ∈ Γ1,

we have that K−1 ≤ K1 ≤ 0. That is, K−1 ∈ ∂Γ1−, as desired.

3.5 Solution of the (LQCP)L

In this section we present the solution of the (LQCP)L . That is, we give sufficient conditions for well-

posedness, the form of the value function, necessary and sufficient conditions for attainability, and form
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of the optimal control. We assume that L ⊂ Rn is a given subspace. Well-posedness and the form of the

value function are addressed through the following sufficient condition, which are also found in [37, 38].

Assumption 3.5.1. We assume that (A,B) is stabilizable and Γ− 6= ∅.

The following theorem states that the value function is given in terms of a quadratic form of a

particular solution to the ARE.

Theorem 3.5.2 (Theorem 2.1 [37], Lemma 5 [78]). Consider the (LQCP)L and suppose Assump-

tion 3.5.1 holds. Then there exists a unique K? ∈ ∂Γ such that for all x0 ∈ Rn, VL(x0) = x>0 K
?x0.

Next we turn to the form of K?. Our approach is to choose a suitable basis based on the Kalman

controllability decomposition (3.12) and on Theorem 3.4.2, following the same method in [105]. Then

we systematically determine each of the blocks of K?. First we determine K?
1 using results from [99];

second, we compute K?
12 assuming K?

1 is known; finally, we compute K?
2 assuming K?

12 is known. Now

we give a more detailed roadmap on how the technical results are obtained.

The choice of K?
1 is resolved by applying Theorem 3.4.3 to the controllable subsystem. We construct

a smaller optimal control problem on the controllable subsystem. Intuitively, the smaller optimal control

problem should be equivalent to the original (LQCP)L for initial conditions in the controllable subspace.

After proving this equivalence, we apply Theorem 3.4.3 to obtain K?
1 = K1, where K1 is defined in

(3.22) below. Next, we fix the choice of K?
1 that solves (3.17) and turn to the solution set of (3.18).

Generally, this linear Sylvester equation may have an infinite number of solutions, making the choice of

K?
12 nontrivial to determine. However, once K?

12 is determined, then K?
2 is uniquely determined from the

linear Sylvester equation (3.19), since (A,B) is stabilizable. Thus K?
12 is the main obstacle. Interestingly,

under a restrictive regularity assumption introduced in [41], the solution set of (3.18) collapses to a single

element. On the other hand, Theorem 3.5.2 states that K?
12 exists without the regularity assumption.

We forego the assumption and search for a more general principle that can resolve the choice of K?
12.

Our approach involves exploiting the structure within the Kalman controllability decomposition,

similarly as in [105]. Based on a modal decomposition of A1(K1), the Sylvester equation (3.18) with

K1 = K?
1 splits into three decoupled linear Sylvester equations (3.34)-(3.36). The problematic part of

K?
12, denoted K∗12,1 is then isolated to (3.34) only. Regarding the solution of (3.34), it is well known (see

Theorem 10.13 of [106]) that for stabilizable systems with positive semidefinite cost in the free endpoint

case, the solution of the ARE is given by the smallest positive semidefinite solution in ∂Γ. Also, 0 ∈ Γ if

and only if Q ≥ 0 (see for example equation (1.16) of [38]) and so 0 ∈ Γ− and x>0 0x0 = 0 gives a lower

bound on the value function. Using the previous two observations, we find through repeated trials that
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K?
12 = 0 in the positive semidefinite case. At this point we make a guess that the same form of K?

12

would arise in the indefinite case. Finally, we unambiguously deduce that K?
12 = 0.

Once we have fully characterized the form of K?, obtaining necessary and sufficient conditions for

attainability follows analogously to the proof presented in [105, 99]. We require only a few augmentations

to account for the uncontrollable (but stable) dynamics. Now we proceed to the actual development.

The first step is to fix a suitable basis so that the blocks of K? can be computed. Consider the Kalman

controllability decomposition (3.12), and suppose Assumption 3.5.1 holds. Then by Lemma 3.4.5, the

unique minimal solution K−1 ∈ ∂Γ1 6= ∅ exists and K−1 ≤ 0. Similarly, because (A1, B1) is controllable

and ∂Γ1 6= ∅, we can apply Theorem 3.4.1 to obtain the unique maximal solution K+
1 ∈ ∂Γ1. Let

∆1 := K+
1 − K−1 be the gap associated with (3.17), the ARE in the controllable subspace. Following

[105, 99], we can further decompose the controllable subspace based on Theorem 3.4.2. To that end,

define the following subspaces of Rn1 :

L1 := L ∩ C (3.20)

N1(L1) := 〈L1 ∩Ker(K−1 ) | A1(K−1 )〉 ∩ X+(A1(K−1 )) . (3.21)

Here and for the remainder of this section, for simplicity we do not notationally differentiate a subspace

that can belong to various vector spaces of different dimensions. For example, although technically

L ∩ C ⊂ Rn, we can view L1 as a subspace of Rn1 ∼ C.

Let PN1(L1) : Rn1 → N1(L1) be the projection onto N1(L1) along ∆−1
1 (N1(L1)⊥). Because N1(L1)

is an A1(K−1 )-invariant subspace contained in X+(A1(K−1 )) for any L1, we can apply Theorem 3.4.2 to

obtain a solution K1 ∈ ∂Γ1 of the ARE of the form

K1 := γ(N1(L1)) = K−1 PN1(L1) +K+
1 (In1

− PN1(L1)). (3.22)

Following Theorem 3.4.2, define the following subspaces in C ∼ Rn1 :

X1,1 := X+(A1(K1)) = N1(L1), (3.23)

X1,2 := X 0(A1(K1)) = Ker(∆1), (3.24)

X1,3 := X−(A1(K1)) = X−(A1(K+
1 )) ∩∆−1

1 (N1(L1)⊥). (3.25)
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Then the state space decomposition (3.12) splits further into

Rn = X1,1 ⊕X1,2 ⊕X1,3 ⊕X2 . (3.26)

Let n1,i := dim(X1,i) for i = 1, 2, 3 so that n1 = n1,1 + n1,2 + n1,3 ≤ n. Without loss of generality (after

a change of coordinates), the system matrices have the block form

A =


A1 A12

0 A2


 =




A1,11 A1,12 A1,13 A12,1

A1,21 A1,22 A1,23 A12,2

A1,31 A1,32 A1,33 A12,3

0 0 0 A2



, B =


B1

0


 =




B1,1

B1,2

B1,3

0



. (3.27)

The cost matrix Q and each K ∈ Γ have the block form

Q =


Q1 Q12

Q>12 Q2


 =




Q1,11 Q1,12 Q1,13 Q12,1

Q>1,12 Q1,22 Q1,23 Q12,2

Q>1,13 Q>1,23 Q1,33 Q12,3

Q>12,1 Q>12,2 Q>12,3 Q2



, K =


K1 K12

K>12 K2


 =




K1,11 K1,12 K1,13 K12,1

K>1,12 K1,22 K1,23 K12,2

K>1,13 K>1,23 K1,33 K12,3

K>12,1 K>12,2 K>12,3 K2



.

(3.28)

Our goal is to compute all of the blocks in (3.28) for K = K?. First we resolve the choice of K?
1 .

Theorem 3.5.3. Consider the (LQCP)L and suppose Assumption 3.5.1 holds. Then in the state space

decomposition (3.12), K?
1 = K1, as given in (3.22).

Proof. Since (A,B) is stabilizable, without loss of generality, (A,B) has the form (3.13), and Q and K

have the block form (3.14). Defining x := (x1, x2), the Kalman controllability decomposition is

ẋ1 = A1x1 +A12x2 +B1u, x1(0) = x1,0 (3.29)

ẋ2 = A2x2, x2(0) = x2,0. (3.30)

The controllable subspace is C = {x ∈ Rn | x2 = 0}. If x2,0 = 0, then for all t ≥ 0, x2(t) = 0

and x(t) ∈ C. Thus, we can define a new (LQCP)L1
on C with dynamics ẋ1 = A1x1 + B1u, x1(0) =

x1,0, and (A1, B1) is controllable. The cost function is J1T (x1,0, u) :=
∫ T

0
ω1(x1(t;x1,0, u), u(t)) dt with

ω1(x1, u) := x>1 Q1x1 + u>u. Let L1 = L ∩ C be the terminal subspace and let d1L1
: Rn1 → [0,∞) be
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the distance function. The input spaces are

U1(x1,0) :=
{
u ∈ Lm2,loc(R+)

∣∣ lim
T→∞

J1T (x1,0, u) exists in Re
}
, (3.31)

U1L1(x1,0) :=
{
u ∈ U1(x1,0) | lim

t→∞
d1L1(x1(t;x1,0, u)) = 0

}
. (3.32)

The optimal cost is V1L1(x1,0) := inf{limT→∞ J1T (x1,0, u) | u ∈ U1L1(x1,0)}. The ARE for the

(LQCP)L1
is φ1(K1) = 0 as in (3.17) with solution set ∂Γ1. Consider any initial condition x0 = (x1,0, 0) ∈

C and any control u ∈ Lm2,loc(R+). Then x(t;x0, u) = (x1(t;x1,0, u), 0) and ω(x(t;x0, u), u(t)) =

ω1(x1(t;x1,0, u), u(t)), so for all T ≥ 0, JT (x0, u) = J1T (x1,0, u). Consequently, we have U(x0) =

U1(x1,0). Also, limt→∞ dL(x(t;x0, u)) = 0 is equivalent to limt→∞ d1L1
(x1(t;x1,0, u)) = 0. Thus

UL(x0) = U1L1(x1,0). With all the above, we conclude that VL(x0) = V1L1(x1,0) for x0 = (x1,0, 0) ∈ C.

Since (A1, B1) is controllable, we can apply the results of [99] to solve the (LQCP)L1
. Since Γ− 6= ∅,

we can apply Lemma 3.4.5 to get that the minimal solution K−1 ∈ ∂Γ1− exists. Since K−1 ≤ 0, from

(3.11) it follows that K−1 is negative semidefinite on L1. By Theorem 3.4.3(ii), V1L1
(x1,0) = x>1,0K1x1,0

with K1 given in (3.22). Since we have already shown that VL(x0) = V1L1(x1,0) for x0 = (x1,0, 0) ∈ C,

it can be easily shown that K?
1 = K1.

To resolve the remaining blocks of K?, we recall some results from [105]. For this to apply, we

continue to assume that the state space is decomposed according to (3.26). It was shown in (5.5) and

(5.7) of [105] that K1 in (3.22) and the closed-loop system matrix A1(K1) using K1 have the form

K1 =




0 0 0

0 K−1,22 K−1,23

0 K−>1,23 K+
1,33



, A1(K1) =




A1,11 0 0

0 A1,22 0

0 0 A1,33



, (3.33)

where σ(A1,11) ⊂ C+, σ(A1,22) ⊂ C0, and σ(A1,33) ⊂ C−. For the choice of K1 = K1 and substituting

(3.27), (3.28), and (3.33), the second ARE equation (3.18) splits into three linear Sylvester equations:

A
>
1,11K12,1 +K12,1A2 = −Q12,1, (3.34)

A
>
1,22K12,2 +K12,2A2 = −(Q12,2 +K−1,22A12,2 +K−1,23A12,3), (3.35)

A
>
1,33K12,3 +K12,3A2 = −(Q12,3 +K−>1,23A12,2 +K+

1,33A12,3) . (3.36)

Using these facts, we can now resolve the remaining blocks of K?. The main difficulty is that (3.34)

may have an infinite number of solutions for the K12,1 block since σ(A
>
1,11) ∩ σ(−A2) is not necessarily
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empty. The key insight is that K?
12,1 can be unambiguously determined by invoking Theorem 3.5.5(ii)

given below, that any negative semidefinite solution KN ∈ Γ− to the ARI provides a lower bound to the

value function. In order to utilize this property to resolve the choice of K?
12,1, the next lemma describes

the block structure of any KN ∈ Γ−.

Lemma 3.5.4. Suppose Assumption 3.5.1 holds and the state space is decomposed as in (3.26). Then

for all KN ∈ Γ−, KN has the block form

KN =




0 0 0 0

0 K−1,22 K−1,23 K12,2

0 K−>1,23 K1,33 K12,3

0 K>12,2 K>12,3 K2



.

Proof. Let KN ∈ Γ− have the block form in (3.28). Since Γ− 6= ∅ and (A,B) is stabilizable, we can

apply Lemma 3.4.5 to obtain that the minimal solution K−1 ∈ ∂Γ1− exists. Also ∂Γ1− ⊂ ∂Γ1 6= ∅.

Because KN ∈ Γ− ⊂ Γ, by Theorem 2.4.1 we establish that its upper left block satisfies K1 ∈ Γ1. Since

(A1, B1) is controllable and ∂Γ1 6= ∅, we can apply Theorem 3.4.1(i) to get that the maximal solution

K+
1 ∈ ∂Γ1 also exists. Moreover, Theorem 3.4.1(i) also implies that K−1 ,K

+
1 ∈ Γ1, and consequently

K−1 ≤ K1 ≤ K+
1 . Since ∂Γ1 6= ∅, it has been shown (see equation (5.6) in [105] and equation (5.4) in

[99]) that K+
1 , K−1 , and ∆1 have the block form

K+
1 =




K+
1,11 0 0

0 K+
1,22 K+

1,23

0 K+>
1,23 K+

1,33



, K−1 =




0 0 0

0 K−1,22 K−1,23

0 K−>1,23 K−1,33



, ∆1 =




∆1,11 0 0

0 0 0

0 0 ∆1,33



, (3.37)

where K+
1,22 = K−1,22, K+

1,23 = K−1,23, and ∆1,33 = K+
1,33 −K−1,33. Now consider K1 ≥ K−1 in block form,

assuming the decomposition of K−1 in (3.37). We have

K1 −K−1 =




K1,11 − 0 K1,12 − 0 K1,13 − 0

(K1,12 − 0)> K1,22 −K−1,22 K1,23 −K−1,23

(K1,13 − 0)> (K1,23 −K−1,23)> K1,33 −K−1,33



≥ 0 .

Using Theorem 2.4.1, we find K1,11 ≥ 0. Since KN ∈ Γ− by assumption, KN ≤ 0. Applying Theo-

rem 2.4.1 to KN =


K1,11 ∗

∗ ∗


, we get K1,11 ≤ 0. Thus K1,11 = 0. Now consider again K−1 ≤ K1 ≤ K+

1
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with the information that K1,11 = 0:




0 0 0

0 K−1,22 K−1,23

0 (K−1,23)> K−1,33



≤




0 K1,12 K1,13

K>1,12 K1,22 K1,23

K>1,13 K>1,23 K1,33



≤




K+
1,11 0 0

0 K−1,22 K−1,23

0 (K−1,23)> K+
1,33




where we have K+
1,22 = K−1,22 and K+

1,23 = K−1,23 as in (3.37). We claim that K1,12 = 0, K1,13 = 0,

K1,22 = K−1,22, and K1,23 = K−1,23. First, we have

K1 −K−1 =




0 K1,12 K1,13

K>1,12 ∗ ∗

K>1,13 ∗ ∗



≥ 0.

Applying Theorem 2.4.1 again, we get (I − 00†)
[
K1,12 K1,13

]
= 0, so that K1,12 = 0 and K1,13 = 0.

Then K1 −K−1 ≥ 0 reduces to




0 0 0

0 K1,22 −K−1,22 K1,23 −K−1,23

0 (K1,23 −K−1,23)> K1,33 −K−1,33



≥ 0

which implies by Theorem 2.4.1 that


 K1,22 −K−1,22 K1,23 −K−1,23

(K1,23 −K−1,23)> K1,33 −K−1,33


 ≥ 0.

Similarly, K+
1 −K1 ≥ 0 gives


 K−1,22 −K1,22 K−1,23 −K1,23

(K−1,23 −K1,23)> K+
1,33 −K1,33


 ≥ 0. (3.38)

Applying Theorem 2.4.1 to the previous two statements, we get K−1,22 ≤ K1,22 ≤ K−1,22, so K1,22 = K−1,22.

Then rewriting the previous inequality (3.38)


 0 K−1,23 −K1,23

(K−1,23 −K1,23)> K+
1,33 −K1,33


 ≥ 0.
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Applying Theorem 2.4.1, we get (I − 00†)(K−1,23 − K1,23) = 0, so K1,23 = K−1,23. So far we have for

KN ∈ Γ−

KN =




0 0 0 K12,1

0 K−1,22 K−1,23 K12,2

0 (K−1,23)> K1,33 K12,3

K>12,1 K>12,2 K>12,3 K2



≤ 0.

Then −KN ≥ 0 has the block form:




0 0 −K12,1

0 ∗ ∗

−K>12,1 ∗ ∗



≥ 0.

Applying Lemma 2.4.2, we get K12,1 = 0.

In the next result we completely characterize the form of K?. Before proceeding with this result, we

collect some well known results about the cost function.

Theorem 3.5.5. Consider the system (3.1) with the cost function (3.2) - (3.3). Let x0 ∈ Rn, T ≥ 0,

and u ∈ Lm2,loc(R+).

(i) Let K ∈ ∂Γ. Then JT (x0, u) =
∫ T

0
‖u(t) +B>Kx(t)‖2 dt+ x>0 Kx0 − x>(T )Kx(T ), where x(t) :=

x(t;x0, u).

(ii) For all x0 ∈ Rn and KN ∈ Γ−, VL(x0) ≥ x>0 KNx0.

(iii) Suppose Assumption 3.5.1 holds. If J(x0, u) = x>0 K
?x0, then u = −B>K?x and

limT→∞ x>(T )K?x(T ) = 0.

Proof. Statement (i) is standard. See for instance [114] or [105]. Statement (ii) is Proposition 1.8 of [37].

See also Lemma 4.4 of [105]. Statement (iii) is Theorem 2.8(c) of [37]. See also the proof of Theorem

5.1(iii) in [105].

Theorem 3.5.6. Consider the (LQCP)L and suppose Assumption 3.5.1 holds. Then in the state space

decomposition (3.26), K? ∈ ∂Γ has the form

K? =




0 0 0 0

0 K−1,22 K−1,23 K?
12,2

0 K−>1,23 K+
1,33 K?

12,3

0 (K?
12,2)> (K?

12,3)> K?
2



, (3.39)
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where K?
12,2 is the unique solution to (3.35), K?

12,3 is the unique solution to (3.36), and K?
2 is the unique

solution to (3.19) with K12 = K?
12.

Proof. By Theorem 3.5.3, K?
1 = K1 with the form of K1 given in (3.22). By Theorem 3.5.2, K? ∈ ∂Γ.

Next we consider (3.18). Using the decompositions above and with the choice K1 = K1, the second

ARE equation (3.18) splits into (3.34), (3.35), and (3.36). Since σ(A1,22) ⊂ C0, σ(A1,33) ⊂ C−, and

σ(−A2) ⊂ C+, (3.35) and (3.36) have unique solutions K?
12,2 and K?

12,3, respectively [34]. Similarly,

(3.19) has a unique solution K?
2 , assuming K12 = K?

12. At this point we know that K? has the block

form:

K? =




0 0 0 K?
12,1

0 K−1,22 K−1,23 K?
12,2

0 K−>1,23 K+
1,33 K?

12,3

(K?
12,1)> (K?

12,2)> (K?
12,3)> K?

2



. (3.40)

Comparing to (3.39), it remains only to show that K?
12,1 = 0. By Theorem 3.5.2, VL(x0) = x>0 K

?x0.

Let KN ∈ Γ−. By Theorem 3.5.5(ii), for all x0 ∈ Rn, VL(x0) = x>0 K
?x0 ≥ x>0 KNx0; that is, K? ≥ KN .

Using the block form of K? in (3.40) and the block form of KN in Lemma 3.5.4, we have

K? −KN =




0 0 0 K?
12,1

0 0 0 K?
12,2 −K12,2N

0 0 K+
1,33 −K1,33N K?

12,3 −K12,3N

(K?
12,1)> (K?

12,2 −K12,2N )> (K?
12,3 −K12,3N )> K?

2 −K2N



≥ 0 .

Applying Lemma 2.4.2 yields that K?
12,1 = 0, as desired.

Remark 3.5.7. We observe from the form of K? that K?
12,1 = 0. If we substitute K?

12,1 = 0 into (3.34),

we get that Q12,1 = 0. One can derive the fact that Q12,1 = 0 via a separate argument, and this provides

an independent validation of our result that K?
12,1 = 0. Suppose Assumption 3.5.1 holds. Take any

symmetric K with the special form:

K =




0 0 0 0

0 K1,22 K1,23 K12,2

0 K>1,23 K1,33 K12,3

0 K>12,2 K>12,3 K2



.

We decompose A and B as in (3.27). Using a result analogous to equation (5.2) in [105], it can be shown
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that N1(L1) is A1-invariant, and this implies A1,21 = A1,31 = 0. Then by direct computation φ(K) has

the form:

φ(K) =




Q1,11 Q1,12 Q1,13 Q12,1

Q>1,12 ∗ ∗ ∗

Q>1,13 ∗ ∗ ∗

Q>12,1 ∗ ∗ ∗



.

Now choose the upper left block of the above K to be K−1 ∈ ∂Γ. By (3.37) this choice is consistent

with the form of K above. Since the upper left block of φ(K) is written as φ1(K1) and we know that

φ1(K−1 ) = 0, it immediately follows that Q1,11 = 0, Q1,12 = 0, and Q1,13 = 0. Next, since Γ− 6= ∅, let

KN ∈ Γ−. By Lemma 3.5.4, KN has the special form above. Then we have

φ(KN ) =




0 0 0 Q12,1

0 ∗ ∗ ∗

0 ∗ ∗ ∗

Q>12,1 ∗ ∗ ∗



≥ 0.

By applying Lemma 2.4.2, we conclude that Q12,1 = 0.

We conclude this section by applying Theorem 3.5.6 to obtain necessary and sufficient conditions for

attainability of the (LQCP)L . Remarkably, the attainability result depends only on the controllable

subspace.

Theorem 3.5.8. Suppose Assumption 3.5.1 holds and the state space is decomposed as in (3.12). Then

the (LQCP)L is attainable if and only if Ker(∆1) ⊂ L1 ∩Ker(K−1 ).

Proof. Due to Assumption 3.5.1, we may further assume that the state space is decomposed according

to (3.26). Let W1 ∈ Rn1×n1 be a matrix such that Ker(W1) = L1 and let d1L1 : Rn1 → [0,∞) be

the distance function in Rn1 to L1. Since X1,1 = 〈L1 ∩ Ker(K−1 ) | A1(K−1 )〉 ∩ X+(A1(K−1 )), we have

X1,1 ⊂ 〈Ker(W1) ∩Ker(K−1 ) | A1(K−1 )〉 ⊂ Ker(W1) ∩Ker(K−1 ) = Ker

Ö
K
−
1

W1




è
. We claim


K
−
1

W1


 =

[
0 D2 D3

]
. (3.41)

Proof of Claim: Let x1 ∈ X1,1. Then x1 ∈ Ker

Ö
K
−
1

W1




è
=: Ker

([
D1 D2 D3

])
. Also since
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x1 ∈ X1,1, in coordinates it has the form x1 = (x1,1, 0, 0). Then
[
D1 D2 D3

]
x1 = D1x1,1 = 0. Since

x1,1 is arbitrary, we get D1 = 0, as desired.

(⇒) Suppose the (LQCP)L is attainable. Let x0 ∈ Rn. By definition there exists u? ∈ UL(x0)

such that VL(x0) = J(x0, u
?). By Theorem 3.5.2 we know VL(x0) = x>0 K

?x0 where K? ∈ ∂Γ, and

by Theorem 3.5.6, K? is given in (3.39). Now we can apply Theorem 3.5.5(iii) to get u? = −B>K?x.

The closed-loop dynamics are ẋ = A(K?)x. Let x := (x1, x2) := (x1,1, x1,2, x1,3, x2) according to the

decomposition (3.26). Then using the block form of A1(K?
1 ) = A(K1) in (3.33), we have

ẋ =


A1(K?

1 ) ∗

0 A2




x1

x2


 =




A1,11 0 0 A12,1

0 A1,22 0 A12,2

0 0 A1,33 A12,3

0 0 0 A2







x1,1

x1,2

x1,3

x2



, (3.42)

where σ(A1,11) ⊂ C+, σ(A1,22) ⊂ C0, σ(A1,33) ⊂ C−, and by stabilizability, σ(A2) ⊂ C−. Using the

variation of constants formula we get that at t = T

x1,i(T ) = eA1,iiTx1,i(0) +

∫ T

0

eA1,ii(T−τ)A12,ie
A2τx2(0) dτ, i = 1, 2, 3 . (3.43)

Since σ(A2) ⊂ C−, limT→∞ x2(T ) = 0. Using (3.43) for i = 3, σ(A1,33) ⊂ C−, and the fact that

limT→∞ x2(T ) = 0, we also get limT→∞ x1,3(T ) = 0. Now using (3.39), the block form of K−1 given in

(3.37), and the fact that K+
1,33 = ∆1,33 +K−1,33, we have

x>K?x = x>1 K
?
1x1 + 2x>1 K

?
12x2 + x>2 K

?
2x2

= x>1 K
−
1 x1 + x>1,3∆1,33x1,3 + 2(x>1,2K

?
12,2 + x>1,3K

?
12,3)x2 + x>2 K

?
2x2 . (3.44)

Using this expression combined with the fact that limT→∞ x1,3(T ) = 0, limT→∞ x2(T ) = 0, and

limT→∞ x>(T )K?x(T ) = 0 from Theorem 3.5.5(iii), we get

lim
T→∞

x>(T )K?x(T ) = lim
T→∞

(
x>1 (T )K−1 x1(T ) + 2x>1,2(T )K?

12,2x2(T )
)

= 0 . (3.45)

Now we observe that limT→∞ 2x>1,2(T )K?
12,2x2(T ) = 0 because σ(A1,22) ⊂ C0 and σ(A2) ⊂ C−. Return-

ing to (3.45), this implies that also limT→∞ x>1 (T )K−1 x1(T ) = 0.

We have assumed that u? ∈ UL(x0) and (A,B) is stabilizable. Therefore, limT→∞ dL∩C(x(T )) = 0,

and thus within the controllable subspace limT→∞ d1L1
(x1(T )) = 0. Since L1 = Ker(W1), we have
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limT→∞W1x1(T ) = 0. Meanwhile by Lemma 3.4.5, K−1 ≤ 0. Since limT→∞ x>1 (T )K−1 x1(T ) = 0, by tak-

ing the limit in (3.11) we have that limT→∞K−1 x1(T ) = 0. Overall, we have limT→∞


K
−
1

W1


x1(T ) = 0.

Using (3.41), this gives limT→∞ (D2x1,2(T ) +D3x1,3(T )) = 0. We already know that limT→∞ x1,3(T ) =

0, so we get limT→∞D2x1,2(T ) = 0. However, σ(A1,22) ⊂ C0 and x1,2(0) is arbitrary, so D2 = 0.

Finally, we observe that if x1 ∈ X1,2, then
[
0 0 D3

]
x1 = 0 since x1 = (0, x1,2, 0). That is,

X1,2 ⊂ Ker
([

0 0 D3

])
. In sum, we have

X1,2 = Ker(∆1) ⊂ Ker
([

0 0 D3

])
= Ker

Ö
K
−
1

W1




è
= L1 ∩Ker(K−1 ) . (3.46)

(⇐) Suppose that Ker(∆1) ⊂ L1 ∩Ker(K−1 ). Let x0 ∈ Rn. To show attainability, we must find an

optimal control. Consider the candidate uc := −B>K?x, where K? is given in (3.39). We must show

VL(x0) = J(x0, u
c) and uc ∈ UL(x0). The closed-loop dynamics using uc are given in (3.42). Following

the same arguments as above we have that limT→∞ x2(T ) = 0 and limT→∞ x1,3(T ) = 0. By assumption,

Ker(∆1) ⊂ L1 ∩ Ker(K−1 ). From above, L1 ∩ Ker(K−1 ) = Ker

Ö
K
−
1

W1




è
= Ker

([
0 D2 D3

])
. We

claim that D2 = 0. To see this, let x1 ∈ Ker(∆1) = X1,2. Then x1 = (0, x1,2, 0). Since Ker(∆1) ⊂

Ker
([

0 D2 D3

])
we have

[
0 D2 D3

]
x1 = D2x1,2 = 0. Since x1,2 is arbitrary, D2 = 0. Using the

block form of K−1 in (3.37), we have


K
−
1

W1


 =




0 0 0

0 K−1,22 K−1,23

0 K−>1,23 K−1,33

W11 W12 W13




=
[
0 0 D3

]
.

This implies K−1,22 = K−1,23 = 0. Now we observe K? ∈ ∂Γ by Theorem 3.5.2 and uc ∈ Lm2,loc(R+) for

any fixed T ≥ 0. Therefore, we can apply Theorem 3.5.5(i) with K = K? and u = uc to get

JT (x0, u
c) = x>0 K

?x0 − x(T )>K?x(T ) . (3.47)

We claim that limT→∞ x>(T )K?x(T ) = 0. Using the expansion of x(T )>K?x(T ) given in (3.44),

and the fact that limT→∞ x2(T ) = 0 and limT→∞ x1,3(T ) = 0, we get limT→∞ x>(T )K?x(T ) =

limT→∞ x>1 (T )K−1 x1(T ). Using the available information about the block form of K−1 and that the
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limit limT→∞ x1,3(T ) = 0, we find

lim
T→∞

x>(T )K?x(T ) = lim
T→∞

x>1 (T )




0 0 0

0 0 0

0 0 K−1,33



x1(T ) = lim

T→∞
x>1,3(T )K−1,33x1,3(T ) = 0 .

Returning to (3.47), we have limT→∞ JT (x0, u
c) = J(x0, u

c) = x>0 K
?x0, as desired.

Finally, we must show uc ∈ UL(x0), and particularly limT→∞ dL(x(T )) = 0. Since limT→∞ x1,3(T ) =

0, we have that

lim
T→∞


K
−
1

W1


x1(T ) = lim

T→∞

[
0 0 D3

]
x1(T ) = D3x1,3(T ) = 0.

Thus, limT→∞W1x1(T ) = 0, which implies limT→∞ d1L1
(x1(T )) = 0. Since L1 = L ∩ C and

limT→∞ x2(T ) = 0, we have limT→∞ dL(x(T )) = 0. Thus, uc ∈ UL(x0), as desired.

We collect all of the previous results to obtain the culminating result on the solution of the (LQCP)L .

It is a generalization of Theorem 3.4.3 for the case of (A,B) controllable to the case when (A,B) is

stabilizable.

Theorem 3.5.9. Consider the (LQCP)L . Suppose Assumption 3.5.1 holds and the state space is

decomposed as in (3.12). Then we have

(i) The problem is well-posed.

(ii) For all x0 ∈ Rn, VL(x0) = x>0 K
?x0.

(iii) For all x0 ∈ Rn, the problem is attainable if and only if Ker(∆1) ⊂ L1 ∩Ker(K−1 ).

(iv) If the problem is attainable, then for each x0 ∈ Rn, there exists exactly one optimal input u?, and

it is given by u? = −B>K?x.

Proof. Statements (i) and (ii) follow from Theorem 3.5.2. The form of K? follows from Theorem 3.5.6.

Statement (iii) is an immediate consequence of Theorem 3.5.8. Statement (iv) follows from Theorem

3.5.5 (iii).

3.6 Discussion

In this section we discuss several special cases of our main result. This includes a comparison with

classical results in the positive semidefinite case. First, we consider the special case when N1(L1) = 0
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which was also treated in Theorem 6.1 of [105]. From our experience it is only in exceptional cases that

N1(L1) 6= 0. The following result shows that when N1(L1) = 0, then K? = K+, the maximal solution

in ∂Γ. This result has practical significance because there are many powerful algorithms for numerically

finding the maximal solution of the ARE.

Theorem 3.6.1. Consider the (LQCP)L , suppose that Assumption 3.5.1 holds, and that the state space

decomposed as in (3.12). Then N1(L1) = 0 if and only if K∗ = K+, where K+ ∈ ∂Γ is the maximal

solution.

Proof. (Only if) Suppose N1(L1) = 0. By Theorem 3.5.6, K? :=


 K

?
1 K?

12

K?>
12 K?

2


 ∈ ∂Γ, where K?

1 = K1 =

γ(N1(L1)). By assumption, PN1(L1) = 0, and then (3.22) gives K?
1 = K+

1 , where K+
1 is the maximal

solution in ∂Γ1. By Theorem 3.4.1(ii), we also know K+
1 ∈ ∂Γ1 is the unique maximal solution such that

σ(A1(K+
1 )) ⊂ C−∪C0. Furthermore, by stabilizability, σ(A2) ⊂ C−. Therefore, σ(A1(K+

1 ))∩σ(−A2) =

∅, so K?
12 is the unique solution of the Sylvester equation (3.18). Similarly, since σ(A>2 ) ∩ σ(−A2) = ∅,

K?
2 is the unique solution of the Sylvester equation (3.19).

Meanwhile, since ∂Γ 6= ∅, by Theorem 3.4.4, the maximal solution K+ ∈ ∂Γ exists and satisfies

σ(A(K+)) ⊂ C− ∪C0. We claim K? = K+. Let K+ =


K1 K12

K>12 K2


 in block form. Since K+ ∈ ∂Γ, we

have that K1 ∈ ∂Γ1. Using (3.13), σ(A(K+)) = σ(A1(K1))]σ(A2) ⊂ C−∪C0. Then since σ(A2) ⊂ C−,

we have σ(A1(K1)) ⊂ C− ∪ C0. However, by Theorem 3.4.1(ii), K1 ∈ ∂Γ1 and σ(A1(K1)) ⊂ C− ∪ C0

together imply K1 = K+
1 = K?

1 , the unique maximal solution in ∂Γ1. It immediately follows that

K12 = K?
12 and K2 = K?

2 , as desired.

(If) Suppose K∗ = K+, the maximal solution in ∂Γ. By writing K+ in block form, K+ =
K1 K12

K>12 K2


, we have K1 = K?

1 . We also have that K1 = K+
1 is the maximal solution in ∂Γ1 us-

ing an argument analogous to the one above. That is, using (3.13), σ(A(K+)) = σ(A1(K1)) ] σ(A2).

By Theorem 3.4.4, σ(A(K+)) ⊂ C− ∪ C0. Since σ(A2) ⊂ C−, we get σ(A1(K1)) ⊂ C− ∪ C0. Then by

Theorem 3.4.1(ii), K1 = K+
1 ∈ ∂Γ1. Meanwhile by Theorem 3.5.3, K1 = K?

1 . Putting this altogether, we

have that K1 = K?
1 = K+

1 . Finally, using K1 = K+
1 in (3.22) gives that PN1(L1) = 0, so N1(L1) = 0.

Next we discuss how Theorem 3.5.9 recovers well known results for the free-endpoint and fixed-

endpoint problems when Q is positive semidefinite and (A,B) is stabilizable. First, we observe that

when Q ≥ 0, then φ(0) ≥ 0 so 0 ∈ Γ− 6= ∅. Therefore, Assumption 3.5.1 holds. We also assume that the

state space is decomposed as in (3.26) wherever needed.

The main results on the free endpoint problem are summarized in Theorem 10.13 in [106]. In
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particular, when L = Rn, VL(x0) = x>0 P
−x0, where P− ≥ 0 is the smallest positive semidefinite

solution to the ARE, and the optimal control is u?(t) = −B>P−x(t). We would like to verify that

our Theorem 3.5.9 recovers these results. We will show that when Q ≥ 0, K? given in (3.39) satisfies

K? = P−. To aid in this endeavor, we invoke a result from [105]. Let ∂Γ1+ := {K1 ∈ ∂Γ1 | K1 ≥ 0}.

Theorem 3.6.2 (Theorem 6.3 [105]). Assume (A1, B1) is controllable and ∂Γ1− 6= ∅. Then the following

hold: if ∂Γ1+ 6= ∅, then (i) K1 ∈ ∂Γ1+ and (ii) K1 ∈ ∂Γ1+ implies K1 ≤ K1.

Lemma 3.6.3. Consider the (LQCP)L . Suppose (A,B) is stabilizable, L = Rn, and Q ≥ 0. Then

K? = P−.

Proof. We begin by applying Theorem 3.6.2 to show that K1 is the smallest solution in ∂Γ1+. To that

end, we must show that ∂Γ1− 6= ∅ and ∂Γ1+ 6= ∅. First, since Assumption 3.5.1 holds, we can apply

Lemma 3.4.5 to get K−1 ∈ ∂Γ1− exists, so ∂Γ1− 6= ∅. Second, because Q ≥ 0, we know φ(0) ≥ 0,

so 0 ∈ Γ−. By Theorem 3.5.2, VL(x) = x>K?x. Applying Theorem 3.5.5(ii) with KN = 0, we get

x>K?x ≥ x>0x = 0, for all x ∈ Rn, so K? ≥ 0. That is, K? ∈ ∂Γ+. By Theorem 2.4.1, this implies

K?
1 ≥ 0, so K?

1 = K1 ∈ ∂Γ1+ 6= 0. Now we can apply Theorem 3.6.2 to get K?
1 = K1 is the smallest

solution in ∂Γ1+.

It remains to show that K? = P− is the smallest solution in ∂Γ+. To arrive at a contradiction,

suppose there exists K ∈ ∂Γ+ such that K 6= K? and K ≤ K?. There are two cases. First, suppose

K ∈ ∂Γ+ with K ≤ K? such that K1 6= K?
1 , where K1 is the upper left block of K. Since K ∈ ∂Γ,

φ(K) = 0, so φ1(K1) = 0, implying K1 ∈ ∂Γ1. By Theorem 2.4.1, K ≥ 0 implies K1 ≥ 0, so K1 ∈ ∂Γ1+.

Again by Theorem 2.4.1, K ≤ K? implies K1 ≤ K?
1 . Thus, we have K1 ∈ ∂Γ1+ such that K1 ≤ K?

1 ,

which contradicts that K?
1 is the smallest solution in ∂Γ1+.

For the second case, suppose K ∈ ∂Γ+ with K ≤ K? such that K1 = K?
1 . By (3.33), K has the form

K =




0 0 0 K12,1

0 K−1,22 K−1,23 K12,2

0 K−>1,23 K+
1,33 K12,3

K>12,1 K>12,2 K>12,3 K2



.

Since K ≥ 0, we can apply Lemma 2.4.2 to find that K12,1 = 0. Then since K1 = K?
1 , K12,1 = K?

12,1 = 0,

and φ(K) = 0, the solutions for K12,2 and K12,3 are unique and match K?
12,2 and K?

12,3, respectively.

Thus K = K?, a contradiction. We conclude that K? is the smallest solution in ∂Γ+. This proves

that for the free endpoint case when Q ≥ 0 that VL(x0) = x>0 P
−x0. Also, Theorem 3.5.9 (iv) gives the

optimal control u(t) = −B>P−x(t) since P− = K?.
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Next we consider attainability in the free endpoint case. Since Assumption 3.5.1 holds, we can apply

Theorem 3.5.9(iii). In the free endpoint problem, L1 = C, so by Theorem 3.5.9(iii), the problem is

attainable if and only if Ker(∆1) ⊂ Ker(K−1 ). By Proposition 6.4 of [105], the latter condition always

holds. Thus, we recover the well-known fact that for the free endpoint case in the positive semidefinite

case, the problem is always attainable.

Now we discuss the fixed endpoint problem. The main results are summarized in Theorem 10.18 in

[106]. In particular, when L = 0, VL(x0) = x>0 P
+x0, where P+ ≥ 0 is the largest positive semidefinite

solution to the ARE, and the optimal control is u?(t) = −B>P+x(t). We would like to verify that

our Theorem 3.5.9 recovers these results. We must show that when Q ≥ 0, then K? = P+. For the

fixed endpoint problem, L1 = 0, so N1(L1) = 0. The desired result is then immediately obtained from

Theorem 3.6.1.

Now we consider attainability in the fixed endpoint case. The well-known necessary and sufficient

conditions for attainability in the positive semidefinite case, stated in Theorem 10.18(iii) of [106], is that

every eigenvalue of A on the imaginary axis is (Q,A) observable. We must show that this statement

is equivalent to our attainability result in Theorem 3.5.9(iii), which for the fixed-endpoint case requires

that Ker(∆1) ⊂ 0 ∩ Ker(K−1 ), or equivalently, ∆1 > 0. This connection is resolved in Theorem 3.6.6,

requiring the notion of the Hamiltonian and several preliminary results.

Consider the Kalman controllable decomposition (3.13). First, we define the Hamiltonian matrix on

the controllable subspace:

H1 :=


 A1 −B1B

>
1

−Q1 −A>1


 . (3.48)

Theorem 3.6.4 ([78]). Let (A1, B1) be controllable. The following conditions are equivalent.

(i) The maximal and minimal solutions of the ARE (and ARI), K+
1 and K−1 respectively, exist and

∆1 > 0.

(ii) The Hamiltonian matrix has no pure imaginary eigenvalues, i.e., if λ ∈ σ(H1) then <(λ) 6= 0.

Lemma 3.6.5 (Lemma 8, [62]). Suppose that Q1 = C>1 C1. Then there is an eigenvalue λ of H1 such

that <(λ) = 0 if and only if there is an uncontrollable eigenvalue λ of (A1, B1) and/or unobservable

eigenvalue λ of (C1, A1) such that <(λ) = 0.

Theorem 3.6.6. Suppose (A,B) is stabilizable and Q ≥ 0. Then every eigenvalue of A on the imaginary

axis is (Q,A) observable if and only if ∆1 > 0.

Proof. First we check that ∆1 = K+
1 − K−1 is well-defined. Since (A,B) is stabilizable and Q ≥ 0



Chapter 3. Indefinite Linear Quadratic Optimal Control 47

implies 0 ∈ Γ−, we can apply Lemma 3.4.5 to get that K−1 ⊂ ∂Γ1− ⊂ ∂Γ1 6= ∅, and so Theorem 3.4.1(i)

establishes the existence of K+
1 as well.

Since Q ≥ 0, write Q = C>C. In the Kalman controllability decomposition, this means C =
[
C1 C2

]
, so that Q1 = C>1 C1.

First we can use Theorem 3.6.4 to establish ∆1 > 0 is equivalent to H1 having no pure imaginary

eigenvalues. The contrapositive of the Lemma 3.6.5 says that H1 has no pure imaginary eigenvalues if

and only if there is no uncontrollable eigenvalue of (A1, B1) and no unobservable eigenvalue of (C1, A1)

on the imaginary axis. Since in our scenario (A1, B1) is controllable, this statement is equivalent to H1

has no pure imaginary eigenvalues if and only if there are no unobservable eigenvalues of (C1, A1) on the

imaginary axis. Of course, there are no unobservable eigenvalues of (C1, A1) on the imaginary axis if and

only if all the eigenvalues of A1 on the imaginary axis are (C1, A1) observable. Applying Lemma 2.2.1(i),

we get that all the eigenvalues of A1 on the imaginary axis are (C1, A1) observable if and only if all the

eigenvalues of A on the imaginary axis are (C,A) observable. Then applying Lemma 2.2.1(ii), all the

eigenvalues of A on the imaginary axis are (C,A) observable if and only if all the eigenvalues of A on the

imaginary axis are (C>C,A) observable. Since Q = C>C, we have proven every eigenvalue of A on the

imaginary axis is (Q,A) observable if and only if ∆1 > 0 by a long chain of equivalent statements.

The final verification of our result in the fixed endpoint case is to show that the closed-loop system,

ẋ(t) = (A−BB>K+)x(t) = A(K+)x(t), is asymptotically stable, thereby recovering Theorem 10.18(v)

in [106]. Note that A(K) = A − BB>K =


A1(K1) ∗

0 A2


 so that σ(A(K)) = σ(A1(K1)) ] σ(A2).

By Theorem 5 in [114], we have that ∆1 > 0 if and only if σ(A1(K+
1 )) ⊂ C−. Since σ(A2) ⊂ C− by

stabilizability and ∆1 > 0 by attainability, we have σ(A(K+)) ⊂ C−, as desired.

3.7 Examples

In this section, we supply two examples that illustrate the utility of the new theory. The first example

is “pathological” in that it exhibits many of the difficulties encountered prior to the new theory, namely

when there is no minimal solution in ∂Γ, K?
12 has an infinite solution set, and K? 6= K+. The second ex-

ample illustrates the solution to a parabolic cost, as motivated by Figure 1.2. These examples constitute

additional material not found in source paper [110] for this chapter.

Example 3.7.1. Suppose we have a system composed of two uncoupled integrators with a drift in the
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Figure 3.1: The closed-loop system under the optimal control for Example 3.7.1. Here a0 = 2, a′0 = 0,
and α = −1.5.

state

˙̂x =


a0 0

0 a′0


 x̂+


1 0

0 1


 û, x̂(0) = x̂0,

where a0 ≥ 0 and a′0 ≤ 0. Consider a discounted cost functional with a linear cost in the state

∫ ∞

0

e2αt(2q>x̂+ q0 + û>û) dt,

where α < 0 is the discount factor, q = (0, 1) gives the direction of decreasing cost level sets, and q0 is

an offset to the cost value (to be set later to help with ensuring well-posedness since it has no effect on

the optimal control). Figure 3.1 shows the level sets of the cost. Since the cost is not in the standard

form of an ellipsoid centered about a desired equilibrium point, we consider the free-endpoint problem.

Following the standard transformation [7], let x := eαt
[
x̂> z

]>
with ż = 0 and x0 = x(0) =
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[
x̂>0 1

]>
, and u := eαtû. In the standard form (3.1) (3.3), the system and cost matrices are

A =




a0 + α 0 0

0 a′0 + α 0

0 0 α



, B =




1 0

0 1

0 0



, Q =




0 0 0

0 0 1

0 1 q0



.

This is already in controllable decomposition form with n1 = 2 and n2 = 1. Using Theorem 2.4.1, it

is easy to see that Q is indefinite for any choice of q0. To solve the indefinite optimal control problem,

we need to verify well-posedness and attainability as well as find K∗ ∈ ∂Γ, which is broken down into

four steps below. We analyze the effect of a0, a′0, α, q0 on the solution.

1. Check that ∂Γ1 6= ∅ and compute the maximal and minimal solutions. We explicitly compute all

the solutions to φ1(K1) = 0. Writing K1 =


k1 k2

k2 k3


, by direct substitution into (3.17) we have

that

φ1(K1) =


 2(a0 + α)k1 − k2

1 − k2
2 k2((a0 + a′0 + 2α)− k1 − k3)

k2((a0 + a′0 + 2α)− k1 − k3) 2(a′0 + α)k3 − k2
3 − k2

2


 . (3.49)

It is easy to verify that there are exactly four solutions

K1 =


0 0

0 0


 ,


2a 0

0 0


 ,


0 0

0 2a′


 ,


2a 0

0 2a′


 .

where a := a0 + α, and a′ := a′0 + α. Since α < 0 and a′0 ≤ 0, a′ < 0. On the other hand, a can

be any real number depending on the choice of a0 ≥ 0. When a ≤ 0, we have that N1(L1) = 0 by

(3.21) (where L1 = R2 for the free-endpoint problem restricted to the controllable subspace) and

so Theorem 3.6.1 would eventually give that K∗ = K+ (once well-posedness is verified). Thus we

will consider the case a > 0, which gives rise to interesting pathologies. Under this assumption, it

is easy to identify that

K+
1 =


2a 0

0 0


 ≥ 0, K−1 =


0 0

0 2a′


 ≤ 0

and so ∂Γ1+ 6= ∅ and ∂Γ1− ⊂ Γ1− 6= ∅. Alternatively, since Q1 ≥ 0 if and only if 0 ∈ Γ1, Q1 = 0

implies that Γ1− 6= ∅.

2. Verify well-posedness. Since α < 0, (A,B) is stabilizable. From above we already have that

Γ1− 6= ∅, so we are left to a find a solution K ∈ Γ− 6= ∅. For notational convenience, we write the
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blocks in (3.15) as

φ(K) =


 φ1(K1) φ12(K1,K12)

φ12(K1,K12)> φ2(K12,K2)


 . (3.50)

Using Theorem 2.4.1, we require simultaneously that

(a) K1 ≤ 0,

(b) (I −K1K
†
1)K12 = 0,

(c) K2 −K>12K
†
1K12 ≤ 0,

(d) φ1(K1) ≥ 0,

(e) (I − φ1(K1)φ1(K1)†)φ12(K1,K12) = 0,

(f) φ2(K12,K2)− φ12(K1,K12)>φ1(K1)†φ12(K1,K12) ≥ 0

We write K =




k1 k2 k4

k2 k3 k5

k4 k5 k6




. Using (3.49) and the expressions for K+
1 , K−1 , we must have that

k2 = 0. Thus (a) and (d) are satisfied if and only if k1, k3 ≤ 0 and k1(2a − k1), k3(2a′ − k3) ≥ 0.

Analyzing the quadratic inequalities, we see that the simultaneous solutions are k1 = 0 and k3 ∈

[2a′, 0]. Next (b) and (c) impose that k4 = 0 and

k6 − k2
5k
†
3 ≤ 0. (3.51)

So far we have K =




0 0 0

0 k3 k5

0 k5 k6




. With this information,

φ(K) =




0 0 0

0 k3(2a′ − k3) k5(a′ + α− k3) + 1

0 k5(a′ + α− k3) + 1 2αk6 + q0 − k2
5



.

Define k′ = k3(2a′ − k3). Finally, imposing (e) and (f) gives

(1− k′(k′)†)(k5(a′ + α− k3) + 1) = 0 (3.52)

k6 + q0 − k2
5 − (k5(a′ + α− k3) + 1)2(k′)† ≥ 0 (3.53)

There are several cases, as we vary k3 ∈ [2a′, 0].
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For k3 = 0, we immediately violate (3.52).

For k3 = 2a′, we have that k′ = 0 and a′+α−k3 = −a′0. Combining the constraints (3.51), (3.52),

(3.53), the following solutions belong to Γ−:

K =




0 0 0

0 2a′ 1/a′0

0 1/a′0 k6



, ∀k6 ≤ min(1/(2a′(a′0)2), (1/(a′0)2 − q0)/(2α)).

It is clear that there are an infinite number of solutions in Γ− when a′0 < 0, and hence there exists

no minimal solution on Γ (or ∂Γ). Also, the freedom of choice of q0 is irrelevant, so we may set

q0 = 0. In the special case that a′0 = 0, we do not obtain any solutions in Γ− when k3 = 2a′.

Again, this illustrates that the main result on the (LQCP)L problem should be independent of the

existence of the minimal solution on Γ in the case when (A,B) is stabilizable.

For k3 ∈ (2a′, 0), combining the constraints (3.51), (3.52), (3.53), we again obtain many solutions

K ∈ Γ−. This time, it is difficult to explicitly parameterize all the solutions. Some sample

solutions, with k3 ∈ (2a′, 0), q0 = 0, k5 = 0, have the form

K =




0 0 0

0 k3 0

0 0 k6



, ∀k6 ≤ 1/(2αk′).

With all the above, it is clear that we always have an infinite number of solutions in Γ−, regardless

of the choice of a′0 ≤ 0 and q0 (still assuming that α < 0, a0 ≥ 0 and a > 0). Notice that the

presence of α in the denominators of the above expressions justifies the use of discounting (α < 0).

In summary, our problem is well-posed.

3. Verify attainability. It is easy to see that ∆1 = K+
1 −K−1 > 0. Thus Ker(∆1) = 0 and Theorem

3.5.8 immediately gives that the problem is attainable.

4. Determine K∗. Assuming a > 0, it is easy to identify that

K∗1 =


0 0

0 0


 ≥ 0.

We used the well-known fact that K∗1 is the smallest solution in ∂Γ1+ since Q1 = 0 ≥ 0. However,

it is also easy to compute that N1(L1) = Im(
[
1 0

]>
) using (3.21) so that K∗1 is obtained using
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(3.22) by applying Theorem 3.5.3. Thus n1,1 = 1, n1,2 = 0, and n1,3 = 1. The remaining blocks

are determined by Theorem 3.5.6. The solution is

K∗ =




0 0 0

0 0 −1/(a′ + α)

0 −1/(a′ + α) 1/(2α(a′ + α)2)



.

To illustrate the main ambiguity in determining K∗ before Theorem 3.5.6 was discovered (ie. the

fact that always K∗12,1 = 0), observe that φ12(K∗1 ,K
∗
12) = 0 is


 K∗12,1(a+ α)

K∗12,3(a′ + α) + 1


 = 0.

The second equation always has a solution for K∗12,3 since a′+α < 0. However for the first equation,

the pathological choice of a+ α = 0 gives an infinite solution set for K∗12,1.

For completeness, the maximal solution (which always exists by stabilizability) is

K+ =




2a 0 0

0 0 −1/(a′ + α)

0 −1/(a′ + α) 1/(2α(a′ + α)2)



.

which is different from K∗. In many cases, Theorem 3.6.1 applies to give K+ = K∗, once again

exhibiting the pathological nature of this example.

To conclude, the optimal control is u = −B>K∗x. In the original coordinates, the optimal control is

û =
[
0 1/(a′ + α)

]>
. The solution K∗1 = 0 means that there is no feedback term on the state x̂, and

the solution K∗2 has no effect on the control (explaining why it was possible to choose q0 freely, although

we set it to zero). A phase plot showing the cost level sets and closed-loop system vector field is shown

Figure 3.1. The closed-loop dynamics are

˙̂x =


a0 0

0 a′0


 x̂+


 0

1/(a′ + α)




The solutions flow away in the x̂1 axis since the dynamics are unstable (since this state is not observed

in the cost), and down the cost level sets in the x̂2 direction. /

Example 3.7.2. Suppose we have a system composed of two uncoupled integrators ˙̂x = û, with x̂, û ∈ R2
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Figure 3.2: The closed-loop system under the optimal control for the single integrators with parabolic
cost, for Example 3.7.2. Here α = −1.

and x̂(0) = x̂0. Consider a discounted cost functional with parabolic cost level sets in the state

∫ ∞

0

e2αt(x̂>Q̂x̂+ 2q>x̂+ û>û) dt,

where α < 0 is the discount factor, Q̂ = diag(0, 1), and q = (−1, 0). Notice that since q 6∈ Im(Q̂) the

cost level sets are of the (degenerate) parabolic type and are unbounded below. Once again we consider

the free-endpoint problem.

As before, let x := eαt
[
x̂> z

]>
with ż = 0 and x0 = x(0) =

[
x̂>0 1

]>
, and u := eαtû. In the

standard form (3.1) (3.3), the system and cost matrices are

A = αI3, B =




1 0

0 1

0 0



, Q =




0 0 −1

0 1 0

−1 0 0



.
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This is already in controllable decomposition form with n1 = 2 and n2 = 1. Using Theorem 2.4.1, it

is easy to see that Q is indefinite. To solve the indefinite optimal control problem, we need to verify

well-posedness and attainability as well as find K∗ ∈ ∂Γ. We analyze the effect of α on the solution.

1. Check that ∂Γ1 6= ∅ and compute the maximal and minimal solutions. We explicitly compute all

the solutions to φ1(K1) = 0. Writing K1 =


k1 k2

k2 k3


, by direct substitution into (3.17) we have

that

φ1(K1) =


 2αk1 − k2

1 − k2
2 k2(2α− k1 − k3)

k2(2α− k1 − k3) 2αk3 − k2
3 − k2

2 + 1


 .

It is easy to verify that the four solutions are generated with k1 = 0, 2α, k2 = 0, and k3 =

α±
√
α2 + 1. Thus

K+
1 =


0 0

0 α+
√
α2 + 1


 ≥ 0, K−1 =


2α 0

0 α−
√
α2 + 1


 < 0

and so ∂Γ1+ 6= ∅ and ∂Γ1− ⊂ Γ1− 6= ∅.

2. Verify well-posedness. Since α < 0, (A,B) is stabilizable. From above we already have that

Γ1− 6= ∅, so we are left to a find a solution K ∈ Γ− 6= ∅. We follow the same procedure as in the

previous example. It can be verified that no solution to φ(K) = 0 exists with K1 = K−1 . Working

through the conditions (a) - (f), it can be verified that at least the following solutions belong to

Γ−

K =




k1 0 0

0 k3 0

0 0 1/(2αk1(2α− k1))



, k1 ∈ (2α, 0), k3 ∈ (α−

√
α2 + 1, 0).

As one would intuitively expect, we need discounting (α < 0) in order to have well-posedness.

3. Verify attainability. It is easy to see that ∆1 = K+
1 −K−1 > 0. Thus Ker(∆1) = 0 and Theorem

3.5.8 immediately gives that the problem is attainable.

4. Determine K∗. Since X (A1) ⊂ C− due to discounting, we have that N1(L1) = 0. Then Theorem

3.6.1 gives that K? = K+. It can be easily computed that K+
12 = (1/(2α), 0) and K+

2 = 1/(8α3).

To conclude, the optimal control is u = −B>K∗x. In the original coordinates, the optimal control
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is û = −K+
1 x̂−K+

12. The closed-loop dynamics are

˙̂x = −


 1/(2α)

(α+
√
α2 + 1)x̂2




A phase plot showing the cost level sets and closed-loop system vector field is shown Figure 3.2. As

expected, trajectories flow down the parabolic level sets. Surprisingly, without the indefinite LQ theory

for stabilizable dynamics, this simple example’s intuitive solution would have remained unanswered. /

3.8 Conclusion

In this chapter we addressed a problem in the area of linear quadratic optimal control which has been open

for the last 20 years. Specifically, we consider the regular, infinite-horizon, stability-modulo-a-subspace,

indefinite LQ problem when the dynamics are stabilizable. Previous works have also addressed this

problem, but under the restrictive assumption that the dynamics are controllable. The generalization

from controllable to stabilizable dynamics is significant in that there is a lack of structure in the solutions

of the algebraic Riccati equation in the stabilizable case. Consequently the connection between the

ARE solution set and the LQ problem under consideration has remained elusive. We resolved this gap

by combining a suitable sufficient condition for a finite optimal cost with a specific decomposition to

unambiguously deduce the correct form of the optimal cost and control. The determination of necessary

and sufficient conditions for a finite value function in the regular, infinite-horizon, stability-modulo-a-

subspace, indefinite LQ problem is still open.

Our study of this indefinite LQ control problem was motivated by the difficulties encountered in

exploring high dimensional state spaces with safety constraints in the context of hybrid control. However,

this line of research was not pursued further due to following main reasons:

• No guarantee on safety. Although the LQ approach purposely relaxed hard safety constraints into

soft ones, this is generally not suitable for safety-critical applications such as motion planning in

the presence of many vehicles.

• No guarantee on progress. For a hybrid control scheme to be successful, the current feedback

controller corresponding to some cost should eventually lead to the domain of operation of another

feedback controller with some other cost. The optimal controller corresponding to an indefinite cost

does not guarantee any properties on the direction that solutions flow, which may differ depending

on initial conditions.
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• No guarantee on control continuity. When switching from one feedback controller to another, there

may be large discontinuities in the control. These discontinuities are undesirable for applications,

particularity those involving quadrocopters.

While indefinite costs that encourage trajectories to flow in a particular direction seem promising, ulti-

mately the formulation of an optimal control problem with no explicit safety constraints is not sufficient,

even under the consideration of the stability-modulo-a-subspace constraint.

To remedy the first issue on lack of safety, some investigation was done on cone-constrained systems,

which makes use of nonnegative matrices [12]. The idea was to formulate an (indefinite) LQ problem

with a cone constraint to encourage trajectories to flow within the cone, but away from the cone apex

rather than towards it. The established main result on the indefinite LQ theory is an essential starting

point by providing a lower bound on the optimal cost when no additional cone-constraint is enforced.

However, most optimization problems with constraints nearly always do not have a nice analytic solution,

although there may be special cases worth investigating.

The two other issues are also not easily addressed within the realm of analytical optimal control.

There is some literature on constrained optimization problems [23, 96, 50, 40], but none have considered

state space constraints with an indefinite cost. Likewise, model predictive control [88] is a popular

numerical technique for addressing optimal control problems with constraints, but to our knowledge has

only been considered for positive definite cost functionals. Also it would be interesting to explore the

relationship between the indefinite costs we have considered here and control barrier functions [6].



Chapter 4

A Modular Framework for Motion

Planning

4.1 Introduction

This chapter presents a modular framework for motion planning and control of robotic systems. While

motion planning has received a great deal of attention by many researchers, because the problem is highly

complex especially when there are several robotic agents working together in a cluttered environment,

significant challenges remain. Modularity is an architectural strategy to overcome this complexity. All

frameworks for motion planning should aim to balance flexibility in the control specification at the high

level, guarantees on correctness and safety at the low level, and computational feasibility overall.

Historically motion planning was focused on high level planning algorithms, while suppressing details

on the dynamic capabilities of the robots at the low level [65]. Taking full account of low level dynamics

in combination with solving the high level planning problem can lead to a computationally intractable

problem. Despite the wealth of available research [25, 93, 11, 58], computationally efficient solutions to

the motion planning problem with tight integration of high and low levels are highly sought after.

We propose a modular framework so that one can independently plug and play both low level con-

trollers and high level planning algorithms in order to realize a balance between flexibility at the high

level, safety at the low level, and computational feasibility. To make a customizable approach feasi-

ble, we introduce three assumptions. First, the output space of the underlying dynamical system has

translational symmetry, namely position invariance, a property satisfied by many robotic models [33].

Second, the output space is gridded uniformly into rectangular boxes. Finally, the control capabilities

57
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Figure 4.1: Crazyflie quadrocopters navigate a cluttered environment. Video results are available at
http://tiny.cc/modular-3alg

.

are discretized into a finite set of motion primitives, where the low level describes the implementation

of the motion primitives while the high level selects the motion primitives. Together, these assumptions

imply that motion primitives can be designed over a single box, so that they can then be reapplied to

any other box.

Now we give an overview of the features and techniques we employ, and we highlight other frameworks

that share those features. We provide a general formulation of motion primitives for nonlinear systems

so that they can be applied to multi-agent systems but potentially also to other robotic systems. We

focus on reach-avoid specifications in a priori known environments, in which the system must reach a

desired configuration in a safe manner [11, 25, 52, 68]. Reach-avoid offers a fairly rich behavior set so

that, for instance, a fragment of linear temporal logic (LTL) can be encoded as a sequence of reach-avoid

problems [116], as we also show in our applications.

As we have mentioned, we abstract the output space into rectangular regions [93] rather than more

general polytopic regions [25, 32, 58, 68] in order to exploit symmetry. Motion primitives have been

employed in various ways [44, 93, 52] and we encode feasible sequences of motion primitives by a maneuver

automaton [33]. In our implementation, the low-level control design of motion primitives is based on

reach control theory, which provides a highly flexible and intuitive set of design tools that have two

notable advantages over tracking: first, it is not necessary to find feasible open-loop trajectories to

track; second, safety constraints on the system states during the execution and concatenation of motion
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primitives can be guaranteed by design. Finally, planning at the high level is based on standard shortest

path algorithms [65, 17] applied to the graph arising from the synchronous product of the discrete part

of the maneuver automaton and the graph arising from the output space partition. The high-level

plan generates a control policy, which selects the motion primitives over the gridded output space. The

modularity of our approach enables one to employ other closed-loop methods such as potential methods

[25] or (untimed) path following [122] for low-level control design, and standard or customized graph

search algorithms to generate a high-level plan.

There are three main contributions of this work. First, we provide the complete theoretical details

on the requirements for the low-level control design and high-level plan, and show that these two levels

operate consistency to solve the reach-avoid problem. Second, we formulate the parallel composition of

maneuver automata, which is a method of composing motion primitives for individual subsystems. Since

the design of motion primitives can be challenging for high order systems and since many systems have

a decoupled structure, such as in the case of multiple vehicles, parallel composition provides a way to

describe the combined motion capabilities of the system. Finally, the modularity and effectiveness of our

framework is experimentally validated on a collection of quadrocopters in several illustrative scenarios.

In particular, we feature a versatile design of motion primitives based on double integrators and we show

how the customizability of the high level plan generation can be used to easily trade-off solution quality

with computational efficiency. This chapter is based on [111], which is an extension of our previous work

[108, 109].

The chapter is organized as follows. In the next section we highlight our contributions relative

to the literature. In Section 4.3 we present a formal problem statement. The modular framework

is introduced in Section 4.4. We define the output transition system, the maneuver automaton, the

product automaton, and the high level plan, each which contribute to realizing a solution of the motion

planning problem. In Section 4.5, we prove that our overall methodology solves the motion planning

problem. In Section 4.6 we give the procedure for composing motion primitives. In Section 4.7 we

present some specific motion primitives. In Section 4.8 we consider several methods to generate high

level plans, which are experimentally demonstrated on quadrocopters. We summarize the chapter in

Section 4.9.

4.2 Related Literature

The literature on motion planning is vast and encompasses many research communities. As such, we

have categorized some common approaches and discussed how they relate to our method.



Chapter 4. A Modular Framework for Motion Planning 60

4.2.1 Graph Search and Trajectory Planning

Motion planning has often been addressed as a discrete planning problem, for which many standard

graph search algorithms exist [65]. Recent work on the multi-agent reach-avoid problem has developed

novel algorithms in the context of applications such as manufacturing and warehouse automation, aiming

to balance computational efficiency with solution quality. For example, a centralized approach is given

in [120], discretizing the workspace into a lattice and using integer linear programming to minimize the

total time for robots to traverse in high densities. In [28], a sampling-based roadmap is constructed in

the joint robot space using individual robot roadmaps, which is shown to be asymptotically optimal.

Prioritized planning enables to safely coordinate many vehicles and is considered in a centralized and

decentralized fashion in [21]. Subdimensional expansion computes mainly decentrally, but coordinates

in the joint search space when agents are neighboring [113]. While such approaches typically provide

various theoretical guarantees on the proposed algorithms, dynamical models and application on real

robotic systems is often not considered.

The modularity of our framework is complementary, as it potentially enables existing multi-agent

literature on gridded workspaces to be used directly or adapted for the generation of a high-level plan

when used in conjunction with our proposed formulation of motion primitives. However, the considera-

tion of continuous time dynamics may complicate the application of discrete planning methods in two

ways. First, we must contend with constraints on successive motion primitives so that the continuous

time behavior is acceptable - for example, avoiding abrupt changes in velocity. Second, we must contend

with non-deterministic transitions to neighboring boxes, because motion primitives may allow more than

one next box to be reached [59] - for example, modeling the joint asynchronous motion capabilities of a

multi-robot system.

Trajectory tracking methods have also been applied to the formation change problem on real vehicles

with complex dynamics. A sequential convex programming approach is given in [10], which computes

discretized, non-colliding positional trajectories for a modest number of quadrocopters. More recently,

an impressive number of quadrocopters were coordinated in [85], by first computing a sequence of grid-

based waypoints and then refining it into smoother piecewise polynomials. However, since these open-

loop trajectories are computed offline, deviations from the computed trajectories could result in crashes.

On the other hand, our approach is more robust as it is completely untimed, carefully monitoring the

progress of vehicles over the grid in a reactive way based on the measured box transitions.
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4.2.2 Formal Methods

A growing body of research has explored the use of formal methods in motion planning. This chapter

has been particularly inspired by [58], which provides a general framework for solving control problems

for affine systems with LTL specifications. Their approach involves constructing a transition system over

a polyhedral partition of the state space that arises from linear inequality constraints that constitute the

atomic propositions of the LTL specification. Transitions between states of the transition system can

occur if there exists an affine or piecewise affine feedback steering all continuous time trajectories from

one polyhedral region to a contiguous one. Similar works to [58] include [25, 47, 68], which consider the

simpler reach-avoid problem. Single and multi-robot applications followed shortly after in [32] and [11]

respectively.

The appeal of these approaches is derived from their generality and faithful account of the low level

system capabilities. On the downside, these methods generally do not scale well to larger state space

dimensions, and so they would have limited applicability to large multi-robot systems. Our approach

specializes these ideas by exploiting symmetry in the system dynamics and grid partition in order to

strike a better balance between generality and computational efficiency. In particular, our feedback

controllers are given as motion primitives, which can be designed independently of the obstacle and goal

locations.

More recent works have also built on these formal method approaches, investigating more complex

and realistic multi-robot problems. For example, service requests by multiple car robots in a city-like

environment with communication constraints was considered in [22]. A cooperative task for ground

vehicles was addressed in a distributed manner, enabling knowledge sharing amongst neighbors and

reconfiguration of the motion plan in real time [45]. Tasks such as picking up objects are considered

in conjunction with motion requirements in [87]. Since these works consider only fairly simple vehicle

dynamics, they place greater emphasis on the synthesis of discrete plans satisfying the task specifica-

tion. On the other hand, this chapter considers the simpler reach-avoid problem in order to develop a

formulation of motion primitives for nonlinear systems with symmetries.

4.2.3 Motion Primitives

The usage of motion primitives has become popular recently in robotics, as they serve to simplify

the motion planning problem by using predefined executable motion segments. Many variations exist,

which have designed motion primitives using timed reference trajectories to control a formation of

quadrocopters [93], paths on a state space lattice for a mobile robots [76, 24], and funnels in the state
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space centered about a reference trajectory for a car [52] and a small airplane [71].

We have been inspired by ideas in [33], from which we borrowed the term “maneuver automaton”.

They define a motion primitive either as an equivalence class of trajectories or a timed maneuver between

two classes, whereas we define a motion primitive as a feedback controller over a polyhedral region in

the state space. In our formulation, concatenations between motion primitives are possible only across

contiguous boxes in the output space, which provides a strict safety guarantee during concatenation.

Moreover, this enables our approach to simplify obstacle avoidance to a discrete planning problem over

safe boxes as in [24], bypassing the need to concatenate motion primitive trajectories using numerical

optimization techniques as in [33].

Our presentation of the maneuver automaton gives explicit constraints on the design of motion

primitives so that they can used reliably for high level planning. We have also introduced the notion of

parallel composition of maneuver automata to build motion primitives for multi-robot systems. While

our construction resembles existing methods of parallel composition [119, 103], we additionally prove

that our construction preserves desired properties that enable consistency between the low and high

levels. To the authors’ best knowledge, this chapter is the first rigorous treatment of feedback-based

motion primitives defined on a uniformly gridded output space.

4.3 Problem Statement

Consider the general nonlinear control system

ẋ = f(x, u), y = h(x), (4.1)

where x ∈ Rn is the state, u ∈ Rµ is the input, and y ∈ Rp is the output. Let φ(·, x0) and y(·, x0) denote

the state and output trajectories of (4.1) starting at initial condition x0 ∈ Rn and under some open-loop

or feedback control.

Let P ⊂ Rp be a feasible set in the output space and let G ⊂ P be a goal set. In multi-vehicle

motion planning contexts, P represents the feasible joint output configurations of the system, which can

arise from specifications involving obstacle avoidance, collision avoidance, communication constraints,

and others. We consider the following problem.

Problem 4.3.1 (Reach-Avoid). We are given the system (4.1), a non-empty feasible set P ⊂ Rp and

a non-empty goal set G ⊂ P. Find a feedback control u(x) and a set of initial conditions X0 ⊂ Rn such

that for each x0 ∈ X0 we have
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Figure 4.2: Our modular framework consists of five modules.

(i) Avoid: y(t, x0) 6∈ Rp \ P for all t ≥ 0,

(ii) Reach: there exists T ≥ 0 such that for all t ≥ T , y(t, x0) ∈ G.

We make an assumption regarding the outputs of the system (4.1) in order to exploit symmetry; see

[33] for an exposition on nonlinear control systems with symmetries.

Assumption 4.3.2. First, we assume that there is an injective map o : {1, . . . , p} → {1, . . . , n}

associating each output to a distinct state, so that h(x) = (xo(1), . . . , xo(p)). We define the (injec-

tive) insertion map h−1
o : Rp → Rn as h−1

o (y) = x, which satisfies h(x) = y and xi = 0 for all

i ∈ {1, . . . , n} \ {o(1), . . . , o(p)}). Second, we assume that the system has a translational invariance with

respect to its outputs. That is, for all x ∈ Rn, u ∈ Rµ and y ∈ Rp, we have f(x, u) = f(x+ h−1
o (y), u).

The assumption that the outputs of the system are a subset of the states is used in our framework to

be able to design feedback controllers in the full state space that achieve desirable behavior in the output

space. The second statement says that the vector field is invariant to the value of the output. In the

literature this condition is called a symmetry of the system or translational invariance. This assumption

is satisfied for many robotic systems, for example, when the outputs are positions. Also, we will see in

Section 4.7.2 that it significantly simplifies our control design.
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4.4 Modular Framework

In this section we present our methodology to solve the motion planning problem in the form of an

architecture that breaks down Problem 4.3.1. This architecture consists of five main modules, as depicted

in Figure 4.2.

• The Problem Data include the system (4.1) with p outputs satisfying Assumption 4.3.2 and a

reach-avoid task to be executed in the output space.

• The Output Transition System (OTS) is a directed graph whose nodes (called locations) represent

p-dimensional boxes on a gridded output space and whose edges describe which boxes in the output

space are contiguous.

• The Maneuver Automaton (MA) is a hybrid system whose modes correspond to so-called motion

primitives. Each motion primitive is associated with a closed-loop vector field by applying a

feedback law to (4.1). The edges of the MA represent feasible successive motion primitives. Each

motion primitive generates some desired behavior of the output trajectories of the closed-loop

system over a box in the output space. Because of the uniform gridding of the output space

into boxes and because of the symmetry in the outputs described in Assumption 4.3.2, motion

primitives can be designed over only one canonical box Y ∗.

• The Product Automaton (PA) is a graph which is the synchronous product of the OTS and the

discrete part of the MA. It represents the combined constraints on feasible motions in the output

space and feasible successive motion primitives.

• The Hybrid Control Strategy is a combination of low level controllers obtained from the design of

motion primitives, and a high level plan on the product automaton.

Next we describe in greater detail the OTS, MA, and PA.

4.4.1 Output Transition System

The OTS provides an abstract description of the workspace or output space associated with the system

(4.1). It serves to capture the feasible motions of output trajectories of the system (4.1) in a gridded

output space, as in Figure 4.3. Specifically, we partition the output space into p-dimensional boxes with

lengths d = (d1, . . . , dp), where di > 0 is the length of i-th edge. We use a finite number of boxes to

under-approximate the feasible set P. Enumerating the boxes as {Y1, . . . , YnL}, the j-th box can be
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Figure 4.3: A two output (p = 2) example of a reach-avoid task. Shown on the left is the feasible space
P consisting of 15 non-obstacle boxes (not red) and the goal region G (green). The output transition
system (OTS), which abstracts the box regions and their neighbour connectivity, is shown on the right.
Shown below, the possible offsets towards a neighbouring box are labelled using Σ = {−1, 0, 1}2.
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expressed in the form

Yj :=

p∏

i=1

[ηjidi, (ηji + 1)di] , (4.2)

where ηji ∈ Z, i = 1, . . . , p are constants. Thus we have that

nL⋃

j=1

Yj ⊂ P .

Among these boxes, we assume there is a non-empty set of indices Ig ⊂ {1, . . . , nL}, so that we may

similarly under-approximate the goal region as

⋃

j∈Ig

Yj ⊂ G ⊂ P .

We define a canonical p-dimensional box with edge lengths di > 0 given by

Y ∗ =

p∏

i=1

[0, di] .

Referring to (4.2), we can see that each box Yj , j = 1, . . . , nL is a translation of Y ∗ by an amount ηjidi

along the i-th axis.

Definition 4.4.1. Given the lengths d and a non-empty goal index set Ig, an output transition system

(OTS) is a tuple AOTS = (LOTS,Σ, EOTS, L
g
OTS) with the following components:

State Space LOTS := {l1, . . . , lnL} ⊂ Zp is a finite set of nodes called locations. Each location lj ∈ LOTS

is associated with a safe box Yj ⊂ P in the output space and hence we write lj = (ηj1, . . . , ηjp).

Labels Σ := {−1, 0, 1}p ⊂ Zp is a finite set of labels. A label σ ∈ Σ is used to identify the offset between

neighbouring boxes.

Edges EOTS ⊂ LOTS × Σ× LOTS is a set of directed edges where (lj , σ, lj′) ∈ EOTS if j 6= j′, Yj ∩ Yj′ 6= ∅,

and σ = lj′ − lj ∈ Σ. Thus, for each i = 1, . . . , p, the neighbouring box lj′ is either one box to the

left (σi = −1), the same box (σi = 0), or one box to the right (σi = 1). In this manner σ records

the offset between contiguous boxes.

Final Condition LgOTS = {lj ∈ LOTS | j ∈ Ig} denotes the set of locations associated with goal boxes.

Remark 4.4.2. We observe that the OTS is deterministic. That is, for a given l ∈ LOTS and σ ∈ Σ,

there is at most one l′ ∈ LOTS such that (l, σ, l′) ∈ EOTS. This follows immediately from the fact that

σ = l′ − l records the offset between the neighbouring boxes.
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Figure 4.3 shows a sample OTS for a simple scenario. The OTS locations are associated with 15

feasible boxes, including a goal box for the reach-avoid task. The OTS edges are shown as bidirectional

arrows; for example, interpreting l1 = (0, 0) and l6 = (1, 1) on the grid, then e = (l6, (−1,−1), l1) ∈ EOTS.

4.4.2 Maneuver Automaton

The maneuver automaton (MA) is a hybrid system consisting of a finite automaton and continuous

time dynamics in each discrete state. The discrete states of the finite automaton correspond to motion

primitives, while transitions between discrete states correspond to the allowable transitions between

motion primitives. The continuous time dynamics are given by closed-loop vector fields (4.1) with a

control law designed based on reach control theory (any other feedback control design method can be

used).

Before presenting the MA, we first explain how this module is used in the overall framework. To

solve Problem 4.3.1, we assign motion primitives to the boxes Yj of the partitioned output space such

that obstacle regions are avoided and the goal region is eventually reached. The discrete part of the

MA encodes the constraints on successive motion primitives. Such constraints might arise from a non-

chattering requirement, continuity requirement, or requirement on correct switching between regions of

the state space. A dynamic programming algorithm for assignment of motion primitives on boxes is

addressed in Section 4.4.4; the salient point about this algorithm at this stage is that it only uses the

discrete part of the MA.

In contrast, the continuous time part of the MA is used both for simulation of the closed-loop

dynamics to verify that the motion primitives are well designed, as well as for the implementation of

the low level feedback in real-time. The motion primitives are defined only on the canonical box Y ∗ to

simplify the design. This simplification is possible because of the translational symmetry provided by

Assumption 4.3.2 and the fact that each box Yj is a translation of Y ∗. In simulation, a given motion

primitive can cause output trajectories to reach certain faces of Y ∗. If a face is reached, the output

trajectory is interpreted as being reset to the opposite face and another motion primitive is selected to

be implemented over Y ∗ (of course, the real experimental output trajectories do not undergo resets but

move continuously from box to box in the output space). The selection of the next motion primitive is

constrained by a combination of the previous motion primitive and the face of Y ∗ that is reached. The

discrete transitions in the MA encode these constraints.

Definition 4.4.3. Consider the system (4.1) satisfying Assumption 4.3.2 and the box Y ∗ with lengths

d. The maneuver automaton (MA) is a tuple HMA = (QMA,Σ, EMA, XMA, IMA, GMA, RMA, Q
0
MA), where
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State Space QMA = M × Rn is the hybrid state space, where M = {m1, . . . ,mnM } is a finite set of

nodes, each corresponding to a motion primitive.

Labels Σ, the same labels used in the OTS.

Edges EMA ⊂M × Σ×M is a finite set of edges.

Vector Fields XMA : M → X (Rn) is a function assigning a globally Lipschitz closed-loop vector field

to each motion primitive m ∈ M . That is, for each m ∈ M , we have XMA(m) = f(·, um(·)) where

um(·) is a feedback controller associated with m ∈M .

Invariants IMA : M → P(Rn) assigns a bounded invariant set IMA(m) to each m ∈M . We impose that

IMA(m) ⊂ h−1(Y ∗). The set IMA(m) defines the region on which the vector field XMA(m) is defined.

Note that there is no requirement that the invariant is a closed set.

Enabling Conditions GMA : EMA → {ge}e∈EMA
assigns to each edge e = (m,σ,m′) ∈ EMA, a non-

empty enabling or guard condition ge ⊂ Rn. We require that ge ⊂ IMA(m). We make an additional

requirement that ge lies on a certain face of Y ∗ determined by the label σ = (σ1, . . . , σp) ∈ Σ.

Defining the face associated with σ as

Fσ =





y ∈ Y ∗

∣∣∣∣∣∣∣∣∣∣∣∣





yi = 0, if σi = −1

yi = di, if σi = 1

yi ∈ [0, di], if σi = 0





,

we require that also ge ⊂ h−1(Fσ).

Reset Conditions RMA : EMA → {re}e∈EMA
assigns to each edge e = (m,σ,m′) ∈ EMA a reset map

re : Rn → Rn. We require that re(x) = x − h−1
o (d ◦ σ), where ◦ is the Hadamard product. This

definition says that the i-th output component is reset to the right face of Y ∗, xo(i) = di, if σi = −1,

reset to the left face xo(i) = 0 if σi = 1, and unchanged otherwise. Overall, resets of states are

determined by the event σ ∈ Σ and only affect the output coordinates in order to maintain output

trajectories inside the canonical box Y ∗.

Initial Conditions Q0
MA ⊂ QMA is the set of initial conditions given by Q0

MA = {(m,x) ∈ QMA | x ∈

IMA(m)}.

Example 4.4.4. Suppose the system is a double integrator and the first state is the translationally

invariant output y. The box Y ∗ is simply a segment. Let M = {H ,F ,B}, where Hold (H ) stabilizes
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H FB

1−1

1
−1

Figure 4.4: The maneuver automaton edges EMA for the double integrator dynamics with p = 1. There
are three motion primitives: Hold (H ), Forward (F ), and Backward (B).
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Figure 4.5: The closed-loop vector fields in the (x1, x2) position-velocity state space for the Hold, For-
ward, and Backward motion primitives.

y, Forward (F ) increases y, and Backward (B) decreases y. Referring to Figure 4.4, if F is the current

motion primitive and y reaches the right face of Y ∗, then the event 1 ∈ Σ occurs and we may select

H or F as the next motion primitive. To correctly implement the discrete evolution of the MA in the

continuous state space, an invariant and feedback control must be associated with each motion primitive,

while an enabling and reset condition must be associated with each edge; see Figure 4.5. Formal details

are given in Section 4.7.2. /

We now formulate assumptions on the motion primitives so that correct continuous time behavior is

ensured at the low level for consistency with the high level. For each m ∈ M , define the set of possible

events as

ΣMA(m) := {σ ∈ Σ | (∃m′ ∈M)(m,σ,m′) ∈ EMA} . (4.3)

Assumption 4.4.5.

(i) For all m ∈M , ε := (0, . . . , 0) 6∈ ΣMA(m).
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(ii) For all e1, e2 ∈ EMA such that e1 = (m1, σ,m2) and e2 = (m1, σ,m3), ge1 = ge2 .

(iii) For all e1, e2 ∈ EMA such that e1 = (m1, σ1,m2) and e2 = (m1, σ2,m3), if σ1 6= σ2, then ge1 ∩ge2 =

∅.

(iv) For all e1, e2 ∈ EMA such that e1 = (m1, σ1,m2) and e2 = (m2, σ2,m3), re1(ge1) ∩ ge2 = ∅.

(v) For all e = (m1, σ,m2) ∈ EMA, re(ge) ⊂ IMA(m2).

(vi) For all m ∈M , if ΣMA(m) = ∅ then for all x0 ∈ IMA(m) and t ≥ 0, φMA(t, x0) ∈ IMA(m).

(vii) For all m ∈ M , if ΣMA(m) 6= ∅, then for all x0 ∈ IMA(m) there exist (a unique) σ ∈ ΣMA(m) and

(a unique) T ≥ 0 such that for all e = (m,σ,m′) ∈ EMA and for all t ∈ [0, T ], φMA(t, x0) ∈ IMA(m)

and φMA(T, x0) ∈ ge.

Condition (i) disallows tautological chattering behavior that arises by erroneously interpreting con-

tinuous evolution of trajectories in the interior of Y ∗ as “discrete transitions” of the MA (see Section 4.5

for definitions). Condition (ii) imposes that guard sets are independent of the next motion primitive.

Since guard sets arise as the set of exit points of closed-loop trajectories from Y ∗ under a given motion

primitive, it is reasonable that these exit points should depend only on the current motion primitive

m ∈ M , and not on the choice of next motion primitive. Condition (iii) imposes that all guard sets

corresponding to different labels are non-overlapping. This ensures that when the continuous trajec-

tory reaches a guard ge, then it is unambiguous which edge of the MA is taken next; namely e ∈ EMA.

Conditions (v), (vi), and (vii) are placed to guarantee that the MA is non-blocking. These conditions

are based on known results in the literature [70]; see Lemma 4.5.5. In order for condition (vii) to make

sense, there must exist a unique label σ ∈ Σ and a unique time T ≥ 0 for an MA trajectory to reach a

guard set. First, we have uniqueness of solutions since the vector fields are globally Lipschitz. Second,

the unique MA trajectory can only reach one guard set by condition (iii); this in turn means there is a

unique σ. Obviously there exists a unique time to reach the guard set. Conditions (vi) and (vii) work

together to state that either all trajectories do not leave, or all trajectories do eventually leave. Referring

to Figure 4.5, all closed-loop state trajectories within the invariant of F reach the guard set shown in

green on the right. For either choice of next feasible motion primitive, H or F , trajectories enter the

next invariant on the left due to the reset. Finally, condition (iv) eliminates potential chattering Zeno

behavior, see Remark 4.5.3.

Remark 4.4.6. We make several further observations about the MA.

(i) The MA is non-deterministic in the sense that given m ∈M and σ ∈ Σ, there may be multiple m′ ∈

M such that (m,σ,m′) ∈ EMA. The discrete part of the MA is non-deterministic in a second sense: for
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each m ∈M , the cardinality of the set ΣMA(m) may be greater than one. The latter situation corresponds

to the fact that for different initial conditions x1, x2 ∈ IMA(m) of the continuous part, the associated

output trajectories can reach different guard sets. In essence, which guard is enabled is interpreted, at

the high level, as an uncontrollable event [119]. Referring to Figure 4.8, the motion primitive (F ,F )

may cause the events (1, 0), (0, 1), or (1, 1) ∈ Σ. Remark 4.4.8 further illustrates these two types of

non-determinism in the case of the PA.

(ii) The set of events Σ in the MA correspond to the same events Σ in the OTS. This correspondence

is used in the product automaton PA, described in the next section, to synchronize transitions in the MA

with transitions in the OTS. The interpretation is that when a continuous trajectory of the MA (over

the box Y ∗) undergoes a reset with the label σ ∈ Σ, the associated continuous trajectory of (4.1) in the

box Yj enters a neighboring box Yj′ with the offset σ = lj′ − lj. Obviously, this interpretation assumes

that the vector of box lengths d is the same in both OTS and MA.

4.4.3 Product Automaton

In this section we introduce the product automaton (PA). It is constructed as the synchronous product

of the OTS and the discrete part of the MA, namely (M,Σ, EMA). The purpose of the PA is to merge

the constraints on successive motion primitives with the constraints on transitions in the OTS in order

to enforce feasible and safe motions. As such, it captures the overall feasible motions of the system –

any high level plan must adhere to these feasible motions.

Definition 4.4.7. We are given an OTS AOTS and an MA HMA satisfying Assumption 4.4.5. We define

the product automaton (PA) to be the tuple APA = (QPA,Σ, EPA, Q
f
PA), where

State Space QPA ⊂ LOTS ×M is a finite set of PA states. A PA state q = (l,m) ∈ QPA satisfies the

following: if there exists σ ∈ Σ and m′ ∈M such that (m,σ,m′) ∈ EMA, then there exists l′ ∈ LOTS

such that (l, σ, l′) ∈ EOTS. That is, (l,m) ∈ QPA if all faces that can be reached by motion primitive

m ∈M lead to a neighboring box of the box associated with location l ∈ LOTS of the OTS.

Labels Σ is the same set of labels used by the OTS and the MA.

Edges EPA ⊂ QPA × Σ × QPA is a set of directed edges defined according to the following rule. Let

q = (l,m) ∈ QPA, q′ = (l′,m′) ∈ QPA, and σ ∈ Σ. If (l, σ, l′) ∈ EOTS and (m,σ,m′) ∈ EMA, then

(q, σ, q′) ∈ EPA.

Final Condition QfPA ⊂ LgOTS ×M is the set of final PA states.
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q1
(l1,m1)

q3
(l2,m3)

q2
(l2,m2)

q4
(l3,m4)

q5
(l3,m5)

σ1 σ2

Figure 4.6: A fragment of a generic PA, showing a state and its neighbours.

Remark 4.4.8. Formally an automaton is said to be non-deterministic if there exists a state with more

than one outgoing edge with the same label. The PA is non-deterministic. First, consider a PA state

q = (l,m) ∈ QPA. Because the MA allows for more than one feasible next motion primitive m′ such that

(m,σ,m′) ∈ EMA, the PA will also have multiple next PA states q′ = (l′,m′) such that (q, σ, q′) ∈ EPA.

Second, there can be multiple possible labels σ ∈ Σ such that e = (q, σ, q′) ∈ EPA for some q′ ∈ QPA.

Thus, the PA inherits the two types of non-determinism of the MA that we discussed in Remark 4.4.6.

For example, consider the PA fragment in Figure 4.6. For the first type of non-determinism, observe

that there are two PA edges (q1, σ1, q2) ∈ EPA and (q1, σ1, q3) ∈ EPA with the same label. For the second

type, observe that there are two possible events σ1, σ2 ∈ Σ from q1, each with its own set of PA edges.

Note also some additional structure: since the OTS is deterministic, the box state is l2 in both q2 and

q3, corresponding to the OTS edge (l1, σ1, l2) ∈ EOTS.

4.4.4 High-Level Plan

In this section we formulate the notion of a control policy on the PA, which gives a rule for selecting

subsequent PA states by choosing the next motion primitive. Informally, the objective of the high level

plan is to produce a control policy and find a set of initial PA states such that a goal PA state is eventually

reached. To this end, in this section we also develop a Dynamic Programming Principle (DPP) suitable

for use on the PA. Because of the two types of non-determinism of the PA, existing algorithms cannot

be applied directly [17, 116]. By adapting the algorithm in [17], we obtain two formulations of the DPP,

one of which is more computationally efficient as it exploits certain structure in the PA; further details

are provided in Remark 4.4.12.

First some notation will be useful. Recall from (4.3), given m ∈ M , ΣMA(m) is the set of all labels

σ ∈ Σ on outgoing edges e ∈ EMA starting at m. Similarly, ΣPA(q) is the set of all labels σ ∈ Σ on



Chapter 4. A Modular Framework for Motion Planning 73

outgoing edges e ∈ EPA starting at q. That is,

ΣPA(q) := {σ ∈ Σ | (∃q′ ∈ QPA)(q, σ, q′) ∈ EPA} .

Now we formalize the semantics of the PA. A state of the PA is a pair q = (l,m) ∈ QPA where l ∈ LOTS

is a location in the OTS and m ∈M is a motion primitive. A run π of APA is a finite or infinite sequence

of states π = q0q1q2 . . . , with qi = (li,mi) ∈ QPA and for each i, there exists σi ∈ ΣPA(qi) such that

(qi, σi, qi+1) ∈ EPA. We define the length of a run to be nπ; for infinite runs nπ is defined to be ∞.

We consider a subset of runs ΠPA(q) starting at q ∈ QPA that satisfy one further property. If the run

π is infinite, then π ∈ ΠPA(q) if q0 = q. Instead if the run π is finite, then π ∈ ΠPA(q) if q0 = q and

additionally, ΣPA(qnπ ) = ∅. It is the latter requirement – that the last PA state of a finite run may not

have outgoing edges in the PA – which is of interest. The interpretation is that we regard the event labels

between PA states as uncontrollable, so if any event is possible, then it must occur eventually. Thus

without loss of generality, each run π = q0q1 . . . is the prefix of a run π′ ∈ ΠPA(q0). Further elaboration

is given in Remark 4.4.9 (ii).

Given q ∈ QPA and σ ∈ ΣPA(q), the set of admissible motion primitives is

M(q, σ) := {m′ ∈M | (∃q′ = (l′,m′)) (q, σ, q′) ∈ EPA} .

More generally, given q ∈ QPA and ΣPA(q) = {σ1, . . . , σk}, the set of admissible motion primitives at q is

M(q) := {(m1, . . . ,mk) | mi ∈M(q, σi), i = 1, . . . , k},

Next we introduce the notion of a control policy. Given q ∈ QPA and ΣPA(q) = {σ1, . . . , σk}, an admissible

control assignment at q is a vector

c(q) = (c(q, σ1), . . . , c(q, σk)) ,

where c(q, σi) ∈ M(q, σi), or equivalently c(q) ∈ M(q). Notice that c(q) is a vector whose dimension

varies as a function of the cardinality of the set ΣPA(q). An admissible control policy c : QPA × Σ → M

is a map that assigns an admissible control assignment at each q ∈ QPA. Thus, for each q ∈ QPA and

σ ∈ ΣPA, c(q, σ) ∈M(q, σ). The set of all admissible control policies is denoted by C.

Consider an admissible control policy c ∈ C and a state q ∈ QPA. We denote the set of runs in

ΠPA(q) induced by c as Πc(q). Formally, π = q0q1 · · · ∈ Πc(q) if q0 = q, and for all i ≥ 0 and i < nπ,
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mi+1 = c(qi, σi). Similarly, we denote the subset of runs in Πc(q) that eventually reach a state in QfPA as

Πf
c (q). Formally, π ∈ Πf

c (q) if there exists an integer i ∈ {0, . . . , nπ} such that qi ∈ QfPA. For π ∈ Πf
c (q),

we define

rπ := min{i ∈ {0, . . . , nπ} | qi ∈ QfPA} .

Next we define an instantaneous cost DPA : EPA → R, which satisfies DPA(e) > 0 for all e ∈ EPA,

and a terminal cost HPA : QPA → R. Now consider the run π = q0q1 . . . qnπ ∈ Πf
c (q) with q0 = q,

c(qi, σi) = mi+1, and ei := (qi, σi, qi+1) ∈ EPA. We define a cost-to-go J : QPA × C → R by

J(q, c) =





max
π∈Πc(q)

®
rπ−1∑
j=0

DPA(ej) +HPA(qrπ )

´
, Πc(q) = Πf

c (q)

∞, otherwise .

Remark 4.4.9. There are several notable features of our formula for the cost-to-go.

(i) For a given q ∈ QPA, there may be multiple runs π ∈ Πc(q) due to the (second, non-standard type

of) non-determinism of the PA. As such, we take the maximum over Πc(q) in the cost-to-go because of

this non-determinacy in APA: it is uncertain which, among the possibly multiple trajectories allowed by

c, that will be taken so we assume the worst-case situation. Moreover, we require Πc(q) = Πf
c (q) for a

finite cost-to-go, otherwise there may exist a run starting at q and applying control policy c that does not

reach QfPA. Also, when Πc(q) = Πf
c (q), rπ is well-defined.

(ii) We have assumed that finite runs must terminate on PA states that have no outgoing edges. The

motivation for this choice becomes clear in light of the formulation of the cost-to-go. Suppose we included

in Πc(q) finite prefixes of (finite or infinite) runs. These necessarily would be finite runs with final PA

states that have outgoing edges. Then if we take a finite or infinite run that eventually reaches a goal

PA state, certain finite prefixes of that run may not yet have reached a goal PA state, and we would get

Πc(q) 6= Πf
c (q) and an infinite cost-to-go. This anomaly arises from creating an artificial situation in

which not all runs starting at an initial PA state reach a goal PA state because we included (unsuccessful)

finite prefixes of successful runs.

(iii) The cost-to-go function also accounts for infinite runs by using the variable rπ to record the first

time a goal PA state is reach and by taking the cost only over the associated prefix of the infinite run.

Allowing infinite runs seems to contradict a reach-avoid specification in which we only want finite runs

that terminate on goal PA states with no outgoing edges. The reason we also allow infinite runs in the

formulation of the high level plan is that it allows us to extend our framework to a fragment of LTL

where, for example, a goal PA state is reached always eventually; see Remark 4.5.9 for further details.
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Figure 4.7: At the top, a PA is depicted for a single output system having three motion primitives
M = {H ,F ,B} over three boxes LOTS = {lj | j = 1, 2, 3}. The numbers 1,−1 ∈ Σ on the edges (shown
as arrows) are the corresponding labels. The bottom pictures show the reduced set of transitions induced
by control polices c1, c2 ∈ C.
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Example 4.4.10. Consider the PA shown at the top of Figure 4.7 corresponding to a single output

system with the three motion primitives M = {H ,F ,B} from Example 4.4.4 over three boxes LOTS =

{lj | j = 1, 2, 3}. Suppose that DPA(e) = 1 for all e ∈ EPA and that HPA = 0 for all q ∈ QPA.

First consider the feasible control policy c1 ∈ C with the control assignments: c1(q1, 1) = F ,

c1(q3, 1) = B, c1(q5,−1) = F , and c1(q7,−1) = B. The bottom left of Figure 4.7 shows how the control

policy trims away possible edges in the PA. Now suppose that QfPA = {q7}. Choosing the initial condition

q1 ∈ QPA and under the assumption that we do not include finite runs that terminate at PA states with

outgoing edges, we can see that Πc1(q1) consists of only the single infinite run π = q1q3q7q5q1 . . .. Even

though this run is infinite, π ∈ Πf
c1(q1), rπ = 2, and J(q1, c1) = 2. Similarly, we compute J(q5, c1) = 3,

J(q3, c1) = 1, J(q7, c1) = 0, and J(q2, c1) = J(q4, c1) = J(q6, c1) =∞.

Next, consider the feasible control policy c2 ∈ C with the control assignments: c2(q1, 1) = F ,

c2(q3, 1) = H , c2(q5,−1) = F , and c2(q7,−1) = B. This control policy is shown on the bottom right

of Figure 4.7. Suppose that QfPA = {q6}. Then we find J(q7, c2) = 4, J(q5, c2) = 3, J(q1, c2) = 2,

J(q3, c2) = 1, J(q6, c2) = 0, and J(q2, c2) = J(q4, c2) =∞. The difference between c1 and c2 is that runs

are infinite under c1 but finite under c2.

Finally, suppose we had omitted the extra condition that finite runs must terminate on PA states

with no outgoing edges. Considering c1 ∈ C at q1 ∈ QPA, then Πc1(q1) would contain an infinite number

of finite runs {q1, q1q3, q1q3q7, . . .} as well as the infinte run already noted. In particular, the two runs

q1, q1q3 6∈ Πf
c1(q1), so by definition of the cost-to-go, we would obtain the undesired result J(q1, c1) =∞.

A similar problem would arise with the control policy c2. /

Next we define the value function V : QPA → R to be

V (q) := min
c∈C

J(q, c) .

The value function satisfies a dynamic programming principle (DPP) that takes into account the non-

determinacy of APA; see [17] where a slightly different result is proved.

Theorem 4.4.11. Consider q ∈ QPA \QfPA and suppose |ΣPA(q)| > 0. Then V satisfies

V (q) = min
c(q)∈M(q)

ß
max

σ∈ΣPA(q)
{DPA(e) + V (q′)}

™
(4.4)

= max
σ∈ΣPA(q)

ß
min

m̄∈M(q,σ̄)
{DPA(ē) + V (q̄)}

™
, (4.5)

where q′ = (l′, c(q, σ)) ∈ QPA, e = (q, σ, q′) ∈ EPA, q̄ = (l̄, m̄) ∈ QPA, and ē = (q, σ, q̄) ∈ EPA.
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Notice that for all q ∈ QPA \QfPA such that |ΣPA(q)| = 0, V (q) =∞ (since there can be no paths to the

goal). Also, for all q ∈ QfPA, V (q) = HPA(q). The proof is due to Zach Kroeze [61] and is omitted here.

Remark 4.4.12. In (4.4) of Theorem 4.4.11, it is shown that V (q) can be computed using the local

information of M(q) instead of using all of C. In (4.5), the result is taken one step further by showing

that V (q) can be calculated using only M(q, σ) for each σ ∈ ΣPA(q). The benefit of (4.5) becomes clear

when we compare the cardinality of the sets over which the minimizations occur. Given q ∈ QPA, let

ΣPA(q) = {σ1, . . . , σk}. In (4.4) the minimization is over M(q), and therefore the cardinality of the

minimization set is
∏k
i=1 |M(q, σk)|. In (4.5) the minimization is over M(q, σ) for each σ ∈ ΣPA(q),

and therefore the cardinality of the set is |M(q, σ)|. While both (4.4) and (4.5) can be used to compute

V (q), in general (4.5) will be more computationally efficient.

Corollary 4.4.13. Consider the control policy c∗ such that for all q ∈ QPA, and σ ∈ ΣPA(q)

c∗(q, σ) ∈ argmin
m′∈M(q,σ)

{DPA(e) + V (q′)} ,

where q′ = (l′,m′), and e = (q, σ, q′). Then c∗ is an optimal control policy such that for all q ∈ QPA,

V (q) = J(q, c∗).

Figure 4.8 shows a possible control policy for the scenario in Figure 4.3. Since there are two outputs,

we use the motion primitives from Example 4.4.4 in each output; formal details are given in Section

4.6. The control policy was hand-computed. Notice that different routes may be taken from the same

product state depending on the face reached, but ultimately the control policy ensures that all paths

lead to the goal.

4.5 Main Results

In this section we present our main results on a solution to Problem 4.3.1. Our final result combines the

notion of a control policy at the high level with feedback controllers executing correct continuous time

behavior at the low level. First, in accordance with the reach-avoid objective (see Remark 4.4.9 (iii)), we

restrict the final PA states to be goal OTS states equipped with motion primitives that have no guard

sets

QfPA = {(l,m) ∈ LgOTS ×M | ΣMA(m) = ∅} . (4.6)

Now suppose we have an admissible control policy c ∈ C derived using Theorem 4.4.11 or otherwise

with QfPA as above. We present a complete solution to Problem 4.3.1 including an initial condition set
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Figure 4.8: This figure shows a discrete control strategy for the scenario shown in Figure 4.3.

X0 ⊂ Rn, a feedback control u(x), and conditions on the motion primitives so that the reach-avoid

specifications of Problem 4.3.1 are met.

First we specify the initial condition set X0. The set of feasible initial PA states is

Q0
PA := {q ∈ QPA | Πc(q) = Πf

c (q)} . (4.7)

That is, a feasible initial PA state satisfies that every run (induced by the control policy) starting at the

PA state eventually reaches a goal PA state.

Now consider a state x0 ∈ Rn. It can be used as an initial state of the system if there is some

(lj ,m) ∈ Q0
PA for which the state is both in the box Yj and in the invariant of m. Recall that for all

y ∈ Rp and j ∈ {1, . . . , nL}, y ∈ Y ∗ if and only if y+ d ◦ lj ∈ Yj . With this in mind, we define the set of

initial states to be:

X0 =
⋃

(lj ,m)∈Q0
PA

{
x+ h−1

o (d ◦ lj) | x ∈ IMA(m)
}
. (4.8)

Next we specify the feedback controllers to solve Problem 4.3.1. Consider any q = (lj ,m) ∈ Q0
PA.

Then for all x ∈ Rn such that x− h−1
o (d ◦ lj) ∈ IMA(m), we define the feedback

u(x, q) := um(x− h−1
o (d ◦ lj)) . (4.9)

This defines a family of feedback controllers parametrized by x, the state of (4.1) and by the PA state
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q = (lj ,m). These feedbacks work in tandem with the control policy c ∈ C, which effectively determines

the next feasible PA state q′ ∈ Q0
PA. For example, suppose q = (lj ,m) ∈ Q0

PA and suppose the label

σ ∈ Σ is measured. This event corresponds to x ∈ ge for e = (m,σ, c(q, σ)) ∈ EMA. Let m′ := c(q, σ)

and let l′ ∈ LOTS be the unique location of the OTS such that (l, σ, l′) ∈ EOTS. Then the next PA state

is q′ = (l′,m′) ∈ Q0
PA and the controller that is applied in the next location l′ ∈ LOTS is um′(·).

The main result of this chapter is the following.

Theorem 4.5.1. Consider the system (4.1) satisfying Assumption 4.3.2, the non-empty feasible set

P ⊂ Rp, and the goal set G ⊂ P. Let d be the vector of box lengths such that the goal indices Ig is

non-empty. Consider an associated OTS AOTS, an MA HMA satisfying Assumption 4.4.5, a PA APA with

QfPA as in (4.6), and an admissible control policy c ∈ C. Then the initial condition set X0 given in (4.8)

and the feedback controllers (4.9) solve Problem 4.3.1.

In the remainder of this section we prove Theorem 4.5.1. We now give a roadmap for these results.

The verification of correctness at the low level is broken down into two steps that we now describe.

First, we show that the MA is non-blocking in Lemma 4.5.5. The key requirements are summarized in

Assumption 4.4.5. The non-blocking condition ensures that MA trajectories continually evolve in time

and stay within the invariant regions. We also put conditions to avoid chattering in which two discrete

transitions can occur in immediate succession. While physical systems never undergo infinite switching

in finite time, if our model predictions diverge from reality, then we have no grounds to claim that

Problem 4.3.1 is indeed solved. Second, in Lemma 4.5.6 we show that to each closed-loop trajectory of

(4.1) under the feedback controllers (4.9) and a control policy c ∈ C, we can associate a unique execution

of the MA (defined below) and run of the PA.

We begin by describing the semantics of the MA. These definitions are standard; see [70]. A state of

the MA is a pair (m,x), where m ∈ M and x ∈ Rn. Trajectories of the MA are called executions and

are defined over hybrid time domains that identify the time intervals when the trajectory of a hybrid

system is in a fixed motion primitive m ∈ M . Precisely, a hybrid time domain of the MA is a finite or

infinite sequence of intervals τ = {I0, . . . , Inτ }, such that

(i) Ii = [τi, τ
′
i ], for all 0 ≤ i < nτ ,

(ii) if nτ <∞, then either Inτ = [τnτ , τ
′
nτ ] or Inτ = [τnτ , τ

′
nτ ),

(iii) τi ≤ τ ′i = τi+1, for all 0 ≤ i < nτ .

Definition 4.5.2. An execution of the MA is a collection χ = (τ,m(·), φMA(·, x0)) such that
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(i) the initial condition of the execution satisfies: (m(0), x0) ∈ Q0
MA.

(ii) the continuous evolution of the execution satisfies: for all i ∈ {0, . . . , nτ} with τi < τ ′i , then for

all t ∈ [τi, τ
′
i ], m(·) is constant and d

dtφMA(t, x0) = f(φMA(t, x0), um(t)(φMA(t, x0))), while for all

t ∈ [τi, τ
′
i), φMA(t, x0) ∈ IMA(m(t)).

(iii) a discrete transition of the execution satisfies: for all i ∈ {0, . . . , nτ − 1}, there exists σi ∈

ΣMA(m(τ ′i)) such that (m(τ ′i), σi,m(τi+1)) =: ei ∈ EMA, φMA(τ ′i , x0) ∈ gei , and φMA(τi+1, x0) =

rei(φMA(τ ′i , x0)).

Given an execution χ = (τ,m(·), φMA(·, x0)), we associate to it the output trajectory of the MA given

by yMA(·, x0) := h(φMA(·, x0)) (the subscript MA is included to avoid confusion with output trajectories

y(·, x0) of the physical system (4.1) which do not undergo resets). The execution time of an execution χ

is defined as T (χ) :=
∑nτ
i=0(τ ′i − τi) = limi→nτ τ

′
i . An execution is called finite if τ is a finite sequence

ending with a compact time interval. An execution is called infinite if either τ is an infinite sequence or

if T (χ) =∞. Finally, an execution is called Zeno if it is infinite but T (χ) <∞.

Remark 4.5.3. There are two types of Zeno behavior. In one type that we call chattering, transitions

are instantaneous. The second more subtle type is when the times between discrete transitions of the

MA converge to zero, but the transitions are not instantaneous. Assumptions 4.4.5 (i) and (iv) ensure

that we cannot have chattering. True Zeno behavior with convergent transition times is more difficult to

identify in the setting when the MA is formed as a parallel composition. Fortunately, for our reach-avoid

objective, the induced MA executions cannot be Zeno since there are a finite number of transitions by

construction, see Lemma 4.5.6.

Definition 4.5.4. The MA is non-blocking if for all (m(0), x0) ∈ Q0
MA, the set of all infinite executions

of the MA with initial condition (m(0), x0) is non-empty.

Lemma 4.5.5. Under Assumption 4.4.5, the MA is non-blocking.

Proof. Let (m,x) ∈ Q0
MA. If ΣMA(m) = ∅, then by Assumption 4.4.5 (vi), IMA(m) is invariant, so the

trajectory φMA(t, x) starting at (m,x) remains in IMA(m) for all future time. Therefore, trivially, the

MA is non-blocking for this initial condition. If ΣMA(m) 6= ∅, then by Assumption 4.4.5 (vii), φMA(t, x)

remains in IMA(m) until it reaches a guard set. Additionally, by Assumption 4.4.5 (v), the trajectory is

mapped under the reset into the next invariant. By Lemma 1 of [70], the MA is again non-blocking for

this initial condition. Overall, the MA is non-blocking.
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The purpose of the Assumptions 4.4.5 is to guarantee consistency between low level continuous

time behavior and the high level discrete plan. This consistency is formalized by way of a one-to-one

correspondence between infinite MA executions and finite PA runs, both starting from the same initial

condition.

Lemma 4.5.6. Suppose we have an admissible control policy c ∈ C, and we have an MA satisfying

Assumption 4.4.5. For each (l0,m0) ∈ Q0
PA and x0 ∈ IMA(m0) there exist a unique infinite MA execution

χ = (τ,m(·), φMA(·, x0)) and a unique finite PA run π = q0q1 . . . qN .

Proof. Let (l0,m0) ∈ Q0
PA and x0 ∈ IMA(m0). The initial MA state of the MA execution is (m(0), x0) =

(m0, x0) ∈ Q0
MA, and the initial PA state of the PA run π is q0 = (l0,m0). The hybrid time domain of χ

will be denoted as τ = {Ii}nτi=0, and is initialized as τ = {I0}, where I0 = {τ0} and τ0 = 0. With the

base case k = 0 established, we construct the remainder of the MA execution and PA run by induction.

The run so far is π = q0 . . . qk, where qi = (li,mi) for i = 0, . . . , k, and Ik = {τk}. Suppose

ΣMA(mk) = ∅. Then by Assumption 4.4.5 (vi), φMA(t, x0) ∈ IMA(mk) for all t in the extended interval

Ik = [τk,∞). The complete PA run is π = q0 · · · qk and the induction terminates. Suppose instead

ΣMA(mk) 6= ∅. Then by Assumption 4.4.5 (vii), there exist unique σk ∈ ΣMA(mk) and T k ≥ 0, such

that φMA(t, x0) ∈ IMA(mk) for all t in the extended interval Ik = [τk, τ
′
k], τ ′k := τk + T k. Also, for

each e = (mk, σk,m′) ∈ EMA, there exists a guard set ge such that φMA(τ ′k, x0) ∈ ge. Assumption 4.4.5

(ii) tells us that for all such m′, the guard set is the same. Also, Assumption 4.4.5 (iii) ensures that

σk is unique. Now we invoke the control policy to select a specific m′. Let mk+1 := c(qk, σk) so that

ek := (mk, σk,mk+1) ∈ EMA and φMA(τ ′k, x0) ∈ gek . Define xk+1
0 := rek(φMA(τ ′k, x0)). By Assumption 4.4.5

(iv), xk+1
0 6∈ ge for any e = (mk+1, σ,m′) ∈ EMA. The next PA state is qk+1 = (lk+1,mk+1), where

lk+1 ∈ LOTS is uniquely determined through (lk, σk, lk+1) ∈ EOTS, by the determinism of the OTS. The

PA run so far is π = q0 · · · qk+1 and the new interval Ik+1 = {τ ′k} is added to τ .

The above inductive process is guaranteed to terminate with a finite PA run by definition of Q0
PA.

That is, since (l0,m0) ∈ Q0
PA there will be a smallest N such that (lN ,mN ) ∈ QfPA. Moreover, by

definition of QfPA (4.6), we have that ΣMA(mN ) = ∅ and so the run cannot be extended further. The

resulting MA execution is infinite with a finite number of intervals in the hybrid time domain τ , and it

is non-blocking by Lemma 4.5.5.

Before we can prove Theorem 4.5.1 we need one further preliminary result stating that because of

the translational invariance of Assumption 4.3.2, the continuous part of an MA execution has a unique

correspondence to a closed-loop trajectory of the system (4.1). For a proof, refer to the analogous Lemma

5.5.5 in Chapter 5.
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Lemma 4.5.7. Let m ∈ M , x0 ∈ IMA(m), y ∈ Rp, and x̃0 = x0 + h−1
o (y). Consider the trajectory

φ(t, x̃0) of (4.1) with the feedback control u(x) = um(x − h−1
o (y)). Also consider the MA trajectory

φMA(t, x0) with feedback control um(x). For all t ≥ 0 such that φMA(t, x0) ∈ IMA(m),

φ(t, x̃0) = φMA(t, x0) + h−1
o (y).

Finally we are ready to prove Theorem 4.5.1.

Proof of Theorem 4.5.1. We must show that (i) output trajectories of system (4.1) remain within P,

and (ii) output trajectories eventually reach and remain within the goal set G. Let x̃0 ∈ X0. Choose any

(lj0 ,m
0) ∈ Q0

PA such that x0 := x̃0−h−1
o (d◦ lj0) ∈ IMA(m0). By Lemma 4.5.6, we may associate a unique

MA execution χ and a unique PA run π to (lj0 ,m
0) ∈ Q0

PA and x0 ∈ IMA(m0). Denote the hybrid time

domain as τ = {I0, . . . , IN} with Ik = [τk, τ
′
k] for k = 0, . . . , N − 1 (with τ0 = 0) and IN = [τN ,∞).

The last interval follows from the definition of (ljN ,m
N ) ∈ QfPA (4.6), since ΣMA(mN ) = ∅ and thus

Assumption 4.4.5 (vi) implies that we must have that IN = [τN ,∞). As in the proof of Lemma 4.5.6,

denote the corresponding sequence of events as σ0 · · ·σN−1.

Using Lemma 4.5.7 with y = d ◦ lj0 , we have that φ(t, x̃0) = φMA(t, x0) + h−1
o (d ◦ lj0). We claim that

for all k = 0, . . . , N and t ∈ Ik,

φ(t, x̃0) = φMA(t, x0) + h−1
o (d ◦ ljk). (4.10)

Clearly the result is true for k = 0.

We derive two facts to assist in proving this claim. Recall that by definition of the OTS edges,

we have that for all k = 0, . . . , N − 1, σk = ljk+1 − ljk . Furthermore, by rearranging, multiplying

component-wise by d, and taking the preimage h−1
o , we have the first fact: for all k = 0, . . . , N − 1 that

h−1
o (d◦ ljk+1) = h−1

o (d◦ ljk) +h−1
o (d◦σk). Also by definition of the reset map and MA execution, we get

the second fact: for all k = 0, . . . , N − 1, rek(φMA(τ ′k, x0)) = φMA(τ ′k, x0)− h−1
o (d ◦ σk) = φMA(τk+1, x0).

Returning to (4.10), by induction we assume that it is true for 0 ≤ k < N and show that it is true

for k + 1. Using the above facts and (4.10) for k at t = τ ′k = τk+1 yields

φ(τk+1, x̃0) = φ(τ ′k, x̃0) = φMA(τ ′k, x0) + h−1
o (d ◦ ljk)

= (φMA(τk+1, x0) + h−1
o (d ◦ σk)) + h−1

o (d ◦ ljk)

= φMA(τk+1, x0) + h−1
o (d ◦ ljk+1).
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Applying Lemma 4.5.7 with y = h−1
o (d ◦ ljk+1) at the new initial condition φMA(τk+1, x0) ∈ IMA(mk+1),

we have that for k+ 1 and for all t ∈ Ik+1 that (4.10) holds. When k+ 1 = N , the induction terminates

and the claim is proven.

Using (4.10) and projecting to the output space we conclude that for all k = 0, . . . , N and t ∈ Ik,

y(t, x̃0) ∈ Yjk . Since all the boxes are contained in P by construction, then for all t ≥ 0 we have (i).

Moreover, since ljN ∈ LgOTS implies the goal box YjN is contained in G and IN = [τN ,∞), we have

(ii).

Remark 4.5.8. The above result does not depend on the method of construction of the admissible control

policy c ∈ C, nor does it require the control policy to be optimal. This allows for different path planning

techniques on the PA, as we show in Section 4.8.2.

Remark 4.5.9. The extension to a sequence of reach-avoid problems is straightforward, following the

idea in [116]. First, the reach property (ii) of Problem 4.3.1 is relaxed to y(T, x0) ∈ G. Next, suppose

there is a finite sequence of goals Lg,iOTS, i = 1, ..., ng > 1. In contrast to (4.6), we set the final PA states

to be Qf,iPA = {(l,m) ∈ Lg,iOTS ×M | ΣMA(m) 6= ∅} for i = 1, . . . , ng − 1. Finally, one must design control

policies ci with associated initial conditions Q0,i
PA (4.7) such that Qf,iPA ⊂ Q0,i+1

PA for i = 1, . . . , ng − 1. For

i = ng, one may impose solutions to remain invariant or connect back to the first goal.

4.6 Parallel Composition of Motion Primitives

In this section we describe the operation of parallel composition of two maneuver automata. By repeated

application of this operation, more complex higher-dimensional MA’s can be constructed by starting

from simple low dimensional atomic motion primitives, such as those described in Section 4.7.2. The

key challenge is to ensure that the resulting parallel composed MA satisfies Assumptions 4.4.5, if the

two constituent MA’s do. This is proved in Theorem 4.6.2. First we give some preliminary definitions

and we fix some notation, followed by the formal definition of parallel composition of MA’s.

We consider two independent systems

ẋj = f j(xj , uj), yj = hj(xj), (4.11)

where xj ∈ Rnj , uj ∈ Rµj , and yj ∈ Rpj for j = 1, 2. We use superscripts to identify the distinct

subsystems. Assume that each system satisfies Assumption 4.3.2. That is, for j = 1, 2, yji = xji ,
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i = 1, . . . , pj . Associated with each system j = 1, 2 is the MA

HjMA = (QjMA,Σ
j , EjMA, X

j
MA, I

j
MA, G

j
MA, R

j
MA, Q

0,j
MA ). (4.12)

We additionally assume that H1
MA and H2

MA satisfy Assumption 4.4.5. Denote the canonical boxes in

the respective output spaces as Y ∗,j =
∏pj

i=1[0, dji ]. The event sets labelling the faces of Y ∗,j are

Σj = {−1, 0, 1}pj . The empty strings are denoted as εj := (0, . . . , 0) ∈ Σj , j = 1, 2, and the empty

string is ε := (ε1, ε2). Other sets are similarly denoted with a superscript to identify the system, such as

the set of possible events ΣjMA(mj) for mj ∈M j and the output indices oj . For the parallel composition

we also require some extra notation. First, for j = 1, 2 and for each mj ∈ M j , define the invariant set

minus all the guard sets

Ij(mj) := IjMA(mj) \

Ñ
⋃

ej=(mj ,σj ,mj2)∈Ej
MA

gej

é
. (4.13)

Next, we need three sets: an augmented set of edges that includes a transition with the empty string, an

augmented set of possible events for a motion primitive m ∈M j , and an augmented set of next feasible

motion primitives. That is, for j = 1, 2, we define

E
j

MA := EjMA ∪
{

(mj , εj ,mj
2) | mj ,mj

2 ∈M j , Ij(mj) ⊂ IjMA(mj
2) ,

(∀ej2 = (mj
2, σ

j
2,m

j
3) ∈ EjMA) Ij(mj) ∩ gej2 = ∅

}

Σ
j

MA(mj) := ΣjMA(m) ∪ {εj} , mj ∈M j

M
j
(mj , σj) := {mj

2 ∈M j | (mj , σj ,mj
2) ∈ EjMA} , mj ∈M j , σj ∈ Σ

j

MA(mj).

We also define the products of these sets:

ΣMA(m) := Σ
1

MA(m1)× Σ
2

MA(m2) , m = (m1,m2) ∈M ,

M(m,σ) := M
1
(m1, σ1)×M2

(m2, σ2) , m = (m1,m2) ∈M,σ = (σ1, σ2) ∈ ΣMA(m) .

Finally, the canonical box in the output space of the parallel composition is Y ∗ = Y ∗,1 × Y ∗,2. We can

now define the parallel composition of two MA’s.

Definition 4.6.1. Consider two MA’s H1
MA and H2

MA each satisfying Assumption 4.4.5. The parallel

composition H1
MA || H2

MA is HMA = (QMA,Σ, EMA, XMA, IMA, GMA, RMA, Q
0
MA) where
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State Space QMA = M × Rn with M = M1 ×M2 and n = n1 + n2.

Labels Σ = Σ1 × Σ2 = {−1, 0, 1}p with p = p1 + p2.

Edges EMA ⊂ M × Σ ×M , where e = (m,σ,m′) ∈ EMA if σ 6= ε, σ ∈ ΣMA(m), and m′ ∈ M(m,σ).

Observe that for all m ∈M , ΣMA(m) = ΣMA(m) \ {ε}.

Vector Fields For all m = (m1,m2) ∈M , XMA(m) =


f

1(x1, um1(x1))

f2(x2, um2(x2))


. The state is x := (x1, x2) ∈

Rn, the control input is u := (u1, u2) ∈ Rµ where µ = µ1 +µ2, and the output is y := (y1, y2) ∈ Rp.

The output map is h(x) =


h

1(x1)

h2(x2)


, with o(i) = o1(i) for i = 1, . . . , p1 and o(i) = n1 + o2(i− p1)

for i = p1 + 1, . . . , p.

Invariants For all m = (m1,m2) ∈M , IMA(m) = I1
MA(m1)× I2

MA(m2).

Enabling and Reset Conditions Consider an edge e = (m1, σ,m2) ∈ EMA, where m1 = (m1
1,m

2
1) ∈

M , σ = (σ1, σ2) ∈ ΣMA(m), m2 = (m1
2,m

2
2) ∈M(m1, σ), and ej = (mj

1, σ
j ,mj

2) ∈ EjMA for j = 1, 2.

If σj ∈ Σ
j

MA(mj
1) and σj = εj, then we define

gej := Ij(mj
1), rej (x

j) := xj .

Otherwise if σj ∈ ΣjMA(mj
1), we have gej = GjMA(ej) and rej = RjMA(ej), corresponding to their

definitions in HjMA. Finally, we define ge = ge1 × ge2 and re(x) =


re1(x1)

re2(x2)


.

Initial Conditions Q0
MA ⊂ QMA is the set of initial conditions given by Q0

MA = {(m,x) | (mj , xj) ∈

Q0,j
MA , i = 1, 2}.

First, notice that for each HjMA and for each mj ∈ M j , the definition of E
j

MA automatically includes

self-loop edges (m, εj ,m) ∈ EjMA. We include such transitions with εj so that the parallel composition

is properly constructed. For example, suppose a proper face of Y ∗,1 is crossed by the first system, but

no proper face of Y ∗,2 is crossed by the second system. To correctly account for such possibilities, the

overall transition for the composed MA must record the lack of crossing in Y ∗,2 by the empty string ε2.

Second, notice that we have allowed for additional edges with εj to allow for the possibility of switching

to a different motion primitive over the same box Y ∗,j if the invariants overlap and are not mapped

immediately to a guard set, as can be observed by the definition of E
j

MA. Referring to Figure 4.8, an

edge such as ((F ,H ), (1, 0), (H ,F )) ∈ EMA consists of (F , 1,H ) ∈ E1
MA and (H , 0,F ) ∈ E2

MA, which

encodes a turn from Right to Up.
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The main result is now stated.

Theorem 4.6.2. We are given H1
MA and H2

MA, two MA’s that satisfy Assumption 4.4.5. The parallel

composition HMA = H1
MA || H2

MA defined above is an MA that also satisfies Assumption 4.4.5.

Proof. We employ the following two standard facts regarding products, intersections, and subsets of sets.

Formally, if A,B,C,D are sets, then

(A ∩ C)× (B ∩D) = (A×B) ∩ (C ×D), (4.14)

A ⊂ C and B ⊂ D ⇒ (A×B) ⊂ (C ×D). (4.15)

First we show that the resulting HMA is in fact an MA according to the definition. Clearly the

composed vector fields are also globally Lipschitz and the composed invariants are bounded. The non-

trivial points to show are that (a) the stacked system satisfies Assumption 4.3.2, (b) the invariants

project within the canonical box, (c) the enabling conditions lie both within the invariant and on an

appropriate face determined by σ ∈ Σ, (d) the reset conditions are determined only by the event σ ∈ Σ,

and (e) the initial conditions are the entire invariants. We prove each of these in turn.

(a) We show that Assumption 4.3.2 for the stacked system holds. For the first condition, it can

be verified by direct expansion that the definition of h necessarily produces the injective output map

o : {1, . . . , p} → {1, . . . , n} defined earlier. For the second condition, letting x = (x1, x2), u = (u1, u2)

and y = (y1, y2), we must show that f(x, u) = f(x + h−1(y), u). First, by Assumption 4.3.2 on each

system, f j(xj , uj) = f j(xj + (hjoj )
−1(yj), uj). Second, it is easy (but tedious) to show that h−1

o (y) =

((h1
o1)−1(y1), (h2

o2)−1(y2)). Putting these two facts together gives the desired result.

(b) We show that for all m ∈ M , IMA(m) ⊂ h−1(Y ∗). Letting m = (m1,m2) ∈ M , we have by the

fact that each system is an MA that IjMA(mj) ⊂ (hj)−1(Y ∗,j) for j = 1, 2. It is easy (but tedious) to

show that h−1(Y ∗) = (h1)−1(Y ∗,1)× (h2)−1(Y ∗,2). The result then follows by applying (4.15).

(c) We show that for all e = (m1, σ,m2) ∈ EMA, ge ⊂ h−1(Fσ) ∩ IMA(m1). Let e = (m1, σ,m2) ∈ EMA

and decompose it as ej = (mj
1, σ

j ,mj
2) ∈ E

j

MA for j = 1, 2. For j = 1, 2, if σj 6= εj , then gej ⊂

(hj)−1(Fσj ) ∩ IjMA(mj
1) since each system is an MA. Otherwise, if σj = εj , observe that Fεj = Y ∗,j and

gej = Ij(mj
1) ⊂ IjMA(mj

1) ⊂ (hj)−1(Y ∗,j) by construction. Consequently gej ⊂ (hj)−1(Fσj ) ∩ IjMA(mj
1)

again. Next, by definition ge = ge1 × ge2 and IMA(m) = I1
MA(m1

1)× I2
MA(m2

1). It is also easy (but tedious)

to show that h−1(Fσ) = (h1)−1(Fσ1) × (h2)−1(Fσ2). The result then follows by applying (4.14) and

(4.15).

(d) We show that for all e = (m1, σ,m2) ∈ EMA, re(x) = x − h−1
o (d ◦ σ). Let e = (m1, σ,m2) ∈ EMA
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and decompose it as ej = (mj
1, σ

j ,mj
2) ∈ EjMA for j = 1, 2. First, by definition re(x) = (re1(x1), re2(x2)).

Then for j = 1, 2, if σj 6= εj , then rej (x
j) = xj − (hjoj )

−1(dj ◦ σj) since each system is an MA. This is

also the case when σj = εj because rej (x
j) = xj and (hjoj )

−1(dj ◦ εj) = 0. Next, since d = (d1, d2) and

σ = (σ1, σ2), component-wise multiplication gives d ◦ σ = (d1 ◦ σ1, d2 ◦ σ2). Using x = (x1, x2) and the

decomposition h−1
o (y) = ((h1

o1)−1(y1), (h2
o2)−1(y2)) established in (a) with y = d ◦ σ proves the result.

(e) We must show that Q0
MA = {(m,x) ∈ QMA | x ∈ IMA(m)}. This follows immediately from the

definitions of QMA, IMA, and Q0
MA.

Next we prove that (i)-(vii) of Assumption 4.4.5 hold.

(i) We must show that for all m ∈ M , ε 6∈ ΣMA(m). This follows immediately from the definition of

the edges since for all m ∈M , ΣMA(m) = ΣMA(m) \ {ε}.

(ii) We must show that for all e1, e2 ∈ EMA such that e1 = (m1, σ,m2) and e2 = (m1, σ,m3), ge1 = ge2 .

To that end, we write ej1 = (mj
1, σ

j ,mj
2) ∈ EjMA and ej2 = (mj

1, σ
j ,mj

3) ∈ EjMA for j = 1, 2. To show that

ge1 = ge2 , we must show that gej1
= gej2

for j = 1, 2. Let j ∈ {1, 2}. If σj = εj , then by construction

gej1
= Ij(mj

1) = gej2
. Otherwise, if σj 6= εj , then gej1

= gej2
follows from Assumption 4.4.5 (ii) on the j-th

system.

(iii) We must show that for all e1, e2 ∈ EMA such that e = (m1, σ1,m2) and e2 = (m1, σ2,m3), if

σ1 6= σ2, then ge1 ∩ge2 = ∅. To that end, we write ej1 = (mj
1, σ

j
1,m

j
2) ∈ EjMA and ej2 = (mj

1, σ
j
2,m

j
3) ∈ EjMA

for j = 1, 2. If σ1 6= σ2, then suppose w.l.o.g. that σ1
1 6= σ1

2 . To show ge1 ∩ ge2 = ∅, by (4.14) it

suffices to show that ge11 ∩ ge12 = ∅. If both σ1
1 and σ1

2 are not equal to ε1, then by Assumption 4.4.5 (iii)

ge11 ∩ ge12 = ∅. If one of σ1
1 or σ1

2 is ε1, say σ1
1 , then we cannot invoke Assumption 4.4.5 (iii). However,

by definition ge11 = I1(m1
1) is not intersecting with any other guards, so that ge11 ∩ ge12 = ∅, as desired.

(iv) We must show that for all e1, e2 ∈ EMA such that e1 = (m1, σ1,m2) and e2 = (m2, σ2,m3),

re1(ge1) ∩ ge2 = ∅. To that end, we write ej1 = (mj
1, σ

j
1,m

j
2) ∈ EjMA and ej2 = (mj

2, σ
j
2,m

j
3) ∈ EjMA for

j = 1, 2. By (4.14), it suffices to show that rej1
(gej1

) ∩ gej2 = ∅ for at least one of j = 1, 2. Since ε cannot

be an event by Assumption 4.4.5 (i), at least one of j1 = 1, 2 must have σj11 6= εj1 , and at least one of

j2 = 1, 2 must have σj22 6= εj2 . Formally, there are several cases, but they can be summarized as follows.

If there is at least one matching j = j1 = j2, where both σj1, σ
j
2 6= εj , then both ej1, e

j
2 ∈ EjMA, and we

invoke Assumption 4.4.5 (iv) to get rej1
(gej1

) ∩ gej2 = ∅. There are two remaining cases which are similar

so we only look at one of them. Suppose σ1
1 = ε1 and σ2

2 = ε2. Then e1
1 6∈ E1

MA and e2
2 6∈ E2

MA so we

cannot invoke Assumption 4.4.5 (iv). However, by construction e1
1 ∈ E

1

MA implies that re11(ge11) = I1(m1
1)

is not intersecting with any guards in E1
MA. In particular, e1

2 ∈ E1
MA since it must be that σ1

2 6= ε1, and

so re11(ge11) ∩ ge12 = ∅.
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(v) We must show that for all e = (m1, σ,m2) ∈ EMA, re(ge) ⊂ IMA(m2). To that end, we write

ej = (mj
1, σ

j ,mj
2) ∈ EjMA for j = 1, 2. For j = 1, 2, if σj 6= εj , then rej (gej ) ⊂ IjMA(mj

2) follows from

Assumption 4.4.5 (v) on the individual system. This is also the case when σj = εj , since by definition of

E
j

MA we have rej (gej ) = Ij(mj
1) ⊂ IjMA(mj

2). Next by definition we have that IMA(m2) = I1
MA(m1

2)×I2
MA(m2

2).

Also, it is easy to verify that re(ge) = re1(ge1)× re2(ge2). The result follows by applying (4.15).

(vi) We must show that for all m ∈M , if ΣMA(m) = ∅ then IMA(m) is invariant. Let m = (m1,m2) ∈

M , x0 = (x1
0, x

2
0) ∈ IMA(m), and suppose that ΣMA(m) = ∅. Then for j = 1, 2, ΣjMA(mj) = ∅. To see this,

suppose one was not empty, say σ1 ∈ Σ1
MA(m1) ⊂ Σ

1

MA(m1), where by Assumption 4.4.5 (i) σ1 6= ε1. By

construction, ε2 ∈ Σ
2

MA(m2) and by Assumption 4.4.5 (i) proven above (σ1, ε2) ∈ ΣMA(m)\{ε} = ΣMA(m),

so we get a contradiction. Appealing to the Assumption 4.4.5 (vi) for j = 1, 2, for all t ≥ 0 the individual

trajectories satisfy φjMA(t, xj0) ∈ IjMA(mj). Thus for all t ≥ 0, φMA(t, x0) ∈ IMA(m).

(vii) We must show that for all m ∈ M , if ΣMA(m) 6= ∅ then IMA(m) forces all trajectories to exit

in finite time through some guard. Let m = (m1,m2) ∈ M , x0 = (x1
0, x

2
0) ∈ IMA(m), and suppose that

ΣMA(m) 6= ∅. Reversing the argument used in Assumption 4.4.5 (vi), now we can conclude for at least one

of j = 1, 2 that ΣjMA(mj) 6= ∅. Suppose first that only Σ1
MA(m1) 6= ∅, then applying Assumption 4.4.5 (vii)

for j = 1 and Assumption 4.4.5 (vi) for j = 2 furnishes the event σ = (σ1, ε2) ∈ ΣMA(m), with exit

time T 1. A similar argument holds if only Σ2
MA(m2) 6= ∅. If for both j = 1, 2, ΣjMA(mj) 6= ∅, then

Assumption 4.4.5 (vii) for both j = 1, 2 furnishes the event σ = (σ1, σ2) with σj ∈ ΣjMA(mj), with exit

times T j . If T 1 < T 2, then the overall exit time is T = T 1 with event σ = (σ1, ε2) ∈ ΣMA(m). If

T 1 > T 2, then the exit time is T = T 2 with event σ = (ε1, σ2) ∈ ΣMA(m). Otherwise, T = T 1 = T 2, and

the event is σ = (σ1, σ2) ∈ ΣMA(m). In all the cases above, it is then easy (but tedious) to verify that

for all e = (m,σ,m′) ∈ EMA and for all t ∈ [0, T ], φMA(t, x0) ∈ IMA(m) and φMA(T, x0) ∈ ge.

Remark 4.6.3. We have defined the event set as Σ = Σ1 × Σ2, but the usual parallel composition of

automata would have Σ = Σ1 ∪ Σ2 [119]. Given the interpretation of the event set as crossing faces of

Y ∗, the cartesian product is the more natural choice.

4.7 Motion Primitives for Integrator Systems

In this section we provide a design of a maneuver automaton for single integrator systems and two

designs of maneuver automata for double integrator systems. These designs are able to be succinctly

expressed within the MA formalism since the underlying single and double integrator systems satisfy
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Assumption 4.3.2.

The single integrator MA was developed in [61] and is needed for Chapter 6. The first MA for double

integrators was also originally developed by Zach Kroeze [61], and was introduced earlier in this chapter

in Example 4.4.4. The second MA for double integrators is a novel addition to this chapter. Only the

first MA for double integrators was used for experiments on quadrocopters, as the single integrator is

not dynamically suitable and the second MA for double integrators would overburden the computation

of control policies as the number of vehicles grows.

4.7.1 Single Integrator: Hold, Forward, and Backward

In this section we present a MA for a single integrator system. It consists of three motion primitives

Hold (H ), Forward (F ), and Backward (B), as its double integrator counterpart considered in Example

4.4.4. It mainly varies in its implementation at the continuous level.

The nonlinear control system (4.1) is the single integrator system

ẋ = u, y = x,

where x, u, y ∈ R, and the output y is the position. Each motion primitive’s invariant region is simply

the segment Y ∗ = [0, d]. Let u∗ > 0 be the maximum control. For each m ∈ M := {H ,F ,B}, we

design an affine feedback um(x) = Kmx + gm over each invariant using the methodology of the RCP.

Our design enforces that trajectories stabilize to the middle of Y ∗ for Hold, increase in y for Forward,

and decrease in y for Backward. It suffices to choose a control value at the vertices {0, d} and then use

(2.3) to obtain Km and gm: we select {u∗,−u∗} for Hold, {u∗, u∗} for Forward, and {−u∗,−u∗} for

Backward for the two vertices, respectively. This yields

uH (x) = KH x+ gH = (−2u∗/d)x+ u∗ = (−2u∗/d)(x− d/2)

uF (x) = KFx+ gF = u∗

uB(x) = KBx+ gB = −u∗

Now we construct the MA. The state space is QMA = M×R. The labels are Σ = {−1, 0, 1}. The set of

edges EMA are the same as those shown in Figure 4.4 for the double integrator version. For each m ∈M ,

the closed-loop vector fields are given by [XMA(m)](x) = um(x), which are clearly globally Lipschitz,

while the invariants are simply IMA(m) = [0, d]. The enabling conditions are ge = {d} for edges of the

form e = (F , 1, ·) ∈ EMA and ge = {0} for edges of the form e = (B,−1, ·) ∈ EMA. The reset and initial
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conditions are constructed according to their definition. Finally, it is quite trivial to show that this MA

design satisfies Assumption 4.4.5, so details are omitted.

4.7.2 Double Integrator: Hold, Forward, and Backward

In this section we give the formal details for the MA consisting of the three motion primitives Hold (H ),

Forward (F ), and Backward (B) introduced in Example 4.4.4. By exploiting the parallel composition

construction from Section 4.6, the usefulness of this MA is demonstrated in the context of multi-agent

systems in Section 4.8.

Suppose the nonlinear control system (4.1) is the double integrator system:

ẋ1 = x2, ẋ2 = u2, y = x1, (4.16)

where x := (x1, x2) ∈ R2, u2 ∈ R, and the output y is the position. Each motion primitive’s invariant

region is a polytopic set in the state space defined as the convex hull of vertices vk, k ∈ {1, . . . , 6}; see

Figure 4.5. The vertices are determined by the segment length d > 0, and a pre-specified maximum

control value u∗ > 0. Let v∗ :=
√
du∗ be the maximum speed, and let k1 := −2u∗/d and k2 := −2u∗/v∗

be controller gains. The vertices are v1 = (0,−v∗), v2 = (0, 0), v3 = (0, v∗), v4 = (d,−v∗), v5 = (d, 0),

and v6 = (d, v∗). For each motion primitive m ∈ M := {H ,F ,B}, we define an affine feedback

um(x) = Kmx+ gm. Then

uH (x) = KH x+ gH =
[
k1 k2

]
x+ u∗ = k1(x1 − d/2) + k2x2

uF (x) = KFx+ gF =
[
0 k2

]
x+ u∗ = k2(x2 − v∗/2)

uB(x) = KBx+ gB =
[
0 k2

]
x− u∗ = k2(x2 + v∗/2)

This yields the vector fields shown in Figure 4.5. It can be observed that Hold causes trajectories to

stabilize to the middle of the segment, while Forward causes trajectories to stabilize to the speed v∗/2

and similarly for Backward.

Remark 4.7.1. These controllers can alternatively be derived using reach control theory [61]. The

polytopes are triangulated into simplices and control values are assigned at the vertices. Using (2.3), an

affine feedback is constructed on each simplex; in our case, for each motion primitive the same feedback

results on each simplex to ensure smoothness in the control. Technically Hold does not solve the RCP

on these simplices, although Forward and Backward do so.
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Now we construct the MA. The state space is QMA = M × R2. The labels are Σ = {−1, 0, 1}. The

set of edges EMA are shown in Figure 4.4. In the context of parallel composition, one may compute that

the augmented edges are

EMA = EMA ∪ {(m, 0,m)}m∈M ∪ {(H , 0,F ), (H , 0,B)}.

For each m ∈ M , the closed-loop vector fields are given by [XMA(m)](x) = (x2, um(x)), which are

clearly globally Lipschitz. The invariants are given by the convex hull of vertices, as seen in Fig-

ure 4.5, and excluding the two points (0, 0) and (d, 0), so the invariants are clearly bounded. For

example, IMA(H ) = co{vk}5k=2 \ {(0, 0), (d, 0)}. The enabling conditions are constructed by taking

the convex hull of vertices of the exit facet and excluding again (0, 0) or (d, 0). Specifically, the edges

(F , 1,H ), (F , 1,F ) ∈ EMA both have guard sets ge = co{v5, v6} \ {(d, 0)} = {d} × (0, v∗], as shown

highlighted in green on the invariant region of F in Figure 4.5, whereas (B,−1,H ), (B,−1,B) ∈ EMA

both have guard sets ge = co{v1, v2} \ {(0, 0)} = {0} × [−v∗, 0). The reset and initial conditions are

constructed according to their definition.

The following result shows that the MA design is well-posed.

Lemma 4.7.2. The double integrator MA satisfies Assumption 4.4.5.

Proof. (i) We must show that for all m ∈M , 0 6∈ ΣMA(m). This is clearly true since there is no edge in

EMA containing the label 0.

(ii) We must show that for all e1, e2 ∈ EMA such that e1 = (m1, σ,m2) and e2 = (m1, σ,m3), ge1 = ge2 .

This is clearly true since we have designed g(F ,1,H ) = g(F ,1,F) and g(B,−1,H ) = g(B,−1,B).

(iii) We must show that for all e1, e2 ∈ EMA such that e = (m1, σ1,m2) and e2 = (m1, σ2,m3), if

σ1 6= σ2, then ge1 ∩ ge2 = ∅. This is trivially true since for all m ∈M , |ΣMA(m)| < 2.

(iv) We must show that for all e1, e2 ∈ EMA such that e1 = (m1, σ1,m2) and e2 = (m2, σ2,m3),

re1(ge1) ∩ ge2 = ∅. Using Assumption 4.4.5 (ii) above, we only need to check two cases, that is, e1 =

e2 = (F , 1,F ) and e1 = e2 = (B,−1,B). Both cases satisfy the condition because of the reset action

on the first coordinate; for example, the first case gives re1({d} × (0, v∗]) ∩ {d} × (0, v∗] = ∅.

(v) We must show that for all e = (m1, σ,m2) ∈ EMA, re(ge) ⊂ IMA(m2). This is easily verified for all

four edges in EMA, for example, if e = (F , 1,H ), clearly re1({d} × (0, v∗]) ⊂ IMA(H ).

(vi) We must show that for all m ∈ M , if ΣMA(m) = ∅ then IMA(m) is invariant. We have that only

ΣMA(H ) = ∅. As can be seen in Figure 4.5, the closed-loop vector field does not allow trajectories to

cross outside of IMA(H ), and therefore for all x0 ∈ IMA(H ), and for all t ≥ 0, φMA(t, x0) ∈ IMA(H ).
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(vii) We must show that for all m ∈ M , if ΣMA(m) 6= ∅ then IMA(m) forces all trajectories to

exit in finite time through some guard. Consider F with ΣMA(F ) = {1}. As can be seen in Figure

4.5, for all x0 ∈ IMA(F ), there exists T ≥ 0 such that for all t ∈ [0, T ], φMA(t, x0) ∈ IMA(F ), and

φMA(T, x0) ∈ {d} × (0, v∗]. Since both g(F ,1,H ) = g(F ,1,F) = {d} × (0, v∗], the assumption holds. A

similar argument can be made for B.

Remark 4.7.3. We noted in Remark 4.5.3 that Zeno executions do not arise for reach-avoid speci-

fications that, by construction, involve only finite MA executions. However, one may be interested in

analyzing whether an MA is non-Zeno in its own right, independently of the high level plan or con-

trol specification for which it is used. It can be verified rather easily that the p = 1 double integrator

MA design we have presented above is non-Zeno. The situation is considerably more complicated when

considering an MA that is a parallel composition of these MA’s or when considering an arbitrary MA.

Generic conditions when hybrid systems have a Zeno execution have been studied in [54, 121, 5]. How-

ever, further study of this problem is needed in our context since existing results do not apply to all the

situations that can arise in our MA.

4.7.3 Double Integrator: Multiple Speed Levels

This section presents a natural extension of the canonical motion primitives Hold, Forward, and Back-

ward, again for a double integrator model. The previous design is augmented with additional motion

primitives causing forward or backward motion at various speed levels.

As in the previous section, we consider the dynamics (4.16). The state space is QMA = M × R2. Let

ns > 0 be an integer denoting the selected number of speed levels. Then the set of motion primitives is

M = {H ,F1,B1,F2,B2, . . . ,Fns ,Bns}. (4.17)

The motion primitive m = H ∈ M is Hold as before and has exactly the same implementation.

The motion primitives m = Fi ∈ M , for i = 1, . . . , ns are called Forward at speed level i and cause

state trajectories to exit through the right face of Y ∗ in finite time. Similarly, the motion primitives

m = Bi ∈ M , for i = 1, . . . , ns are called Backward at speed level i and cause state trajectories to exit

through the left face of Y ∗ in finite time. The motion primitive H can be equivalently considered to be

Forward at speed level 0 and Backward at speed level 0, so it is convenient to define F0 := B0 := H .

The set of labels is Σ = {−1, 0, 1}. See Figure 4.9 for a depiction of the edges when ns = 2. For the

context of parallel composition, we have shown the set of augmented edges of the MA, EMA; the set of
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Figure 4.9: The augmented edges EMA for the multi-speed motion primitives ns = 2.
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Figure 4.10: The closed-loop vector fields for the Hold, Forward at speed level 1, and Forward at speed
level 2 motion primitives over their respective invariant regions in the (x1, x2) axes.

edges EMA consist of those edges (m,σ,m′) ∈ EMA such that σ 6= 0.

Speed levels in the forward direction Fi, i = 1, . . . , ns are connected in a chain such that upon

crossing the right face of Y ∗ (associated to the event 1 ∈ Σ), the next motion primitive may be at the

same speed level, one higher, or one lower. This incremental change in speed is enforced for “smoother”

transitions between the speed levels. Observe that slowing down one speed level from F1 results in the

motion primitive F0 = H . Similarly, the speed levels in the backward direction Bi, i = 1, . . . , ns are

connected in a chain with B0 = H and events −1 ∈ Σ corresponding to crossing the left face of Y ∗.

As before, the design is scalable by the segment length d > 0 and maximum stabilizing control value

u∗ > 0, and we have the derived parameters v∗, k1, and k2. The construction for m = H ∈ M is the

same as before and is not repeated. Now we give the construction for m = Fi ∈M , i = 1, . . . , ns. The

design is inspired by Forward from the previous section, but follows an alternative approach to using

the RCP. Essentially, we define a feedback controller that stabilizes all trajectories to a positive speed

that is a multiple of v∗, namely (i/2)v∗. Visually, if the invariant regions IMA(Fns), . . . , IMA(F1) were to
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be stacked from left to right, we obtain a pyramid, see Figure 4.10. For all i ∈ {1, . . . , ns}, IMA(Fi) is

the convex hull of the four vertices v1
Fi

= (0, 0), v2
Fi

= (0, (i+ 1)v∗), v3
Fi

= (d, iv∗), and v4
Fi

= (d,−v∗),

and excluding the points (0, 0) and (d, 0) as before. The feedback controllers are

uFi(x) = KFix+ gFi =
[
0 k2

]
x+ iu∗ = k2(x2 − (i/2)v∗). (4.18)

In this case, since there is no feedback on x1, it can be verified that the closed-loop system asymptotically

stabilizes trajectories to the positive equilibrium speed (i/2)v∗. The gain k2 was chosen to be the same

for each Fi to ensure the same rate of convergence to the equilibrium speed. The motion primitives

m = Bi ∈M are constructed similarly.

The enabling conditions, reset conditions, and initial conditions are straightforward to define. Finally,

similarly to Lemma 4.7.2, it is easy to establish that this MA satisfies Assumption 4.4.5.

4.8 Quadrocopter Applications

In this section we apply our methodology to a collection quadrocopters. We first explain how motion

primitives can be applied to the system, how to specify the reach-avoid objective, and the overall

solution pipeline. Next, we compare and contrast three algorithms for computing a control policy. Then

we present experimental results on three different scenarios. Lastly, we provide a discussion.

4.8.1 Interfacing Multiple Quadrocopters

First we recall the modelling and control of a single quadrotor presented in Section 2.7. The standard

quadrotor dynamical model has six degrees of freedom, which can be described by the inertial linear

positions (xw, yw, zw) and the roll-pitch-yaw Euler angles (φ, θ, ψ). Rather than designing a maneuver

automaton directly on this complex nonlinear system, we exploit the well known cascaded controller ar-

chitecture and the observed relationship between the linear accelerations and rotation matrix (2.4). This

enables us to use the motion primitives from Section 4.7.2 independently in the (xw, yw, zw) directions

to compute the linear accelerations as a feedback on the linear position and velocity states. This forms

our position control module, which contrasts from most approaches which either design timed reference

trajectories [73] or shape the velocity profile and then take the derivative [122]. Our approach shapes

the acceleration profile, which provides more flexibility in incorporating actuation constraints through

the selection of the maximum acceleration u∗. Implementation details on the attitude control module

are given in Section 4.8.3.
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Figure 4.11: Interface between multiple vehicles and the framework with p = 3N outputs. The hybrid
controller internal state consists of the joint state measurement of all the vehicles and includes the current
(joint) box, l, and the current (joint) motion primitive, m. The internal state is updated via external
state measurements (assumed to be given) and is used to compute the feedback controls.

We consider a centralized reach-avoid objective among N quadrocopters. A copy of the gridded

3D workspace must be associated with each vehicle, resulting in a total of p = 3N outputs. The

p-dimensional MA representing the asynchronous motion capabilities of the multi-vehicle system is ob-

tained by parallel composing p times the single-output MA from Section 4.7.2.

To specify the reach-avoid objective, we must identify the obstacle and goal boxes in p = 3N dimen-

sions. First we assume that the physical obstacles and goals for each vehicle are labelled on the physical

3D grid. Obstacle boxes in the output space correspond to any vehicle occupying a physical obstacle

box or any two or more vehicles occupying the same physical box simultaneously. To avoid the effects

of downwash, we do not allow vehicles to simultaneously occupy boxes that are displaced only in the zw

direction. Goal boxes in the output space correspond to all the combinations of individual vehicle 3D

goal boxes. For simplicity, we assume that each vehicle has a single 3D goal box.

The multi-vehicle reach-avoid problem is solved offline using our proposed methodology. The runtime

workflow is depicted in Figure 4.11. Each runtime component requires negligible computation, even for

a large number of vehicles and outputs.

4.8.2 Control Policy Generation

We highlight three options for generating a control policy in the context of the multi-vehicle reach-avoid

problem. For each, we give some implementation details and analyze its computational complexity.

These are then compared in the experiments.
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Exhaustive Non-Deterministic Dijkstra (NDD)

The first strategy follows the proposed methodology of Section 4.4. We highlight our main implementa-

tion steps. First, we compute the OTS states and edges for the associated output space obstacle boxes

described earlier. Second, the p times parallel composed MA states and edges are computed. Third, the

PA states and edges are computed. Fourth, the value function V is computed using (4.5). This is done

by initializing the value function to be zero at goal states and infinite elsewhere, and then propagating

backwards along PA edges using a non-deterministic Dijkstra (NDD) algorithm [17, 116]. Once the value

function is computed at all states, we compute the optimal control policy c? using Corollary 4.4.13. The

initial PA states (4.7) correspond precisely to those states q ∈ QPA with V (q) <∞.

The computational complexity grows exponentially as the number of inputs p = 3N increases. Sup-

pose that the physical grid has (nx, ny, nz) boxes in the (xw, yw, zw) directions. Since there are 3p motion

primitives, the number of PA states is bounded by |QPA| < (nxnynz)
N3p := k1. The number of edges

from an OTS state is bounded by 3p− 1 (the neighboring directions), whereas the number of edges from

a MA state is bounded by (2p − 1)3p := k2 (the neighboring directions times the possible next motion

primitives). Since the MA neighboring directions are more restrictive, we have the number of PA edges

is bounded by |EPA| < k1k2. The presence of obstacles can dramatically reduce the number of PA states

and edges. The NDD algorithm generally must inspect all the PA states and edges to compute the value

function. As a result, it is optimal and complete (with respect to the selected grid resolution and motion

primitive capabilities), which results in the largest possible set of initial conditions X0.

Deterministic A∗

In this strategy, we make two simplifying assumptions to compromise the quality of the control policy

in exchange for better computational efficiency. First, we take the p times composed MA and prune out

motion primitives enabling simultaneous motion. Second, we forego computing the largest possible set

of initial conditions and instead assume that a single physical initial box is specified for each vehicle. As

such, it is sufficient to compute a single path of boxes in the OTS connecting the initial and goal boxes

in the p = 3N dimensional output space. From this path the control policy is immediately extracted,

by assigning to each box the unique motion primitive leading to the next neighboring box along the

path. The path is computed using a standard A∗ algorithm [65], which starts from the initial box and

propagates outwards until the goal box is reached. The (admissible) heuristic function is chosen to be

the Manhattan distance, which is the sum of distances along each output direction from the current box

to the goal box.
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The number of nodes that A∗ must investigate is bounded by the maximum number of OTS boxes,

(nxnynz)
N , which still has exponential complexity in the number of robots. The pruned MA has 2p+ 1

motion primitives, corresponding to F or B in a single output component with H elsewhere, plus the

motion primitive (H , . . . ,H ). Thus from the current box, we must check the 2p neighboring directions

to select a feasible direction, taking into account out-of-bounds and obstacle configurations. In this

implementation, the OTS, MA, and PA serve more as conceptual constructs, and do not need to be

precomputed explicitly as it is expensive. In the worst case, the A∗ algorithm may investigate all boxes;

as a result, it also produces a control policy that is complete and optimal with respect to the chosen grid

and pruned MA motion capabilities. The policy produced by A∗ is of minimal length, but may have a

long runtime execution.

Deterministic Greedy Search

This strategy also makes use of the two simplifying assumptions as with A∗ above, but differs in how

the path is constructed. In greedy (best first) search [65], the path is constructed by starting from the

initial box in the output space and then extending it from the current box into any feasible neighboring

direction that decreases the Manhattan distance to the goal box. Greedy search can often find a path

very quickly, although not necessarily an optimal one. Moreover, since greedy search may fail to find a

path, it is not complete.

4.8.3 Experimental Results

Our experimental platform is the Crazyflie 2.0; see Figure 4.1. We used a VICON motion capture system

to obtain the state estimates of the vehicles. For the attitude control module, we assume a zero yaw

reference and we adapted the attitude controller of [73] onboard, making the crude simplification of zero

desired angular velocities due to communication bandwidth constraints. Our implementation was done

in Python 2.7.10 and ROS Kinetic, and computations were performed on a 64-bit Lenovo ThinkPad

with an 8 core 3.0 GHz Intel Xeon processor and 15.4 GiB RAM.

We illustrate three different scenarios and consider the three policy generation strategies on each of

them. The corresponding video results are available at http://tiny.cc/modular-3alg, and are able

to convey the multi-vehicle motion much more effectively than the static plots shown here. In our code

implementation, the user is able to easily specify any scenario by selecting the number of vehicles, the

grid parameters, the obstacle locations, the goal locations, and other parameters such as the algorithm

to generate a control policy.
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Figure 4.12: Experimental results for the open scenario, projected onto the (xw, yw) plane. In all plots, all
the vehicles must swap corners of the room. The left plot compares trajectories for a single vehicle using
the three different control policy generation strategies. The middle plot shows the resulting trajectories
for two vehicles using non-deterministic Dijkstra. The right plot shows the resulting trajectories for four
vehicles using greedy search, see also Figure 4.1. Although difficult to depict, the maneuvers are safe,
as the trajectories do not occupy the same physical boxes at the same time.

Open Space

The first representative scenario involves an open 3D space partitioned into a 7×7×2 grid and a sparse

collection of pillar-shaped obstacles. The left plot of Figure 4.12 compares the resulting 3D trajectories

in the (xw, yw) plane for the three strategies in the case of a single vehicle. The computation times were

40.63 milliseconds, 1.59 milliseconds, and 0.27 milliseconds for NDD, A∗, and greedy search, respectively.

The NDD algorithm offers the best quality control policy in that there is simultaneous motion in the

different degrees of freedom whenever possible and the same policy can be used from any starting box.

The A∗ and greedy search algorithms offer similar results to each other, with both producing an optimal

path of length 14. Both yield less efficient grid-like motion that is defined only along a single path from

the initial box, although a new policy can quickly be recomputed from different starting boxes. Based

on simulation tests for a single vehicle, each of these algorithms scale well to larger spaces or finer grids;

even NDD is able to compute a solution on a 100 × 100 × 10 grid in about two minutes in the worst

cases. Next we compare each strategy on more vehicles.

The middle plot of Figure 4.12 shows the resulting trajectories for two vehicles using NDD. The

control policy was computed in about 18 minutes and is defined on about PA 180000 states. While the

resulting control policy yields highly efficient motion defined over a large set of initial conditions, adding

more vehicles or more boxes generally explodes the computation time and memory requirements. Thus

NDD is best suited for small scenarios involving a modest number of vehicles, when one can afford to

spend time precomputing the control policy.

The right plot of Figure 4.12 shows the resulting trajectories for four vehicles swapping corners of
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Vehicle 1

Vehicle 2

Vehicle 3
Figure 4.13: This figure shows the channel swapping experiment involving three vehicles. In particular,
it shows the specification for the first reach-avoid, where goals are shown as the colored boxes. For the
second reach-avoid, the initial and goal boxes of vehicle 1 and 2 are swapped.

the room using greedy search. Since the vehicles and physical obstacles occupy a single box, greedy

search performs well, as each action typically results in one vehicle making progress towards the goal.

The computation time was about four milliseconds. Simulation results on a 100 × 100 × 10 grid with

eight vehicles placed randomly demonstrate that greedy search is usually able to find a solution on the

order of one second. As one would expect, greedy search typically fails to find a solution if long wall-like

or non-convex obstacles are introduced, or if the goals are not spaced out sufficiently. Furthermore, the

time to execute the entire maneuver scales with the number of vehicles.

Finally we consider the deterministic A∗ algorithm. Although the resulting trajectories follow a path

of optimal length, they look quite similar to those found by greedy search and thus are not shown.

Moreover, the method quickly becomes more computationally expensive beyond three vehicles.

Channel Swapping

The second representative scenario involves two rooms connected by a channel, defined over a 5× 2× 1

grid, see Figure 4.13. Two of the vehicles must continually swap places, while the third is required to

act as a gatekeeper. We specify this objective as an infinitely looping sequence of two distinct reach-

avoid problems. This illustrates that reach-avoid is a useful building block for addressing more complex

specifications.

The NDD algorithm produced both control policies in about 10 seconds, while the A∗ algorithm took

about 0.03 seconds. Greedy search fails to find a solution because it is unable to coordinate the third

vehicle away from its goal to make space for the other two. Since the resulting trajectories overlap in

physical space, Figure 4.14 shows the trajectories as a function of time using the policy computed with

NDD. The trajectories are highly non-trivial, but show that the objective is satisfied for at least one

cycle of both reach-avoids. Although not shown, the trajectories computed using A∗ are similar but take

a few seconds longer to execute the objective since the motion primitives are deterministic.
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Figure 4.14: Trajectories using non-deterministic Dijkstra for the channel experiment. The alternating
grey and white areas reflect the size of the grid boxes. The duration for each of the two reach-avoid
specifications is highlighted.
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Figure 4.15: The 8-puzzle: eight vehicles must coordinate into the ordered configuration.

8-Puzzle

We conclude our experimental results with the well-known 8-puzzle. On a 3× 3× 1 grid, eight vehicles

are placed randomly and must return to an ordered configuration, see Figure 4.15. For this application,

the A∗ algorithm is the most suitable, computing the control policy in 0.32 seconds. The NDD approach

would spend too much time precomputing edges in the high dimensional output space, while greedy

search would never make progress. Results are available to view in the video.

4.8.4 Discussion

Throughout the various experimental scenarios presented, we have demonstrated the modularity offered

by our approach. The designer can customize their own algorithms for generating a control policy in

order to trade-off solution quality with computational efficiency. Depending on the specific application

scenario, a different control policy generation strategy may be more suitable.
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In our analysis, all of the complexity was associated with the generation of the control policy for

a given MA. The MA formalism enables us to generate control policies with no further regard to the

continuous time trajectories that may result, due to the guarantees on discrete behavior encoded in the

MA edges. On the other hand, the generation of a MA for an arbitrary system is a difficult challenge

in its own right and is left to the discretion of the designer, although the design we have presented in

Section 4.7.2 can potentially be applied to control systems that are feedback-linearizable into a collection

of double integrators. Taking care that the outputs are translationally invariant and that obstacle boxes

can be computed, this includes end effector control of fully actuated robotic manipulators [100] and some

wheeled vehicles through the use of look-ahead points [4].

It is important to emphasize that design of the MA decouples the dynamics of the system from the

reach-avoid specification, which is embodied by the OTS. As such, given a MA design that is well-posed,

we may apply it to a variety of physical scenarios, including also a sequence of reach-avoids. For more

complex logical specifications, such as those expressed in temporal logic, it is possible to combine our

methodology with other approaches such as in [58]. Informally, the temporal logic formula would be

converted to an automaton in the usual way, which can then be producted with our Product Automaton

to yield the possible motions over the grid augmented with states monitoring the progress of satisfying

the formula.

We also emphasize the role of non-determinism. In such a situation, motion primitives can enable

multiple possible faces of an output space box to be reached, which physically corresponds to vehicles

moving at the same time and/or a single vehicle moving in multiple directions in 3D. Motion primitives

enabling such non-determinism are more rich and complex, affording more efficient motions and execution

times, but at the expense of more computational complexity.

Our approach offers robustness through the use of feedback-based motion primitives, as the con-

struction of invariant regions ensures a wide range of initial conditions for which output trajectories exit

through appropriate guard sets into subsequent boxes. Since the motion primitives are updated during

execution based on the measured box transitions and control policy, we do not require timing estimates

for completing box transitions, which can be difficult to compute. These features are advantageous

under model uncertainty, which we must contend with since we base our motion primitive design on

the double integrator model rather than the more complex quadrocopter model, and since aerodynamic

effects arise when multiple quadrocopters fly in close proximity. Our previous work also demonstrated

similar robustness of operation under wind disturbances generated by a fan on a larger quadrocopter

[109]. Finally, we note that our framework can easily be applied to a heterogenous team of robots; if

each vehicle has its own MA, the parallel composition automatically constructs the overall MA for the
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multi-vehicle system.

Of course, our solution to Problem 4.3.1 is conservative because we have restricted ourselves to a

particular discretization, namely the choice of a partition into boxes and the use of motion primitives. As

we have demonstrated, this is a reasonable trade-off, especially since the resolution of the output space

discretization, the richness of motion primitives, and the complexity of the control policy are all design

parameters. Moreover, by utilizing a richer set of motion primitives, such as the multispeed primitives

proposed in Section 4.7.3, or by decreasing the grid size, we can effectively increase the resolution or space

of possible trajectories, thus decreasing conservatism but with the burden of additional computational

effort.

4.9 Conclusion

We have developed a modular framework for motion planning of multiple agents in known environments.

It consists of several modules. An output transition system (OTS) models the allowable motions of the

agents by partitioning their workspace into boxes. A set of motion primitives is designed based on

reach control on polytopes. A maneuver automaton (MA) captures constraints on successive motion

primitives. Finally, a control policy is generated based on the synchronous product of the OTS and the

discrete part of the MA. Overall we obtain a two-level control design which is highly robust, modular,

and conceptually elegant. We presented a specific maneuver automaton for the double integrator system,

and we showed how this design can be composed to obtain maneuver automata for multi-agent systems.

The methodology was experimentally validated on a collection of quadrocopters.

We briefly discuss some of the limitations and possible extensions on the methodology presented in

this chapter. First, although we have presented a fairly general framework for nonlinear systems with

symmetries, it can still be argued that such an approach can be difficult to apply directly to an arbitrary

real robotic system in practice. In retrospect, the well-posedness conditions we have supplied are fairly

intuitive and perhaps it would have been more useful to focus on providing an automated procedure for

constructing a maneuver automaton that satisfies the required properties by design. Although we have

sketched some possible ways to apply our existing motion primitives based on integrators to other robotic

systems, a customized approach likely needs to be employed on different robotic platforms. Even in our

application to quadrotors, we employed the known cascaded control architecture and differential flatness,

as designing motion primitives directly on the full 12-dimensional system would have been a difficult

challenge. Moreover, the proposed framework was applied to two planar robotic manipulators in [61],

and it was observed that the computation of obstacles was much more challenging than for quadrotors.
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We also note that our formulation of motion primitives was given on Rn rather than on a manifold;

the original formulation of the MA in [33] potentially provides some tools to extend our feedback-based

motion primitives to manifolds. Finally, our approach would not be suitable for objectives expressed on

outputs that are not translationally invariant; for example, a flip of a quadrotor would require explicitly

controlling an angular state.

In particular, application to a unicycle model is also left as future work, and we briefly outline two

possible directions. One approach is to work in the full state space (2D position and heading) and

consider various linear speeds and angular speeds to form suitable invariants and enabling conditions

as required by the MA. Special care would be required as the heading angle means that the state is on

a manifold, as noted above. A second approach is to employ the standard technique of a look-ahead

point [4], in which it is easy to show that the unicycle model becomes two single integrators so that

the design in Section 4.7.1 can be used. In both these approaches, the difficulty of modelling obstacle

boxes in the output space presents a challenge, as collision checks with the environment would typically

require knowledge of the heading angle as well. Conservative modelling of obstacle boxes may prohibit

application to tight maneuvers such as parking. Ultimately, the application of our proposed method on

a variety of different robotic systems in the future will ascertain its true limitations.

Second, our framework has been designed specifically on a uniformly gridded output space. While

this feature has many advantages such as being simple and compatible with many planning algorithms, it

is still somewhat of an arbitrary imposition. The next chapter aggregates sequences of motion primitives

to obtain more general motion primitives of varying shapes, but it is still confined to a grid. It may

also be interesting to investigate to what extent feedback-based motion primitives can be formulated on

other types of partitions; some degree of symmetry is likely required, for otherwise there would be too

many different motion primitives to be used during high level planning.

Third, in this chapter we employed fairly naive high level planning approaches. Given the number of

advanced planning algorithms discussed in the related literature, it might have been worthwhile to select

some compatible algorithms or devise new algorithms that could really showcase scalability to a large

group of simultaneously moving vehicles as well as fast computation times. A decentralized approach is

promising, where each agent computes its own control policy and models the others as moving obstacles.

Fortunately, the existing motion primitives could be reused, and the control policy can possibly be

recomputed online as the obstacles are updated. However, formal guarantees on completion of the

objective are more difficult to establish. In terms of a decentralized or distributed computation of

a control policy, it would also be interesting to incorporate communication constraints, which could

be done at a discrete resolution based on the box sizes so as to assign motion primitives to maintain
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connectivity on fixed or variable communication topologies [75]. These directions were not pursued, as

the emphasis of the work was on establishing the correctness of integration between the high and low

levels. Moreover, the next chapter shows that the addition of layers in the hierarchy is a promising

approach to dealing with complexity.

Fourth, this work has focused on many technical points, and a particularly challenging aspect was

the consideration of Zeno executions. We made extensive efforts to find sufficient conditions that would

establish the absence of Zeno executions in maneuver automata, but did not succeed. Even the consider-

ation of Zeno executions for our integrator-based motion primitives was non-trivial, and becomes much

more complex during the parallel composition procedure. While such details are unlikely to concern the

majority of the robotics community, a complete characterization of the existence of Zeno executions is

an open problem in our maneuver automaton framework as well as the general hybrid systems literature.

Finally, we have focused the work on the relatively simple reach-avoid problem. As we noted in

the related literature, some works have focused on more interesting real-world scenarios involving more

complex actions other than just movement as well as dynamic tasks and environments. Extending our

method to such scenarios would require designing motion primitives that encode completion of actions,

and defining a suitable notion of a high level control policy in the face of uncertainty.



Chapter 5

Hierarchical Motion Primitives for

Motion Planning

5.1 Introduction

This chapter proposes a hierarchical architecture for motion primitives for motion planning of multi-

vehicle systems. There are at least three benefits conferred to the motion planning problem by a hierar-

chical approach. First, it allows the user to incrementally build up arbitrarily complex motion primitives

from simpler ones in a systematic, rigorous, yet intuitive way. Second, a hierarchical architecture pro-

vides a way to dramatically reduce the overall complexity of motion planning by abstracting details at

the low level, while at the same time not compromising on correctness and safety. The abstraction of

low level behavior is obtained by aggregating collections of behaviorally similar lower level primitives,

whose details need not be distinguished in high level motion planning algorithms. Finally, hierarchically

constructed motion primitives can be used to constrain behavior. In particular, they can be used to

characterize the aggregate behavior of a group of vehicles so that, for example, a formation is retained.

To illustrate our vision of hierarchical motion primitives, consider a control system with two outputs,

say to model the planar motion of a vehicle. Suppose that the two-dimensional output space has been

gridded into boxes and that we have devised feedback controllers to obtain a finite set of atomic motion

primitives. In Figure 5.1 we show five atomic motion primitives, Hold, Right, Up, Right-Up, and Down.

These atomic motion primitives at level 0 are responsible to drive the output trajectories of the system

from one box to another. Motion primitives at level 1 are formed from sequences of level 0 motion

primitives. For example, two successive Right atomic motion primitives from level 0 form the Two

105
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Right motion primitive at level 1. Similarly, level 2 motion primitives can be built using level 1 motion

primitives. We will demonstrate that planning can be made dramatically more efficient.

Though our main idea is simple, and while many concepts and methods involving hierarchy and

abstractions have been well studied [3, 103, 20, 53, 119], we place extra demands on our design that

take it a step beyond what has been done. First, we allow for an arbitrary number of hierarchical levels,

and the design of any level depends in the same way only on the level below. One of the benefits of this

uniformity of the architecture is that a designer can apply a planning algorithm at any level to obtain

a control synthesis to the problem. Second, motion primitives at any level must be implementable by

the low level continuous dynamics, for instance by adhering to safety and continuity constraints on

positions and velocities. Effectively, we are implementing a notion of hierarchical consistency, but with

the addition of a continuous state feedback at the lowest level [53]. As a final constraint, we expect a

design that gives dramatic computational advantages, especially in the multi-agent setting. To this end,

we construct hierarchical motion primitives on a grid, as shown in Figure 5.1.

There are three main contributions of this chapter. First, we supply the complete architectural formu-

lation of hierarchical motion primitives, which involves careful attention to suitable, parsimonious data

structures and relationships. Second, we introduce and solve a novel formulation of the motion planning

problem called behavior-constrained reach-avoid, in which the vehicles must safely reach goal locations

while maintaining desirable predefined sequences of motions on the grid; here our analysis employs fairly

standard notions from hybrid control theory. Finally, we supply a library of hierarchical motion prim-

itives for multi-agent systems and apply these motion primitives to a collection of quadrocopters to

achieve a new way to perform formation flight as well as to morph between formations in obstacle rich

environments. The effectiveness and scalability of our approach is experimentally demonstrated on a

variety of scenarios. A video illustrating these results can be found at http://tiny.cc/hier-moprim.

This research is an outgrowth of our modular framework for motion planning of nonlinear systems

with symmetries based on motion primitives presented in the previous chapter; the notions of atomic

motion primitives and the maneuver automaton were introduced there. As those constructions were

limited only to level 0, this chapter concerns itself with describing how to build hierarchical motion

primitives at higher levels and illustrating the computational advantages of employing a multi-level

hierarchy. Moreover, we have introduced the notion of behavior constraints in addition to the usual reach-

avoid problem as a mechanism to address the formation control problem of quadrotors in a hierarchical

manner.

This chapter is organized as follows. In the next section, we give an overview of related literature.

In Section 5.3 we formulate the motion planning problem as a reach-avoid problem with behavioral
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Motion primitives

Implementation (closed-loop vector fields)
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Motion primitives

Implementation (using Level 0)
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Motion primitives

Implementation (using Level 1)

“Hold” “Right” “Up” “Right-Up” “Down”

“Two Right” “Right and Up” “U-Turn” “Hold”

Figure 5.1: An example of motion primitives designed at three hierarchical levels over a gridded two
dimensional output space.
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constraints. The methodology of hierarchical motion primitives is given in Section 5.4. In Section 5.5,

we apply our methodology to obtain a hierarchical controller and solvability conditions for the behavior-

constrained reach-avoid problem. In Section 5.6 we discuss two formal methods for obtaining hierarchical

motion primitives from simpler ones. In Section 5.7 we present a library of hierarchical motion primitives,

while in Section 5.8 we apply them in the context of quadrocopter control and planning. Experimental

results on quadrocopters are given in Section 5.9. Finally, we conclude in Section 5.10.

5.2 Related Literature

5.2.1 Hierarchy and Abstractions

The idea of using hierarchy to simplify and scale up system design is an intuitive and attractive concept

that has been described in a variety of forms [74]. In the context of general control systems, several

works have studied abstractions for discrete event systems [53, 119] and hybrid systems [3, 103, 20, 104].

While these theoretical constructions provide important insights into the process of forming hierarchical

structures, application of these methods to real robotic systems remains a challenge. To this end, we

provide additional constraints on the design of hierarchical motion primitives to ensure implementability.

Other theoretical works have employed similar techniques on various applications, such as using

Petri nets with refinements to model manufacturing cells [124], using max-plus algebra to model railway

scheduling [72], and using a multi-step process to synthesize hybrid controllers for linear temporal logic

(LTL) specifications [31]. The recent work [35] has studied general factoring of hybrid systems and

applied it to a robotic pick-and-place operation.

Many works that utilize hierarchy assume a fixed structure, typically with a high and low level,

including our previous work [109, 111]. In our view, such fixed levels represent a missed opportunity,

since exploiting a flexible hierarchical structure with an arbitrary number of levels may result in even

better modeling efficiency. This chapter presents a concrete description of a multi-level hierarchy in the

context of grid-based planning. It makes the relationships between the various levels explicit in order to

establish correctness in motion planning.

5.2.2 Multi-agent Planning and Control

In the context of multi-agent motion planning, a number of hierarchical-based techniques exist to simplify

planning. Comparable works include those that discretize the workspace into a grid, employ multi-

resolution grid representations, and perform graph search [67, 56, 101, 49, 26, 107]. These include a
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variety of multi-resolution grid techniques, such as terrain map clustering [49], map abstraction and

refinement [101], and wavelet decompositions [26]. Similar techniques have been applied to not just to

motion planning, but in combination with perception and terrain mapping [79]. Most of these works do

not explicitly consider the dynamics of the agents and thus the feasibility of executing these efficiently

constructed motion plans is uncertain. Since this chapter focuses on grid-based planning and integrates

the continuous level explicitly, existing multi-resolution planning techniques may guide the construction

of hierarchical motion primitives as presented here - this is an area of future investigation.

One of our motivating applications for hierarchical motion primitives is coordination of quadrotors.

There is a wealth of literature on multi-agent formation control. Concepts from computational geometry

and graph theory play a predominant role in multi-agent coordination and more specific tools such as

rigidity theory have offered important theoretical insights [75, 19]. Various network topologies have been

considered, in which agents make decisions based on absolute quantities in a common reference frame,

relative quantities, or a mixture such as a leader-follower approach [81]. Abstractions of the overall group

and control of aggregate features are considered in [57, 11]. A leader-follower scheme is approached as

a constrained optimization problem in [102].

We formulate the formation control problem in a new way, taking the standard reach-avoid specifica-

tion for a multi-vehicle system to safely reach a target in a known environment, and further imposing a

suitably defined behavior constraint to maintain desired relative constraints among the vehicles. Behav-

ior constraints find analogy with sublanguage specifications of discrete event systems [119], and they also

have some resemblance with LTL specifications [58, 116]. We are not aware of any existing method that

uses hierarchical motion primitives to solve the formation control problem. In particular, our approach

enables to abstract away the number of vehicles, leading to efficient computations, but still precisely

navigate a formation of vehicles, even allowing obstacles to pass tightly between the vehicles. Addition-

ally, our method of formation control offers important practical advantages. Since it relies on discrete

event sequencing rather than timed reference trajectories, communication delays play a relatively in-

consequential role. Moreover, feasibility of the formation is guaranteed in a bottom-up fashion, which

decouples the behavior satisfaction from the reach-avoid specification. Finally, our hierarchical theory

offers simplicity in implementation as it involves mainly discrete computations rather than geometric

arguments and nonlinear control theory. In general, the design of hierarchical motion primitives can be

tailored by the designer to address specific behavior constraints, and a formation constraint represents

just one special case within our proposed framework.
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5.2.3 Motion Primitives

Motion primitives have become a popular tool in robotics for abstracting and simplifying possible motions

in order to perform motion planning that is implementable by vehicle dynamics. Motion primitives have

been generated and specified in a variety of ways on a number of applications, including predefined

reference trajectories for quadrocopters [93, 43], segmentation and clustering of recorded trajectories for

humanoid robots [97, 63], and sampled state lattice endpoints for cars-like robots [84]. Other works have

also focused less on dynamics and more on describing hierarchies of actions and task decomposition [55].

Many authors have realized the importance of incorporating constraints when concatenating motion

primitives. The concept of a maneuver automaton, which describes concatenation constraints among

motion primitives, originates with [33]. Our formulation of the maneuver automaton in Chapter 4 was

specialized to a grid partition in order to facilitate correctness of motion primitive concatenation in

cluttered environments. This chapter extends these notions by introducing the hierarchical maneuver

automaton. Other works have organized motion primitives and their concatenation constraints in the

form of skill trees [60] and binary trees [27]. All of these approaches have the common goal of providing

a hierarchical description of motion capabilities that is meaningful to the application considered.

In contrast to the above approaches, our work in Chapter 4 introduced a novel formulation of

feedback-based motion primitives for motion planning of nonlinear systems with symmetries on an output

space grid. Our formulation provided two important advantages: (i) a provable safety guarantee between

the consistency of discrete planning using motion primitives and continuous time implementability, and

(ii) a decoupling and modularity of the design of low level continuous time feedback controllers and high

level discrete planning. This chapter provides a natural extension to design abstract motion primitives

up to arbitrary levels, in particular to facilitate scalability of motion planning to a large collection of

vehicles.

5.3 Problem Statement

Consider the general nonlinear control system

ẋ = f(x, u) , y = h(x) , (5.1)

where x ∈ Rn is the state, u ∈ Rµ is the input, and y ∈ Rp is the output. Let x(·, x0) and y(·, x0)

denote the state and output trajectories respectively of (5.1) starting at initial condition x0 ∈ Rn and

under some open-loop or feedback control. As in Chapter 4, we make the standing assumption that the
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outputs of (5.1) are a subset of the states and that the vector field is invariant to the value of the output.

Refer to Assumption 4.3.2.

Fix a grid length vector d = (d1, . . . , dp) where di > 0. The gridded output space is constructed

by translating the canonical box Y ? :=
∏p
i=1[0, di]. That is, associated with each l ∈ Zp is a shifted

box Yl :=
∏p
i=1[lidi, (li + 1)di]. We call l ∈ Zp the box index of Yl. We identify a (non-empty) set of

feasible boxes in terms of their box indices Lf ⊂ Zp. The feasible boxes arise from control specifications

including obstacle avoidance, collision avoidance, communication constraints, and others. Similarly, we

identify a (non-empty) set of goal boxes in terms of their box indices Lg ⊂ Lf .

Now consider an output trajectory y(·, x0) for some control and initial condition x0 ∈ Rn. We

associate to y(·, x0) a discretized trajectory called a run that records the boxes that the output trajectory

visits; see [58] for a formal definition. The run is denoted as yr := l1l2 · · · , where li ∈ Zp is a box index.

We define the behavior induced by y(·, x0) to be the sequence of box index increments yb := κ1κ2 · · · ,

where κi := li+1 − li. Because yr records every box visited by the output trajectory, we have that

κi ∈ {−1, 0, 1}p \ {0}. That is, the increment in any coordinate is of magnitude at most 1, and the

overall increment is never 0. Let B denote the empty sequence and all finite and infinite sequences on

{−1, 0, 1}p \ {0}. We define a behavioral constraint B̂ ⊂ B to be any non-empty subset of B.

Problem 5.3.1 (Behavior-Constrained Reach-Avoid). Consider the system (5.1) with a gridded output

space in terms of grid length vector d ∈ Rp. We are given goal boxes Lg, feasible boxes Lf , and a

behavioral constraint B̂ ⊂ B. Find a feedback control u(x) and a set of initial conditions X0 ⊂ Rn such

that for each x0 ∈ X0:

(i) Avoid: y(t, x0) 6∈ Rp \
Ä⋃

l∈Lf Yl
ä

for all t ≥ 0,

(ii) Reach: there exists T ≥ 0 such that for all t ≥ T , y(t, x0) ∈ ⋃l∈Lg Yl,

(iii) Behavior: yb ∈ B̂.

5.4 Hierarchical Motion Primitives

In this section we present the hierarchical construction of motion primitives. First we recall the definitions

of maneuver automata (MA) and executions from Chapter 4 and recast it in a modified notation, as it

serves as the level 0 or base case of the construction.
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5.4.1 Maneuver Automaton

A maneuver automaton (MA) is a hybrid system whose discrete modes correspond to motion primitives.

Each level 0 motion primitive has associated to it a continuous time closed-loop vector field obtained by

applying a state feedback law to (5.1). The edges of the MA model feasible successive motion primitives.

A motion primitive generates some desired behavior of the output trajectories of the closed-loop system

over a box in the output space. Because of the uniform gridding of the output space into boxes and

because of the symmetry assumption on the outputs, level 0 motion primitives are designed only over Y ?.

The MA applies state resets to ensure that output trajectories remain in Y ?. Real, physical trajectories

clearly do not undergo such resets and instead output trajectories move continuously from box to box.

Definition 5.4.1. Consider the system (5.1) satisfying Assumption 4.3.2 and the box Y ? with lengths

d. The level 0 maneuver automaton (0-MA) is a tuple H0 = (Q0,Σ0, E0, I0, Q0,0, X0, G0, R0), where

State Space Q0 = M0 ×X 0 is the hybrid state space, where M0 is a finite index set of level 0 motion

primitives, and X 0 = Rn is the continuous state space.

Labels Σ0 = {(0, κ) | κ ∈ {−1, 0, 1}p} is a finite set of event labels, where the first element 0 of the

pair (0, κ) identifies the starting box in terms of its box index in the gridded output space. Since

all level 0 motion primitives are only defined on the box Y ?, this index is always 0. The second

element κ is an offset associated with a face of Y ?. That is, κ = (κ1, . . . , κp) identifies the face of

Y ? given by

Fκ =





y ∈ Y ?

∣∣∣∣∣∣∣∣∣∣∣∣





yi = 0, if κi = −1

yi = di, if κi = 1

yi ∈ [0, di], if κi = 0





.

Edges E0 ⊂M0 × Σ0 ×M0, is a finite set of edges.

Invariants I0 : M0 → P(Rn) assigns a bounded invariant set I0(m) to each m ∈ M0 that defines the

region on which the vector field X0(m) is defined. We impose that the projection of I0(m) into the

output space lies in Y ?; that is, h(I0(m)) ⊂ Y ?.

Initial Conditions Q0,0 ⊂ Q0 assigns a set of initial conditions. Specifically, Q0,0 = {(m,x) ∈ Q0 | x ∈

I0(m)}.

Vector Fields X0 : M0 → {f0
m}m∈M0 assigns to each m ∈ M0 a globally Lipschitz closed-loop vector
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field of the form f0
m(·) = f(·, um(·)), where um(·) is the state feedback controller associated with

m ∈M0.

Enabling Conditions G0 : E0 → {g0
e}e∈E0 assigns to each edge e = (m, s,m′) ∈ E0 a non-empty

enabling or guard condition g0
e ⊂ I0(m). We require that the projection of g0

e into the output space

lies in the face of Y ? determined by the label s = (0, κ). That is, h(g0
e) ⊂ Fκ.

Reset Conditions R0 : E0 → {r0
e}e∈E0 assigns to each edge e = (m, s,m′) ∈ E0, a reset map r0

e :

Rn → Rn. Since resets of states are determined by the event s = (0, κ) ∈ Σ0 in order to maintain

output trajectories inside the canonical box Y ?, we define re(x) = x − h−1
o (d ◦ κ). In particular,

this means that the i-th output component is reset to the right face of Y ? if κi = −1, reset to the

left face if κi = 1, and unchanged otherwise.

Remark 5.4.2. For an edge e = (m, s,m′) ∈ E0, the label s = (0, κ) ∈ Σ0 with κ ∈ {−1, 0, 1}p denotes

that the starting box is Y ? and the next box is Yκ. This edge e would be taken by a continuous output

trajectory y(·, x0) starting in Y ? using the motion primitive m ∈ M0, then reaching a face shared by

Y ? and Yκ, and finally applying the motion primitive m′ ∈ M0 after the reset. Thus, Σ0 describes all

possible directions to neighboring boxes that are reachable with the current motion primitive starting from

box 0. We will see that the sequence of labels generated are precisely what we call the behavior generated

by an output trajectory of (5.1).

The semantics of a level 0 MA involve the standard notion of an execution of a hybrid system, as

discussed in Chapter 4. We shall denote a level 0 execution as χ0 = (τ0,m0, x0), where τ0 is a hybrid

time domain consisting of time intervals (e.g. τ0 = {[0, 2], [2, 3.5], . . .}), m0 is a sequence of level 0

motion primitives recording the motion primitive over each time interval, and x0 is the continuous state

as a function of time.

Definition 5.4.3. A level 0 hybrid time domain is a finite or infinite sequence τ0 = {I0
0 , . . . , I0

n0} such

that each I0
i is a time interval and the following hold: (i) I0

i = [τ0
i , τ̃

0
i ], for all 0 ≤ i < n0; (ii) if n0 <∞,

then either I0
n0 = [τ0

n0 , τ̃0
n0 ] or I0

n0 = [τ0
n0 , τ̃0

n0); (iii) τ0
i ≤ τ̃0

i = τ0
i+1, for all 0 ≤ i < n0.

Definition 5.4.4. Given H0, a level 0 execution is a collection χ0 = (τ0,m0(·), x0(·)), such that the

following conditions hold:

(i) the initial condition of the execution satisfies: (m0(τ0
0 ), x0(τ0

0 )) ∈ Q0,0,

(ii) the continuous evolution of the execution satisfies: for all i ∈ {0, . . . , n0} with τ0
i < τ̃0

i , then for

all t ∈ I0
i , m0(t) ∈ M0 is constant and d

dtx
0(t) = X0(m0(t))(x0(t)), while for all t ∈ [τ0

i , τ̃
0
i ),

x0(t) ∈ I0(m0(t)),
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(iii) a discrete transition of the execution satisfies: for all i ∈ {0, . . . , n0 − 1}, there exists s0(i) ∈ Σ0

such that (m0(τ̃0
i ), s0(i),m0(τ0

i+1)) =: e0
i ∈ E0, x0(τ̃0

i ) ∈ G0(e0
i ), and x0(τ0

i+1) = R0(e0
i )(x

0(τ̃0
i )).

5.4.2 Higher Level Maneuver Automata

We want to extend the notions of motion primitives, maneuver automata, and executions of an MA from

level 0 to higher levels by a hierarchical construction that builds level k using only information from

level k − 1. We have organized all the details of the k-th level into a tuple just like H0, but suitably

generalized. We begin with the discrete part of H0 since its extension to level k > 0 is straightforward.

The discrete part of H0 is given by the tuple (M0,Σ0, E0), which is interpreted as a graph with nodes

M0 (the level 0 motion primitives), labels Σ0, and edges E0. The extension to level k > 0 is analogous.

The discrete part of Hk is a tuple (Mk,Σk, Ek), which is interpreted as a graph consisting of a finite

set of motion primitives Mk, a set of event labels Σk, and a finite set of edges Ek modeling allowable

successive level k motion primitives. Because level k motion primitives may be defined over more boxes

than just Y ?, the event labels Σk on transitions must be accordingly generalized.

To this end, we define the reference frame of a motion primitive. Let m ∈Mk. We associate to m a

reference frame omy1 . . . yp, where om is the base point and yi are the Euclidean coordinate vectors in

Rp. Thus, om may be different for each primitive, while the coordinate axes of different frames are the

same. Then the event labels Σk = Zp × {−1, 0, 1}p describe the position, encoded as a box index, and

direction, encoded as a face of a box, at which transitions between different motion primitives occur.

For example, consider the level 1 motion primitive in Figure 5.1 called Two Right with two outputs,

p = 2. It is constructed by concatenating the level 0 motion primitive Right twice. Afterwards Two

Right may, in turn, be concatenated with other level 1 motion primitives. Each possible concatenation is

encoded by an edge e = (m, s,m′) ∈ E1, where m ∈M1 denotes Two Right, m′ ∈M1 denotes a possible

next level 1 motion primitive, and s = (l, κ) ∈ Σ1 ⊂ Z2 × {−1, 0, 1}2 is the label. The first component

l encodes the box index w.r.t. the frame for motion primitive m and the second component κ identifies

the face of the box from which the transition from m to m′ occurs.

Now consider the continuous time part of H0. It consists of a continuous state space X 0 = Rn, a set

of continuous time closed-loop vector fields X0, a set of invariants I0 that specify the domain of each

vector field, and the enabling conditions G0 and reset maps R0 that specify how continuous states must

be reset upon reaching an enabling condition. These notions are extended to level k as follows.

The continuous state space X 0 is reinterpreted at level k as a (discrete) state space X k = Zp×Mk−1.

As such, the notion of a continuous state translates, at level k, to pairs (l, µ), with l ∈ Zp identifying
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a frame offset and µ ∈ Mk−1 identifying a level k − 1 motion primitive. Clearly, such states are

not continuous but instead represent level k − 1 motion primitives attached on the discrete lattice Zp.

Similarly, the notion at level 0 of a continuous state trajectory, which is a function of time, is replaced

at level k by a discrete sequence of (l, µ) pairs.

The continuous time vector fields at level 0 are replaced by a set of discrete maps. For motion primitive

m ∈Mk, the discrete map fkm : X k ×Σk−1 → X k defines the internal transitions on (l, µ) ∈ Zp ×Mk−1

pairs that make up motion primitive m. These discrete maps must adhere to the constraints on successive

level k − 1 motion primitives as specified in Hk−1 (formal details are below). The invariant Ik(m) is a

finite set of (l, µ) pairs that the discrete map fkm acts on. If a motion primitive m ∈Mk has an internal

transition from (l, µ) ∈ Ik(m) to (l′, µ′) ∈ Ik(m), where µ and µ′ are level k− 1 motion primitives, then

l := omµ ∈ Zp and l′ := omµ′ ∈ Zp, denoting the frame offsets of the base points oµ and oµ′ w.r.t. om.

The enabling conditions and reset maps take the analogous meanings as in H0. They define the

external transitions from primitive m ∈Mk to other level k motion primitives (including m itself). For

an external transition e = (m, s,m′) ∈ Ek with s = (ls, κs), we have an enabling condition gke ⊂ Ik(m)

from which the external transition can occur. As mentioned before, ls ∈ Zp describes the box index with

respect to the frame of m while κs ∈ {−1, 0, 1} identifies the face through which the transition from m

to m′ occurs. If there is an external transition from (l, µ) ∈ gke ⊂ Ik(m) to (l′, µ′) ∈ Ik(m′), where µ and

µ′ are level k − 1 motion primitives, then the reset map describes how these two states of the motion

primitives m and m′ are related.

Definition 5.4.5. Suppose we are given Hk−1, a level k − 1 MA, where k ≥ 1. A level k MA (k-MA)

is a tuple Hk = (Qk,Σk, Ek, Ik, Qk,0, Xk, Gk, Rk), where

State Space Qk = Mk×X k is the hybrid state space, where Mk is a finite index set of motion primitives

at level k, and X k = Zp ×Mk−1 is the analogue of the notion of a continuous state space at level

0. The state space X k consists of all (l, µ) pairs where l is the frame offset of the coordinate frame

for motion primitive µ ∈Mk−1 w.r.t. the frame for some primitive m ∈Mk.

Labels Σk = Zp × {−1, 0, 1}p is a set of event labels. If s = (ls, κs) ∈ Σk, then ls ∈ Zp is the box

index w.r.t. a frame for some primitive m ∈Mk from which an external transition occurs, and κs

identifies the face of the box through which the transition occurs.

Edges Ek ⊂ Mk × Σk ×Mk is a finite set of edges describing which level k motion primitives can be

concatenated. Given m ∈Mk, the set of transitions associated with edges of the form e = (m, s,m′)

for some m′ ∈Mk are called the external transitions of m.



Chapter 5. Hierarchical Motion Primitives for Motion Planning 116

Invariants Ik : Mk → P(X k) assigns to each motion primitive m ∈ Mk a non-empty, finite set of

states Ik(m) ⊂ X k on which the transition function fkm : X k × Σk−1 → X k (defined below) acts.

The indices l ∈ Zp for pairs (l, µ) ∈ Ik(m) correspond to the origin of the frame for µ ∈ Mk−1

w.r.t. the frame for m ∈ Mk. The invariant is different from the envelope of m ∈ Mk, denoted

Lk(m), which is the collection of all box indices w.r.t. the frame for m accumulated from the

envelopes of the lower level primitives that constitute m. We have that

Lk(m) = {l + l′ ∈ Zp | (l, µ) ∈ Ik(m), l′ ∈ Lk−1(µ)}.

Initial Conditions Qk,0 ⊂ Qk assigns a non-empty set of initial states, satisfying: if (m,x) ∈ Qk,0,

then x ∈ Ik(m).

Transition Functions Xk : Mk → {fkm}m∈Mk assigns to each m ∈ Mk a transition function fkm :

X k × Σk−1 → X k that specifies all the allowable transitions between (l, µ) ∈ Ik(m) pairs that

together constitute the level k motion primitive. The transitions defined by fkm are called the

internal transitions of primitive m ∈ Mk. We have the following requirement on fkm: if (i)

(l, µ) ∈ Ik(m); and (ii) σ = (lσ, κσ) ∈ Σk−1, l+ lσ +κσ ∈ Lk(m), and there exists µ̃ ∈Mk−1 with

(µ, σ, µ̃) ∈ Ek−1; then (i’) (l′, µ′) = fkm((l, µ), σ) ∈ Ik(m); (ii’) e′ := (µ, σ, µ′) ∈ Ek−1; and (iii’)

l = omµ , l′ = omµ′ , and l′ − l = oµµ′ , where oµµ′ := Ok−1(e′) is a frame offset.

The above requirement specifies the constraints (i’), (ii’), (iii’) on the next value (l′, µ′) only on

the selected domain of X k × Σk−1 given by (i), (ii). The selected domain refers to states (l, µ) in

the invariant with events σ that can be followed by another primitive and lead to a feasible next

box l + lσ + κσ in the same envelope (w.r.t. the frame for m).

Enabling Conditions Gk : Ek → {gke}e∈Ek assigns to each edge e = (m, s,m′) ∈ Ek a non-empty

enabling or guard condition ge ⊂ Ik(m). If s = (ls, κs) ∈ Σk, the first requirement is that ls +

κs 6∈ Lk(m), identifying that this is an external transition. Then gke consists of all those pairs

(l, µ) ∈ Ik(m) for which an external transition to a consecutive level k motion primitive can occur.

That is, (l, µ) ∈ gke if there exists (a unique) σ = (lσ, κσ) ∈ Σk−1 such that (i) there exists

µ̃ ∈Mk−1 such that (µ, σ, µ̃) ∈ Ek−1; (ii) l = omµ , ls = lms is the index w.r.t. the frame for m for

the box from which the external transition occurs, and lσ = lµσ is the index w.r.t. the frame for µ

for the same box. Therefore ls = lms = omµ + lµs = l + lσ and κσ = κs.

Reset Conditions Rk : Ek → {rke}e∈Ek assigns to each edge e = (m, s,m′) ∈ Ek a reset map rke :

X k ×Σk−1 → X k that implements the external transitions of m ∈Mk. Suppose s = (ls, κs) ∈ Σk.
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We require that there exists (a unique) frame offset omm′ := Ok(e) ∈ Zp such that if (i) (l, µ) ∈ gke ;

and (ii) σ = (lσ, κσ) ∈ Σk−1, with lσ = lµσ = lmσ − omµ = ls − l and κσ = κs; then (i’)

(l′, µ′) = rke ((l, µ), σ) ∈ Ik(m′); (ii’) e′ := (µ, σ, µ′) ∈ Ek−1; and (iii’) l = omµ , l′ = om
′

µ′ ,

and (l′ + omm′) − l = oµµ′ , where oµµ′ := Ok−1(e′) ∈ Zp is a frame offset. As with the internal

transitions, this specifies a constraint on the next value (l′, µ′) on a selected domain, which in this

case corresponds to the enabling conditions.

Remark 5.4.6. Observe that the data in Hk requires only the data of the lower level MA Hk−1. Addi-

tional data, namely the envelopes Lk and frame offsets Ok, are induced by Hk and Hk−1. The envelope

for each motion primitive describes the total span of boxes on the grid Zp in order to distinguish between

internal and external transitions. We have the base case L0(m) = {0} ⊂ Zp for all m ∈ M0 because

all level 0 motion primitives span only over Y ?. The frame offset for each edge describes the location

of the frame of the second motion primitive w.r.t. the first in order to establish correctness of concate-

nation. For the base case, the frame offset for each edge e = (m, s,m′) ∈ E0, s = (0, κs) ∈ Σ0, is

O0(e) := omm′ = κs because κs describes the face of Y ? through which the edge occurs.

Example 5.4.7. We illustrate how some of the motion primitives from Figure 5.1 on a two output

system, p = 2, are encoded using our framework, see Figure 5.2. First suppose that the level 0 motion

primitives are Right (m0
1), Up (m0

2), and Right-Up (m0
3); that is, M0 = {m0

1,m
0
2,m

0
3}. Also associated

to these motion primitives we have the level 0 events s0
1, s

0
2, s

0
3 ∈ Σ0, which refer to crossing the right

face, upper face, and upper-right face on Y ?, respectively.

Next we design two level 1 motion primitives called Right&Up (m1
1) and Two Right (m1

2); thus

M1 = {m1
1,m

1
2}. See the top and middle of Figure 5.2, respectively. The underlying state space is

X 1 = Z2 ×M0. The invariant of Right&Up is I1(m1
1) = {((0, 0),m0

3), ((1, 0),m0
2), ((0, 1),m0

1)} and the

invariant of Two Right is I1(m1
2) = {((−1,−2),m0

1), ((0,−2),m0
2)}. Considering Two Right, we see that

the second components specify the constituent level 0 motion primitives, while first components specify

the origins of the constituent level 0 motion primitives w.r.t. to the origin of Two Right. For example, the

middle of Figure 5.2 shows that o
m1

2

m0
1

equals (−1,−2) for the first Right and (0,−2) for the second Right.

The initial conditions may be arbitrarily assigned, for example Q1,0 = {(m1
1, (0,m

0
3))}. The transition

functions f1
m1
j

for j = 1, 2 can be inferred by the green arrows internal between two level 0 motion

primitives. For example, f1
m1

2
(((−1,−2),m0

1), s0
1) = ((0,−2),m0

1). Moreover, each internal transition is

implemented by a level 0 edge. For the previous example, we have the edge e0
1 := (m0

1, s
0
1,m

0
1) ∈ E0.

Notice that the frame offsets for level 0 edges are respected; for example O0(e0
1) = o

m0
1

m0
1

= (1, 0) shown

in Two Right means that Right follows Right one box to the right.
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m1
1

s01

s02

ski ∈ Σk

m0
3 m0

2

m0
1

s11

s12s13

om1
1

om0
2

om0
3

om0
1

s01

s03
s02

mk
i ∈Mk

s01 = (0, (1, 0))

s02 = (0, (0, 1))

s03 = (0, (1, 1))

s11 = ((0, 1), (1, 0))

s12 = ((1, 0), (0, 1))

s13 = s03

m1
2

s01m0
1 m0

1

om1
2

om0
1

om0
1

o
m1

2

m0
1
= (-1, -2)

o
m0

1

m0
1
= (1, 0)

s01

s14

o
m1

2

m0
1
= (0, -2)

= ((0, -2), (1, 0))

m2
1

m1
2

om2
1

om1
1

om1
2

s11
s12s13

s14

m1
1

s21 = ((2, 0), (1, 0))

o
m2

1

m1
1
= (0, -1)

o
m2

1

m1
2
= (2, 2)

o
m1

1

m1
2
= (2, 3)

Figure 5.2: Encoding level 1 and level 2 motion primitives, inspired from the p = 2 output example from
Figure 5.1. Refer to Example 5.4.7 for a detailed description.
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The bottom of Figure 5.2 shows a level 2 motion primitive, m2
1 ∈M2, which is constructed from the

two level 1 motion primitives Right&Up and Two Right. In order for this construction to be consistent,

care must be taken to properly define external transitions for each level 1 motion primitive. This

is done by associating enabling and reset conditions to each outgoing transition, of which there are

generally many possibilities. For example, we can define a level 1 edge from the upper left corner of

Right&Up into the left side of Two Right. This edge is denoted e1
1 := (m1

1, s
1
1,m

1
2) ∈ E1, where s1

1 ∈ Σ1

expresses that the external transition occurs from the upper left corner through the right face w.r.t.

to the origin of Right&Up. Moreover, the enabling condition encodes all the states in the invariant of

Right&Up for which this external transition can occur, that is, g1
e11

= {((0, 1),m0
1)} ⊂ I1(m1

1). Finally,

the reset condition defines how the state continues in the subsequent motion primitive Two Right, that

is, r1
e11

(((0, 1),m0
1), s0

1) = ((−1,−2),m0
1). As with the internal transitions, each external transition is

implemented by a level 0 edge. Referring to the edge e1
1, the geometric layout imposes that the frame

offsets between the origins of Right&Up and Two Right is O1(e1
1) = o

m1
1

m1
2

= (2, 3). Continuing in this

manner, the specific choices for the remaining level 1 edges can be inferred from m2
1 ∈M2 shown at the

bottom of Figure 5.2. From this point, the invariant and internal transitions at level 2 are interpreted

analogously to level 1, and external transitions are defined so that potential level 3 motion primitives

can be constructed. /

For k ≥ 1 we define the notation Hk−1 � Hk to mean that Hk is an abstraction built up from Hk−1

according to Definition 5.4.5. In analogy with H0, we define an execution at level k > 0, denoted as

χk = (τk,mk, xk). There are two differences from χ0. First, the hybrid time domain τk is a sequence of

sets of discrete times (e.g. τk = {{0, 1, 2}, {3}, {4, 5}, . . .}), where each set consists of the discrete times

when internal transitions occur. Second, continuous and discrete transitions at level 0 are replaced by

internal and external transitions, respectively, at level k.

Definition 5.4.8. A k-hybrid time domain, k > 0, is a finite or infinite sequence τk = {Ik0 , . . . , Iknk}

such that each Iki is a finite nonempty subset of discrete time points in the non-negative integers {0, 1, . . .}

and the following hold: (i) Iki = {τki , τki + 1, . . . , τ̃ki }, for all 0 ≤ i < nk; (ii) if nk < ∞, then either

Iknk = {τknk , τknk + 1, . . . , τ̃knk} or Iknk = {τknk , τknk + 1, . . .}; (iii) τk0 = 0 and τki ≤ τ̃ki = τki+1 − 1, for all

0 ≤ i < nk.

Definition 5.4.9. Given Hk with k > 0, a k-execution is a collection χk = (τk,mk(·), xk(·)) with

xk(·) = (lk(·), µk(·)), such that the following hold:

(i) the initial condition of the execution satisfies: (mk(τk0 ), xk(τk0 )) ∈ Qk,0,
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(ii) the internal evolution of the execution satisfies: for all i ∈ {0, . . . , nk} with |Iki | > 1, then for all

j ∈ Iki , mk(j) ∈ Mk is constant and xk(j) ∈ Ik(mk(j)), while for all j ∈ {τki , . . . , τ̃ki − 1}, there

exists σk(j) ∈ Σk−1 such that xk(j + 1) = Xk(mk(j))(xk(j), σk(j)),

(iii) the external evolution of the execution satisfies: for all i ∈ {0, . . . , nk − 1}, xk(τ̃ki ) ∈ Ik(mk(τ̃ki )),

there exists sk(i) ∈ Σk such that (mk(τ̃ki ), sk(i),mk(τki+1)) =: eki ∈ Ek, and there exists σk(τ̃ki ) ∈

Σk−1 such that xk(τ̃ki ) ∈ Gk(eki ) and xk(τki+1) = Rk(eki )(xk(τ̃ki ), σk(τ̃ki )).

5.4.3 Hierarchical Maneuver Automaton

Let H := {Hk}Kk=0, K ≥ 0, be a collection of k-MA such that for all k = 1, . . . ,K, Hk−1 � Hk. We call

H a hierarchical maneuver automaton (HMA). When the highest level is not clear from context, we may

say H is a K-HMA.

For each k = 0, . . . ,K and m ∈Mk, define the set of possible events as

Σk(m) := {s ∈ Σk | (∃m′ ∈Mk)(m, s,m′) ∈ Ek} . (5.2)

Now we define the notion of runs at any level k ≥ 1, which involves only internal transitions. Let

m ∈ Mk and consider a sequence r on Ik(m), denoting its length as |r|. We define a run within m as

a finite or infinite sequence r = x1x2 · · · such that for all i = 1, . . . , |r|, xi = (li, µi) ∈ Ik(m), and for

all i = 1, . . . |r| − 1 there exists σi ∈ Σk−1 such that xi+1 = Xk(m)(xi, σi). A run within m, r, is called

maximal if either |r| = ∞ or |r| = N < ∞ implies Σk−1(µN ) = ∅. Without loss of generality, any run

can be considered the prefix of a maximal run.

Given an arbitrary HMA, it is still possible to design pathological hierarchical motion primitives that

are ill suited to be used in a motion planning context. To eliminate these pathologies, we introduce the

notion of a well-posed HMA. First, it consists of the seven conditions (i)-(vii) at level 0, which are recalled

from Chapter 4. These serve to ensure non-blocking and uniqueness of executions. At all higher levels,

two additional conditions must be enforced which are again related to non-blocking. Condition (viii)

ensures that all possible events from a motion primitive are accounted for and classified either as internal

or external. Condition (ix) ensures that if there is a possibility of concatenating a motion primitive to

another, then all runs lead to an external transition. Overall, well-posedness enforces the property that

a motion primitive either stabilizes all trajectories within its invariant or forces all trajectories to an

enabling condition. Specifically, for all k ≥ 0 and m ∈ Mk, Σk(m) = ∅ signifies remaining within m

forever, while Σk(m) 6= ∅ signifies eventual exit through some level k event s ∈ Σk(m).
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Definition 5.4.10. The HMA H := {Hk}Kk=0 is well-posed if the following conditions hold:

(i) For all m ∈M0, (0, 0) 6∈ Σ0(m).

(ii) For all e1, e2 ∈ E0 such that e1 = (m1, σ,m2) and e2 = (m1, σ,m3), g0
e1 = g0

e2 .

(iii) For all e1, e2 ∈ E0 such that e1 = (m1, σ1,m2) and e2 = (m1, σ2,m3), if σ1 6= σ2, then g0
e1∩g0

e2 = ∅.

(iv) For all e1, e2 ∈ E0 such that e1 = (m1, σ1,m2) and e2 = (m2, σ2,m3), r0
e1(g0

e1) ∩ g0
e2 = ∅.

(v) For all e = (m1, σ,m2) ∈ E0, r0
e(g

0
e) ⊂ I0(m2).

(vi) For all m ∈ M0, if Σ0(m) = ∅, then for all x0 ∈ I0(m) and t ≥ 0, x(t, x0) ∈ I0(m) under the

feedback controller u = um(x).

(vii) For all m ∈ M0, if Σ0(m) 6= ∅, then for all x0 ∈ I0(m) there exist (a unique) σ ∈ Σ0(m) and (a

unique) T ≥ 0 such that for all e = (m,σ,m′) ∈ E0 and for all t ∈ [0, T ], x(t, x0) ∈ I0(m) and

x(T, x0) ∈ g0
e under the feedback controller u = um(x).

(viii) For all k = 1, . . . ,K, m ∈Mk, x = (l, µ) ∈ Ik(m), and σ = (lσ, κ) ∈ Σk−1(µ), l + lσ + κ ∈ Lk(m)

if and only if (l + lσ, κ) 6∈ Σk(m).

(ix) For all k = 1, . . . ,K and m ∈ Mk, if Σk(m) 6= ∅, then every run within m is finite and for all

(l, µ) ∈ Ik(m), Σk−1(µ) 6= ∅.

Next, we define a hierarchical execution by stacking together each execution at level k. To ensure

consistency across the levels, we impose that the hybrid time domains coarsen at higher levels, while

both motion primitives and events that update across external transitions at any level correspond to the

internal motion primitives and events at the level above. Figure 5.3 shows an example using the motion

primitives detailed in Figure 5.2.

Definition 5.4.11. Let H := {Hk}Kk=0, for K ≥ 0, be a well-posed HMA. A hierarchical-execution of

H is a collection of k-executions χ := {χk}Kk=0, such that for all k = 1, . . . ,K:

(i)
⋃nk
i=0 Iki = {0, . . . , nk−1};

(ii) for all j ∈ {0, . . . , nk−1} and j′ ∈ Ik−1
j , µk(j) = mk−1(j′);

(iii) for all j ∈ {0, . . . , nk−1 − 1}, σk(j) = sk−1(j).

Given a hierarchical execution, we can record the sequence of offsets corresponding to the level 0

events. This generates the behavior of the hierarchical execution, analogously to how an output trajectory
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t ∈ I00 = [τ 00 , τ̃
0
0 ] t ∈ I01 = [τ 01 , τ̃

0
1 ] t ∈ I02 = [τ 02 , τ̃

0
2 ] t ∈ I03 = [τ 03 , τ̃

0
3 ]

j ∈ I10 = { j ∈ I11 = {

j ∈ I20 = {

}0 1

0

m0(t) = m0
3 m0(t) = m0

2 m0(t) = m0
1 m0(t) = m0

1

s0(0) = s01 s0(1) = s02 s0(2) = s01 s0(3) = s01

1

2 3 }
m1(j) = m1

1

s1(0) = s12

}

m1(j) = m1
2

s1(1) = s14

m2(j) = m2
1

s2(0) = s21

Figure 5.3: The details of a particular hierarchical execution using the motion primitives from Figure
5.2.

y(·, x0) generates a behavior. Referring to Figure 5.3, the corresponding behavior is (1, 0)(0, 1)(1, 0)(1, 0) ∈

B. The language of an HMA consists of all the possible behaviors that can be generated in this way.

Definition 5.4.12. Let H := {Hk}Kk=0, for K ≥ 0, be a well-posed HMA. If χ is a hierarchical-execution

of H, the behavior of χ is defined as the sequence of offsets obtained from the level 0 events in χ0; that

is, the behavior is κ0κ1 · · · , where s0(i) = (0, κi) ∈ Σ0 for i ∈ {0, . . . , n0 − 1}. The language of H,

denoted by L(H), is the set of all behaviors induced by the hierarchical executions of H. If 0 ≤ k′ ≤ K,

then for convenience we write L(Hk′) := L({Hk}k′k=0) to denote the language up to and including level

k′.

Similar to hierarchical executions, we define a set of hierarchically compatible states, Q(H) ⊂
∏K
k=0Q

k. Informally, hierarchically compatible states stack the individual hybrid states at each level

while maintaining consistency between the motion primitives implemented at each level and recorded

at the level below. Writing q := (q0, q1, . . . , qK) ∈ ∏K
k=0Q

k, with qk = (mk, xk) for k = 0, . . . ,K and

xk = (lk, µk) for k = 1, . . . ,K, we have q ∈ Q(H) if for all k = 1, . . . ,K, xk ∈ Ik(mk) and mk−1 = µk.

Let Q0(H) ⊂ Q(H) be the corresponding initial states; that is, q ∈ Q0(H) if q ∈ Q(H) and for all

k = 0, . . . ,K, qi ∈ Qk,0.
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We also state the following result, which says that the language at each level is contained in the

language of any level below. This implies that behaviors become more restricted as one adds more levels

to a HMA.

Lemma 5.4.13. Let H = {Hk}Kk=0 be a HMA that is well-posed. Then L(Hk′′) ⊂ L(Hk′) for all

0 ≤ k′ < k′′ ≤ K.

Proof. Let 0 ≤ k′ < k′′ ≤ K and define the HMAs H′ = {Hk}k′k=0, H′′ = {Hk}k′′k=0. Take any behavior

in b′′ ∈ L(H′′); by definition, this means that there is at least one hierarchical execution χ′′ = {χk}k′′k=0

that generates it (by no means unique). For the level 0 execution χ0, observe that well-posedness (iii)

(disjoint guards) implies that for all i = 0, . . . , n0 − 1, the events s0(i) = (0, κi) ∈ Σ0 across the discrete

transitions are uniquely determined. Thus b′′ = κ0κ1 · · · . Ignoring the levels k > k′ from χ′′, it is easy

to see that the collection χ′ = {χk}k′k=0 is also a hierarchical execution. By definition, χ′ generates a

behavior b′ ∈ L(H′). Since χ′ and χ′′ share the same χ0, we must have that b′′ = b′ ∈ L(H′).

5.5 Main Results

In this section we show that if one has a HMA that satisfies certain conditions, then we can construct

initial conditions and a hierarchical feedback controller that solve Problem 5.3.1. We begin with the

notion of completeness, in which the highest level K consists of only one motion primitive, no external

transitions, and has all states as valid initial conditions.

Definition 5.5.1. Let H = {Hk}Kk=0 be an HMA with K ≥ 1. We say that H is complete if MK =

{mK}, EK = ∅, and QK,0 = {(m,x) ∈ QK | x ∈ IK(m)}.

Completeness establishes a hierarchical maneuver automaton H whose top level HK acts as a control

policy dictating the assignment of motion primitives one level below, with those motion primitives

dictating the assignment of motion primitives below that, and so on. From this principle we will derive

the required set of initial conditions X0 ⊂ Rn and feedback control strategy u(x). One of our main tasks

is to relate the trajectories x(·, x0) of (5.1) for x0 ∈ X0 to hierarchical executions χ of the given HMA

H.

Suppose H is complete and well-posed. First, the reference frame of the top level motion primitive

mK is chosen to coincide with the reference frame in which the feasible boxes Lf ⊂ Zp and goal boxes

Lg ⊂ Lf are defined. Then each hierarchically compatible state q ∈ Q(H) can be matched to a unique

continuous state x ∈ Rn as follows. The continuous level 0 state x0 ∈ I0(m0) projected to the output

space lies in Y ?. This box is located at the discrete location l1 = om
1

m0 ∈ Zp with respect to the frame of
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the motion primitive m1. Continuing in this way, since lk = om
k

mk−1 for k = 1, . . . ,K, we have that the

sum of the reference frame shifts ` :=
∑K
k=1 l

k ∈ Zp represents the location of Y ? in the reference frame

of omK . As such, we have the output space relationship

h(x) = h(x0) + d ◦ `, (5.3)

where d is the grid vector of the lengths of Y ? and ◦ is the component-wise product. Lifting this

relationship to the state space, the proposed set of initial conditions for the main problem is

X0 =
{
x0 + h−1

o (d ◦ `) | q ∈ Q0(H)
}
⊂ Rn. (5.4)

Next, the associated feedback control u(x) = u(x, q) requires to record the current hierarchically

consistent state q ∈ Q(H). To improve clarity and minimize duplicated information, it suffices to record

only the internal states (x1, . . . , xK). If the initial state x0 ∈ X0 corresponds to q0 ∈ Q0(H) in the sense

of (5.3), we initialize these internal states as (x1
0, . . . , x

K
0 ). The controller u(x) consists of updating the

internal states based on measured events and then applying the feedback controller for the current level

0 motion primitive. Algorithm 1 provides the update scheme, which is called at each time instant with

the arguments

u(x− h−1
o (d ◦ `) , x1, . . . , xK). (5.5)

As will be shown, this algorithm is well-defined in that it provides an unambiguous update scheme

(Lemma 5.5.4) and that the relationship (5.3) is always maintained (Lemma 5.5.6 (ii)).

We now elaborate on Algorithm 1. The input arguments are the level 0 continuous state x0 ∈ X 0

and the internal states xk = (lk, µk) ∈ X k from levels 1 to K. Lines 2 and 3 record the current motion

primitives mk−1 = µk ∈Mk−1 for k = 1, . . . ,K for later use (on line 8). On line 4, it is checked whether

the continuous state x0 lies on a guard set g0
e0 for some edge e0 = (µ1, s0, ·) ∈ E0. If it does not,

none of the internal states need to be updated and the control value uµ1(x0) is returned along with the

internal states. If it does, then line 5 proceeds by determining all the levels at which the level 0 event

s0 is interpreted as an event σk ∈ Σk−1 from level 0 up to some level K ′ ≤ K. Internal states above

level K ′ are unchanged. Line 6 applies an internal transition at level K ′ to determine the next level

K ′ internal state (notice that if K ′ = K, then µK+1 := mK). Then lines 7 to 9 successively apply the

reset maps down the hierarchy to update the internal states at each level below. Lines 10 and 11 reset

the continuous state at level 0, which is then used to calculate the control value. The control value and

updated internal states are returned.
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Algorithm 1 Hierarchical Feedback Controller

1: function u(x0, (l1, µ1), . . . , (lK , µK)) . Input internal states in X k for k = 0, . . . ,K
2: for k = 1, . . . ,K do
3: µkold ← µk . Save current motion primitives µk ∈Mk−1

4: if GuardSet(x0, µ1) then . Determine if x0 ∈ g0
e0 for some e0 = (µ1, ·, ·) ∈ E0

5: {σ1, . . . , σK
′} ← GetEvents(x0, (l1, µ1), . . . , (lK , µK)) . Extract events σk ∈ Σk−1 up to

some K ′ ≤ K
6: (lK

′
, µK

′
)← fK

′

µK′+1((lK
′
, µK

′
), σK

′
) . Internal transition at level K ′

7: for k = K ′ − 1, . . . , 1 do
8: ek ← (µk+1

old , σk+1, µk+1) . Form the edge ek ∈ Ek
9: (lk, µk)← rkek((lk, µk), σk) . External transition at level k

10: e0 ← (µ1
old, σ

1, µ1) . Form the edge e0 ∈ E0

11: x0 ← r0
e0(x0) . Reset map at level 0

return uµ1(x0), (l1, µ1), . . . , (lK , µK) . Return control value uµ1(x0) and updated continuous states

Our main result gives three conditions to solve Problem 5.3.1. The avoid property is given by

condition (i) and is formulated in terms of the top level envelope, which describes all the possible visited

boxes in the frame of mK . By applying the recursive definition of the envelopes, we have that the top

level envelope is

LK(mK) = {` | q ∈ Q(H)} ⊂ Zp. (5.6)

The reach property is given by condition (ii) and is formulated in terms of the set of box indices in the

frame of mK corresponding to hierarchical states in which the motion primitive at each level stabilizes

trajectories,

G =
{
` | q ∈ Q(H), Σk−1(µk) = ∅, k = 1, . . . ,K

}
. (5.7)

The behavioral property is given by condition (iii) and is stated in terms of the language of the HMA.

Theorem 5.5.2. Consider the system (5.1) with a gridded output space in terms of grid length vector

d ∈ Rp. We are given a feasible and goal set of boxes, Lg ⊂ Lf ⊂ Zp and a behavior constraint B̂ ⊂ B.

Consider a HMA H = {Hk}Kk=0 which is well-posed and complete. Suppose that

(i) LK(mK) ⊂ Lf ;

(ii) G ⊂ Lg, and for all k = 1, . . . ,K and m ∈Mk such that Σk(m) = ∅, every maximal run within m

is finite;

(iii) L(H) ⊂ B̂.

Then the set of initial conditions X0 (5.4) and the feedback control law u(x) given by (5.5) and Algorithm 1

solves Problem 5.3.1.
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Figure 5.4: This figure compares a level 1 control policy generated using level 0 atomic motion primitives
(left) and a level 2 control policy generated using level 1 motion primitives (right). In both cases, the
policy reaches the goal box at the lower right while avoiding the obstacle (red), although the level 2
policy is simpler to encode. As the number of outputs grows (for example, as more vehicles are added),
the effect of simplification becomes more dramatic.

Remark 5.5.3. In practice, the control policy yielding a complete H is obtained by running a planning

algorithm at level K− 1 using only the discrete part (MK−1,ΣK−1, EK−1) and knowledge of the feasible

and goal boxes Lf and Lg. Notice that the control policy is fully specified by the invariant IK(mK) and

transition function XK(mK). Also, if the lower levels are designed such that L(HK−1) ⊂ B̂, then Lemma

5.4.13 implies that any assignment of level K − 1 motion primitives preserves language satisfaction,

L(HK) ⊂ B̂. In this case, the reach-avoid aspect is decoupled from the behavior specification, which

makes the planning step more computationally tractable. Since the discrete part (MK−1,ΣK−1, EK−1)

is essentially just a graph with labeled transitions, one may adapt algorithms used in Chapter 4 for

planning at level K − 1 or other graph search methods. The main advantage of planning at this higher

level is that the desired behavior will be automatically enforced, and ideally there are significantly less

transitions as compared to planning at level 0. Figure 5.4 illustrates a comparison between a control

policy at K = 1 and K = 2.

In the remainder of this section, we prove the main result. To this end, several lemmas are stated,

which are mainly generalizations of results presented in Section 4.5. Before proceeding, we introduce a

few more definitions and notation.

Consider a level 0 MA H0. The execution time of a 0-execution χ0 is defined as T (χ0) :=
∑n0

i=0(τ̃0
i −

τ0
i ) = limi→n0 τ̃0

i . A 0-execution is called finite if τ0 is a finite sequence ending with a compact time

interval. A 0-execution is called infinite if either τ0 is an infinite sequence or if T (χ0) = ∞. Finally,
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a 0-execution is called Zeno if it is infinite but T (χ0) < ∞. Since Zeno executions imply that motion

primitives change infinitely many times in a finite time interval, one should ensure that they do not

occur.

For an HMA H, a hierarchical execution χ is called maximal if χ0 is infinite and for all k = 1, . . . ,K,

nk < ∞ implies that Σk(mk(τknk)) = ∅ and the run within mk(τknk) ∈ Mk, rk = xk(τknk) · · ·xk(τ̃knk), is

maximal. Let χ be a hierarchical execution. We may equivalently write it as a collection of hierarchically

compatible states q(t) = (q0(t), . . . , qK(t)) ∈ Q(H) over the level 0 time domain τ0, that is t ∈ τ0

(which will be an abbreviation for t ∈ I0
j for some j = 0, . . . , n0). For each level k = 1, . . . ,K,

j = 0, . . . , n0, and t ∈ I0
j , the discrete states in qk(t) = (mk(t), (lk(t), µk(t)) are constant. For each

t ∈ τ0, let `(t) :=
∑K
k=1 l

k(t) denote the current box index in the reference frame of omK . For each level

k = 0, . . . ,K−1, the level k external events sk(·) ∈ Σk, are interpreted as occurring only at the endpoint

times τ̃0
j for some j ∈ {0, . . . , n0 − 1} depending on when they occur at their coarser discrete time τ̃kj′

for some j′ ∈ {0, . . . , nk − 1}. To ease notation, we do not explicitly relate the intervals j at level 0 and

j′ and level k. By definition of a hierarchical execution, the sk(·) are equal to the level k + 1 internal

events σk+1(·). When H is well-posed, Algorithm 1 provides a unique and maximal execution to each

initial hierarchical state. The following lemma gives the construction.

Lemma 5.5.4. Consider a HMA H which is well-posed and complete. Then for all q0 ∈ Q0(H) there

exists a unique maximal hierarchical execution with initial condition q0 and initial time τ0
0 = 0.

Proof. Let q0 ∈ Q0(H) and write q0 = (q0
0 , . . . , q

K
0 ) ∈ ∏K

k=0Q
k,0, qk0 = (mk

0 , x
k
0) for k = 0, . . . ,K, and

xk0 = (lk0 , µ
k
0) for k = 1, . . . ,K. To construct a hierarchical execution χ = {χk}Kk=0, let the level 0 initial

time to be τ0
0 = 0. By definition, τk0 = 0 for all k = 1, . . . ,K. Thus for all k = 0, . . . ,K, mk(0) = mk

0

and xk(0) = xk0 . So far we have that for all k = 0, . . . ,K, τ̃k0 = 0, τk = {Ik0 }, and Ik0 = {τk0 }. With

χ initialized, we construct the remainder of χ inductively. This is done by extending the solution x0

over the current interval I0
n0 and initializing it in the next one I0

n0+1, updating the discrete evolutions

at higher levels k > 0 as necessary; Algorithm 1 gives the update logic. We have established the base

case, with nk = 0 for all k = 0, . . . ,K.

Suppose that χ has been defined over the hybrid time domains τk = {Ik0 , . . . , Iknk} for k = 0, . . . ,K,

with τknk = τ̃knk . Write j = n0. We extend χ by one step to j + 1.

If Σ0(m0(τ0
j )) = ∅, we extend τ̃0

j to∞ using well-posedness (vi) (invariance); the solution x0 remains

in the current motion primitive for all future time and the induction terminates with j = n0.

Otherwise if Σ0(m0(τ0
j )) 6= ∅, well-posedness (vii) allows us to extend x0 to a new τ̃0

j . That is,

there exist unique s0 ∈ Σ0(m0(τ0
j )) and T ≥ 0 such that for all t ∈ [τ0

j , τ
0
j + T ], m0(t) = m0(τ0

j ), and
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x0(t) ∈ I0(m0(t)). Also, for each e0 = (m0(τ0
j ), s0, m̃0) ∈ E0, there exists a guard set ge0 such that

x0(τ0
j +T ) ∈ ge0 . By well-posedness (ii), for all such m̃0, the guard set is the same, while (iii) establishes

the uniqueness of s0. Overall, the interval I0
j is extended to [τ0

j , τ̃
0
j ] with τ̃0

j = τ0
j + T and we initialize

the next interval as I0
j+1 = {τ̃0

j }, and record s0(τ̃0
j ) = s0 ∈ Σ0. Also since s0 = (0, κ), write κ(τ̃0

j ) = κ.

Before we can determine the new specific m̃0, we must go up the hierarchy at the transition time

t′ := τ̃0
j to see whether the level 0 event s0(t′) can be interpreted as an external event at level k,

0 < k < K, within the frame omk(t′). Let K ′ be the smallest level at which there is no corresponding

event sK
′
(t′) ∈ ΣK

′
that is registered at t′; by the existence of s0(t′) and completeness, we have that

K ′ ∈ {1, . . . ,K}.

This procedure is well defined in that if there is such an sk at level k, then it is uniquely determined.

We proceed inductively. Using the hierarchical relationship, write the internal level 1 event as σ1 =

(lσ1 , κσ1) = (0, κ) = s0. By definition of the enabling conditions, we require the level 1 external event to

be s1 = (l1(t′) + lσ1 , κσ1). If K = 1 or s1 6∈ Σ1(m1(t′)), then we set K ′ = 1 and terminate the induction.

Otherwise we have established the base case. Assuming we have the event sk ∈ Σk for 1 ≤ k < K

with sk = (lk(t′) + lσk , κσk) and σk = (lσk , κσk) ∈ Σk−1, we attempt to construct sk+1 ∈ Σk+1. Using

the hierarchical relationship, write the level k + 1 internal event as σk+1 = (lσk+1 , κσk+1) = sk. By

definition of the enabling conditions at level k + 1, we require the level k + 1 external event to be

sk+1 = (lk+1(t′) + lσk+1 , κσk+1). If K = k + 1 or sk+1 6∈ Σk+1(mk+1(t′)), then we set K ′ = k + 1 and

terminate the induction. Otherwise the induction continues. In summary, we see that at each level

0 < k < K ′, the external event sk ∈ Σk(mk(t′)) is uniquely determined. We record σk(t′) = σk for

k = 1, . . . ,K ′ and sk(t′) = sk for k = 1, . . . ,K ′ − 1.

Now that K ′ is determined, we must go down the hierarchy to determine the new states at t′′ := τ0
j+1.

At levels K ′ < k ≤ K, there is no internal event σk(t′) and therefore no possibility for internal transitions.

At level k = K ′, since we have an only an internal event σk(t′), we employ an internal transition and nk

remains unchanged. At levels 0 ≤ k < K ′, since we have an external event sk(t′) and its corresponding

internal event σk(t′), we employ an external transition, adding a new interval to τk. We have already

introduced I0
j+1 to τ0, so for k = 1, . . . ,K ′ − 1, we begin the next interval in τk as Iknk+1 = {τ̃knk + 1}.

Starting with k = K ′ ≥ 1, we apply the transition function to get that mk(t′′) = mk(t′) and

xk(t′′) = Xk(mk(t′))(xk(t′), σk(t′)). We check the two properties (i) and (ii) of Xk to be able to conclude

(i’), (ii’), and (iii’). First, since xk(t′) ∈ Ik(mk(t′)) due to the previous step of the induction, (i) holds.

Second, we need to show that σk(t′) ∈ Σk−1(µk(t′)) and lk(t′) + lσk + κσk ∈ Lk(mk(t′)). By definition

of a hierarchical execution we have sk−1(t′) = σk(t′) and µk(t′) = mk−1(t′), and by construction we

have sk−1(t′) ∈ Σk−1(mk−1(t′)). Thus we have σk(t′) ∈ Σk−1(µk(t′)). Next, since by construction
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(lk(t′) + lσk , κσk) 6∈ Σk(mk(t′)) (for otherwise sk would have been defined), we can apply well-posedness

(viii) to get that lk(t′) + lσk + κσk ∈ Lk(mk(t′)). Thus we can conclude that (i’) xk(t′′) ∈ Ik(mk(t′′),

(ii’) ek−1 := (µk(t′), σk(t′), µk(t′′)) ∈ Ek−1, and (iii’) lk(t′′)− lk(t′) = o
µk(t′)

µk(t′′)
.

Next, we apply the reset functions from k = K ′ − 1 down to k = 0, using the edge

ek = (mk(t′), sk(t′),mk(t′′)) = (µk+1(t′), σk+1(t′), µk+1(t′′)) ∈ Ek

defined the iteration above, where we have used the hierarchical relationship. The base case edge

eK
′−1 was established above when k = K ′. These edges determine the next motion primitives mk(t′′)

for k = 0, . . . ,K ′ − 1. Applying the reset function for each k = K ′ − 1, . . . , 1, we get xk(t′′) =

Rk(ek)(xk(t′), σk(t′)). Similarly, we check (i) and (ii) of Rk to conclude (i’), (ii’), and (iii’). By the same

reasoning as for the internal transition at level K ′, xk(t′) ∈ Ik(mk(t′)) and σk(t′) ∈ Σk−1(µk(t′)). On the

other hand, since now by construction (lk(t′)+ lσk , κσk) ∈ Σk(mk(t′)), we can use well-posedness (viii) to

get that lk(t′)+lσk+κσk 6∈ Lk(mk(t′)). So xk(t′) ∈ Gk(ek) and we conclude that (i’) xk(t′′) ∈ Ik(mk(t′′),

(ii’) ek−1 := (µk(t′), σk(t′), µk(t′′)) ∈ Ek−1, and (iii’) lk(t′′) + o
mk(t′)

mk(t′′)
− lk(t′) = o

µk(t′)

µk(t′′)
.

Finally, when k = 0, we apply the reset R0(e0) to get x0(t′′) = R0(e0)(x0(t′)) and m0(t′′) = µ1(t′′)

using the hierarchical relationship. By well-posedness (v), we have x0(t′′) ∈ I0(m0(t′′)). We have

completed the induction step from j to j + 1.

The inductive procedure above constructed a unique execution χ. It remains to show that it is

maximal. If the induction above terminated, then n0 <∞ with I0
n0 = [τ0

n0 ,∞). Thus T (χ0) =∞ and

so χ0 is infinite. If the induction does not terminate, then n0 =∞ and χ0 is also infinite.

Next, we identify the smallest level K̃ ∈ {1, . . . ,K} such that nk < ∞. If the induction above

terminated, then K̃ = 1, otherwise at most K̃ = K, since nK = 0 by completeness. By definition

of a hierarchical execution, nK ≤ · · · ≤ n0, and so we have nk < ∞ for all k = K̃, . . . ,K. When

k = 1, . . . , K̃ − 1, there is nothing to check for the maximality of χ. For k ∈ {K̃, . . . ,K}, we must

show that Σk(mk(τknk)) = ∅ and the run rk := xk(τknk) · · ·xk(τ̃knk) within mk(τknk) is maximal, that is,

either τ̃knk = ∞ or Σk−1(µk(τ̃knk)) = ∅. We proceed by induction. For the base case k = K̃, by the

hierarchical relationship we have τ̃knk = nk−1 =∞, so the run rk is infinite, and therefore maximal. The

contrapositive of well-posedness (ix) says that: for all k = 1, . . . ,K and m ∈ Mk, if there exists a run

within m that is infinite or there exists x = (l, µ) ∈ Ik(m) with Σk−1(µ) = ∅, then Σk(m) = ∅. Since

rk is infinite, we must have that Σk(mk(τknk)) = ∅. Now assume Σk(mk(τknk)) = ∅ and rk is maximal for

K̃ ≤ k < K and show Σk+1(mk+1(τk+1
nk+1)) = ∅ and rk+1 is maximal. By the hierarchical relationship,

τ̃k+1
nk+1 = nk < ∞, and so rk+1 is finite. By the hierarchical relationship again, µk+1(nk) = mk(τknk)
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and thus by assumption, Σk(µk+1(nk)) = ∅. Thus rk+1 is maximal. Using the contrapositive of well-

posedness (ix) again, we have that Σk+1(mk+1(nk)) = ∅, as desired.

During the duration of a fixed level 0 motion primitive, if the physical continuous states of (5.1) and

level 0 MA continuous states initially satisfy the output space relationship (5.3), they remain shifted by

the same amount. Its proof follows easily from the definition of a 0-execution and Assumption 4.3.2.

Lemma 5.5.5. Consider any level 0 execution χ0 = (τ0,m0(·), x0(·)) with τ0 = {I0
0}, and let y ∈ Rp.

If x0 = x0(τ0
0 )+h−1

o (y), then the trajectory x(·, x0) of (5.1) with the feedback control u(x) = um0(τ0
0 )(x−

h−1
o (y)) satisfies

x(t, x0) = x0(t) + h−1
o (y), ∀t ∈ I0

0 .

Proof. Since by definition of a 0-execution m0(t) is constant for all t ∈ I0
0 , write m = m0(τ0

0 ). By

definition of χ0, d
dt (x

0(t)) = f(x0(t), um(x0(t))) for all t ∈ I0
0 . Using this relationship for t ∈ I0

0 ,

Assumption 4.3.2, and the fact that y is constant gives

d

dt
x(t, x0) =

d

dt
(x0(t) + h−1

o (y)) =
d

dt
(x0(t))

= f(x0(t), um(x0(t)))

= f(x0(t) + h−1
o (y), um(x0(t))),

= f(x(t, x0), um((x0(t) + h−1
o (y))− h−1

o (y)))

= f(x(t, x0), um(x(t, x0)− h−1
o (y))).

This shows that x(t, x0) = x0(t) + h−1
o (y) is a solution to (5.1) with the feedback control u(x) =

um(x− h−1
o (y)) over I0

0 . Since f(·, um(·)) is globally Lipschitz, this must be the unique solution.

We can apply Lemma 5.5.5 repeatedly to show that (5.3) is preserved throughout a hierarchical

execution χ, see (5.9) below. To prove this, we first show (5.8), which says that the box indices differ

by an amount κ(·) ∈ {−1, 0, 1}p across the level 0 discrete transitions. Once we have these results, the

proof of the main result follows easily.

Lemma 5.5.6. Consider a HMA H which is well-posed and complete. Let χ be a hierarchical execution.

(i) Writing the level 0 events as s0(·) = (0, κ(·)), we have

κ(τ̃0
j ) + `(τ̃0

j ) = `(τ0
j+1), j = 0, . . . , n0 − 1. (5.8)
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(ii) If x0 = x0(τ0
0 ) +h−1

o

(
d ◦ `(τ0

0 )
)
, then the trajectory x(·, x0) of (5.1) with the feedback control (5.5)

satisfies: for all j ∈ {0, . . . , n0}

x(t, x0) = x0(t) + h−1
o (d ◦ `(t)) , t ∈ I0

j . (5.9)

Proof. Let χ be a hierarchical execution, and we use the usual notation for all its components.

For (i), we show that (5.8) holds. Let j = 0, . . . , n0 − 1, t′ := τ̃0
j , and t′′ := τ0

j+1. As in the proof of

Lemma 5.5.4, let K ′ be the smallest level at which there is no corresponding event sK
′
(t′) ∈ ΣK

′
that is

registered at t′. We have the following transition relationships

lk(t′) + o
µk(t′)

µk(t′′)
= lk(t′′) + o

mk(t′)

mk(t′′)
, 1 ≤ k < K ′,

lk(t′) + o
µk(t′)

µk(t′′)
= lk(t′′), k = K ′,

lk(t′) = lk(t′′), K ′ < k ≤ K.

That is, at levels k < K ′ we apply the resets Rk; at level k = K ′ we apply only the transition function

Xk; and at levels k > K ′ there is no update. This is the same logic in Algorithm 1. Observe that by

definition of the transformations and hierarchical execution, o
µ1(t′)
µ1(t′′) = κ(t′) for all j = 0, . . . , n0 − 1.

Further, we have for all k = 1, . . . ,K − 1 that o
mk(t′)

mk(t′′)
= o

µk+1(t′)

µk+1(t′′)
. Using these two these relationships,

the definition of `(·), and summing all the transition relationships from k = 1, . . . ,K, we have that

`(t′) + κ(t′) +
K′∑

k=2

o
µk(t′)

µk(t′′)
= `(t′′) +

K′−1∑

k=1

o
µk+1(t′)

µk+1(t′′)
.

Observing the cancellations among the transformations then gives (5.8).

For (ii), we must show that for all j ∈ {0, . . . , n0} that (5.9) holds. We establish this by induction.

For j = 0, (5.9) follows from Lemma 5.5.5 with the execution χ0 over just I0
0 and y = d ◦ `(τ0

0 ).

Next assume that (5.9) is true for 0 ≤ j < n0 and show that it is true for j + 1. Using (5.9) for j at

t = τ̃0
j gives

x(τ̃0
j , x0) = x0(τ̃0

j ) + h−1
o

(
d ◦ `(τ̃0

j )
)

= x0(τ0
j+1) + h−1

o

(
d ◦ κ(τ̃0

j )
)

+ h−1
o

(
d ◦ `(τ̃0

j )
)

= x0(τ0
j+1) + h−1

o

(
d ◦ `(τ0

j+1)
)

= x(τ0
j+1, x0),
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where the second line follows from the definition of the reset at level 0, the third line follows from

applying the component-wise multiplication with d and insertion map h−1
o to (5.8), and the last line

follows from the first line since τ̃0
j = τ0

j+1. Applying Lemma 5.5.5 with the execution χ0 over just I0
j+1

and y = d ◦ `(τ0
j+1), we have that (5.9) is true for j + 1, as desired.

Proof of Theorem 5.5.2. Let x0 ∈ X0. We must show that the output trajectory y(·, x0) under the

feedback u(x) given in Algorithm 1 satisfies the (i) avoid, (ii) reach, and (ii) behavior specifications. The

three assumed properties (i), (ii), (iii) address each of these specifications respectively.

Since x0 ∈ X0, let q0 ∈ Q0(H) be any associated HMA initial state such that x0 = x0
0 + h−1

o (d ◦ `0).

By Lemma 5.5.4, there exists a unique maximal execution χ with initial condition q0 and initial time

τ0
0 = 0. We write the corresponding hierarchical states as q(t) for t ∈ τ0.

First we show that for all k = 0, . . . ,K, nk < ∞. By completeness, nK = 0 < ∞ since we can

never have an external transition at level K. This establishes the base case. Next we proceed by

induction. Supposing that nk < ∞ for 1 ≤ k ≤ K, we show that nk−1 < ∞. Consider the sequence

rk = xk(τknk) · · ·xk(τ̃knk). By definition of χk, it is a run within mk(τknk) ∈ Mk. Since nk < ∞,

the maximality of χ implies that Σk(mk(τknk)) = ∅ and rk is maximal. Then Σk(mk(τknk)) = ∅ and

assumption (ii) imply that rk is finite. Finally the definition of a hierarchical execution implies that

τ̃knk = nk−1 <∞, as desired.

Also observe that χ0 is non-Zeno. Since the maximality of χ implies that χ0 is infinite and since

n0 <∞, we must have that T (χ0) =∞.

Now we apply Lemma 5.5.6 (ii) to χ and x0. Projecting (5.9) to the output space, we obtain that

for all j ∈ {0, . . . , n0} and t ∈ I0
j , y(t, x0) ∈ Y`(t).

We show the avoid specification is satisfied. For all t ∈ τ0, since q(t) ∈ Q(H), we have `(t) ∈

LK(mK) ⊂ Lf . Since T (χ0) =∞, y(t, x0) ∈ ⋃n0

j=0 Y`(t) ⊂
⋃
l∈Lf Yl for all t ∈ [0,∞).

Next we show the reach specification is satisfied. Since for all k = 0, . . . ,K, nk <∞, the maximality

of χ implies that Σk(mk(τknk)) = ∅. Thus we have that `(τknk) ∈ G ⊂ Lg. Since n0 <∞, the maximality

of χ0 implies that I0
n0 = [τ0

n0 ,∞). Hence y(t, x0) ∈ Y`(t) ⊂
⋃
l∈Lg Yl for t ∈ [τ0

n0 ,∞).

Finally, we show the behavior specification is satisfied. Recalling that the discrete transitions of level 0

correspond to some event (0, κ) ∈ Σ0 (except (0, 0), which is ruled out by well-posedness (i)), (5.8) shows

that the current box is incremented by an element in {−1, 0, 1}p \ {0}. Since for all j ∈ {0, . . . , n0} and

t ∈ I0
j , y(t, x0) ∈ Y`(t), we have that the behavior induced by y(t, x0) is κ(τ̃0

0 )κ(τ̃0
1 ) · · · ∈ L(H) ⊂ B̂.

Remark 5.5.7. The reach condition (ii) in Theorem 5.5.2 is conservative in order to eliminate any

possibility of Zeno behavior. When dealing with more complex task specifications such as linear temporal
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logic (LTL), the reach condition would need to be relaxed. Following the idea that many interesting tasks

can be decomposed into a sequence of reach-avoid problems [116], we present a method of addressing

these problems in Section 5.8.4. In this case, Zeno behavior may result if the motion primitives are not

well designed. Providing general but easily checkable conditions at level 0 and higher levels to ensure

non-Zenoness remains an open problem. Fortunately, the lemmas provided in this section hold true

independently of any reach condition, and so only a modification to the relatively short proof of Theorem

5.5.2 would be needed.

5.6 Composing Hierarchical Maneuver Automata

In practice, real systems can be very complex and the design of motion primitives can be a challenging

task. To aid in this design process, system structure can often be exploited so that simpler motion

primitives can be designed on smaller subsystems and then automatically combined to yield motion

primitives for the entire system.

In this section, we present two methods of composing HMA, which are based on the cartesian product

and union of sets, respectively. The first is parallel composition, which is a procedure for obtaining more

complex motion primitives by stacking independent subsystems with existing motion primitives. The

second is union, which aggregates different sets of motion primitives for the same underlying system.

It turns out that beyond level 0, there is generally no unique way to define these composition pro-

cedures. As such, we only formulate the essential guidelines that any concrete implementation ought to

follow. Moreover, these composition procedures are also straightforward to implement in our applica-

tions. Formal details can be investigated in future work.

5.6.1 Parallel Composition

Given two independent 0-MA’s H0
1 and H0

2, we defined the parallel composition H0 = H0
1 ‖ H0

2 in

Chapter 4. As it was the case that the parallel composition of 0-MAs preserved well-posedness, the main

requirement here is again to ensure that well-posedness is preserved.

LetH0
i for i = 1, 2 be two 0-MAs, each with pi outputs. In our previous work, the parallel composition

H0 = H0
1 ‖ H0

2 was a 0-MA with p = p1 + p2 outputs and M0 = M0
1 ×M0

2 . Central to the parallel

composition was a set of augmented edges E
0

i = E0
i ∪ F 0

i for i = 1, 2, where F 0
i was disjoint from E0

i

and included feasible edges involving the only possible internal event, (0, 0) ∈ Σ0
i . These extra edges F 0

i

are necessary to correctly describe the asynchronicity between the two 0-MAs when they are composed.

These notions are now extended to the parallel composition of HMAs.
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Definition 5.6.1. Consider two well-posed K-HMAs Hi = {Hki }Kk=0, i = 1, 2, each with pi outputs. A

parallel composition of HMAs, denoted H = H1 ‖ H2, is a K-HMA H = {Hk}Kk=0 with p = p1 + p2

outputs, where

• for all k = 0, . . . ,K, Hk = Hk1 ‖ Hk2 is a k-MA with Mk = Mk
1 ×Mk

2 ,

• H is well-posed.

The extension to the parallel composition of a finite number of HMAs, Hj , j = 1, . . . , J , follows

similarly and is denoted ‖Jj=1Hj . At higher levels k > 0, one needs to define a set of augmented edges

E
k

i for i = 1, 2, see Remark 5.6.2 below.

Remark 5.6.2. The main difficulty in defining a generic parallel composition of HMAs lies in the fact

that there can be multiple feasible choices for the reset conditions of the composed motion primitives.

For example, suppose we have two level 1 motion primitives m1 ∈ M1
1 and m2 ∈ M1

2 , where there

exists an edge e1 = (m1, s1,m
′
1) ∈ E1

1 but Σ1
2(m2) = ∅. Then for the composed motion primitive

m = (m1,m2) ∈ M1, well-posedness (viii) ultimately requires us to define at least one edge of the form

e = (m, s,m′) ∈ E1. The composed edge e ∈ E1 will consist of e1 ∈ E1
1 and some suitably defined

augmented edge e2 = (m2, s2,m
′
2) ∈ E

1

2. Similarly, the composed reset condition R1(e) will consist

of R1
1(e1) and some suitable reset condition for the augmented edge e2, which cannot invoke R1

2 since

Σ1
2(m2) = ∅. When m2 = m′2, we may invoke the internal transitions defined in Xk

2 (m2). It also may

be feasible and desirable to define a reset condition for the case m2 6= m′2 if the envelope of the m2 is

contained in m′2, although there may be multiple feasible choices if |I1
2 (m′2)| > 1.

5.6.2 Union

Suppose that we have two 0-MAs H0
1 and H0

2, both over the same grid and system with p outputs.

Without loss of generality, the motion primitive sets M0
1 and M0

2 can be reindexed so that they are

disjoint. Informally, the union H0 = H0
1∪H0

2 pools together the two sets of motion primitives and forms

additional feasible edges between the two sets of motion primitives. These notions are now extended to

HMAs.

Definition 5.6.3. Consider two well-posed K-HMAs Hi = {Hki }Kk=0, i = 1, 2, each with p outputs. A

union of HMAs, denoted H = H1 ∪H2, is a K-HMA H = {Hk}Kk=0 with p outputs, where

• for all k = 0, . . . ,K, Hk = Hk1 ∪Hk2 is a k-MA with Mk = Mk
1 ∪Mk

2 ,

• H is well-posed.
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Remark 5.6.4. If no additional edges between Mk
1 and Mk

2 are defined, their union is rather trivial

but not very useful. The main purpose of union is to essentially automate the construction of edges

between individually designed sets of motion primitives. As with the parallel composition, for levels

k > 0, there may be multiple feasible ways to form a new reset condition Rk(e) for an additional edge

e = (m1, s,m2) ∈ Ek, where mi ∈ Mk
i , i = 1, 2, and s ∈ Σk1(m1). The k-MA requires a concrete choice

to be made for each edge in order to have a well-defined implementation.

5.7 A Library of Hierarchical Motion Primitives

In this section we present the design of a 1-HMA. It builds on the level 0 motion primitives for a system

composed of double integrators that we presented in Chapter 4, which we proved were also well-posed.

Our presentation of the 1-HMA is still quite abstract, so that it can be used as a building block for more

complex maneuvers. It is instrumental towards addressing a multi-agent formation control problem,

and it also serves as a model for other motion primitives that we use when morphing between different

formations. This design is applied to quadrocopters in Section 5.8, showing that our method scales up

well relative to the number of vehicles.

5.7.1 Base Level 0 Motion Primitives

Suppose that the system (5.1) has p ≥ 1 outputs, with each modelled as a double integrator, so that the

number of states is n = 2p. Expressing all the position states followed by the velocity states, we have

ẋi = xi+p and ẋi+p = ui for i = 1, . . . , p.

Consider first p = 1 for a double integrator system, where the box Y ? is just a segment of fixed

length. Borrowing our previous design from Section 4.7.2 we have a single output level 0 MA, denoted

as H0
H FB. It consists of the three motion primitives M0

H FB = {H ,F ,B}, which are Hold, Forward,

and Backward, respectively. Hold stabilizes all output trajectories over a box, Forward causes them

to move forward to the next box, and Backward causes them to move backward one box. The top of

Figure 5.5 summarizes the discrete part of the design. While the continuous part is not salient here, we

recall that the feedback control is parameterized by the segment length of Y ? and a desired maximum

acceleration u∗. In contrast to Section 4.7.2, here we have also allowed the (feasible) edges between

Forward and Backward.

Now consider a collection of p ≥ 1 double integrator systems. Performing a p-fold parallel compo-

sition, we represent the overall system capabilities with the p output 0-MA H0
(H FB)p := ‖pj=1H0

H FB.

The motion primitives are all the combinations M0
(H FB)p = (M0

H FB)p, while the edges E0
(H FB)p
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Figure 5.5: This figure illustrates level 0 motion primitives for a system of p double integrators. The
top row shows the atomic motion primitives M0

H FB and their edges E0
H FB for one double integrator

(p = 1), which are Hold (H ), Forward (F ), and Backward (B). The bottom row shows that two copies
of the p = 1 design may be composed to yield motion primitives for p = 2. This procedure extends easily
to an arbitrary number of p outputs.

correspond to feasible combinations of edges in E0
H FB. For example, when there are two outputs,

p = 2, Right corresponds to Forward in the first output and Hold in the second output. Notice that

these edges are non-trivial in order to maintain correctness at the continuous level; for p = 2, the

edge ((F ,F ), ((0, 0), (1, 0)), (F ,H )) 6∈ E0
(H FB)2 because the second component cannot switch motion

primitives without crossing to the next box, (F , (0, 0),H ) 6∈ E0
H FB, for otherwise safety cannot be

guaranteed. The bottom of Figure 5.5 shows the composed design for p = 2.

5.7.2 Formation Constrained Motion Primitives

We begin by expressing a behavioral constraint that captures the notion of multiple agents maintaining

a certain relative spacing as they move over the gridded output space. As an example, consider two

agents moving in the same physical direction, each modeled as a double integrator with a scalar output.

The behavioral constraint to maintain a formation of two agents, each with one output, is that if one

agent incurs an increment in its output value due to the application of a motion primitive, then the

other agent experiences the same increment in the successive motion primitive.

Now we define the general p output formation behavioral constraint, B? ⊂ B. Consider a behavior
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yb = κ1κ2 · · · ∈ B. Then yb ∈ B? if for all i = 1, 2, · · · , and for all j, j′ ∈ {1, . . . , p},

∣∣∣∣∣
i∑

l=1

(
κlj − κlj′

)
∣∣∣∣∣ ≤ 1. (5.10)

This constraint ensures that over a run and every pair of outputs, the accumulation of offsets differs by

at most one box index.

Using the 0-MA H0
(H FB)p given in the previous section for a fixed p ≥ 1, we design an abstraction

H1
H ?F?B? � H0

(H FB)p such that L(H1
H ?F?B?) ⊂ B?. It is easy to see that the language of the 0-MA

is not contained in the desired behavior, L(H0
(H FB)p) 6⊂ B?, except when p = 1. For example, when

p = 2, the assignment of motion primitives (F ,H )(F ,H ) produces the behavior (1, 0)(1, 0) 6∈ B?.

Our approach consists of coupling the allowed choices of motion primitives in each output. As such, we

design three level 1 motion primitives, which we call Formation Hold (H ?), Formation Forward (F ?),

and Formation Backward (B?). Formation Hold causes no change in all outputs, Formation Forward

causes all outputs to move forward exactly one box, while Formation Backward causes all outputs to

move backward one box.

We now describe the implementation details when there are two outputs, p = 2; see Figure 5.6.

First, the state space is Q1
H ?F?B? = M1

H ?F?B? × X 1
H ?F?B? , where M1

H ?F?B? = {B?,H ?,F ?} and

X 1
H ?F?B? = Z2×M0

(H FB)2 . We denote the origin of each motion primitive as oH ? , oF? , oB? = 0 ∈ Z2

and define for convenience the three starting states xH ? = (0, (H ,H )), xF? = (0, (F ,F )), and

xB? = (0, (B,B)) in X 1
H ?F?B? , which consist respectively of Hold, Forward, and Backward in both

output components at the grid origin.

For H ?, the invariant is the singleton I1
H ?F?B?(H ?) = {xH ?} and (H ?, xH ?) ∈ Q1,0

H ?F?B? is an

initial state. Since Σ0
(H FB)2((H ,H )) = ∅, there are no level 1 edges associated with H ?, and no need

to specify specific values for the transition function X1
H ?F?B?(H ?).

For F ?, the invariant I1
H ?F?B?(F ?) is {xF? , ((1, 0), (H ,F )), ((0, 1), (F ,H ))} and (F ?, xF?) ∈

Q1,0
H ?F?B? is an initial state. Identifying H = 0, F = 1, and B = −1, the transition function is defined

formulaically as

X1
H ?F?B?(F ?)((l, µ), σ) = (l + κ, µ− κ) (5.11)

for all (l, µ) ∈ I1
H ?F?B?(F ?) and σ = (0, κ) ∈ Σ0

(H FB)2(µ). An external transition occurs from a state

x = (l, µ) ∈ I1
H ?F?B?(F ?) when σ = (0, κ) is such that X1

H ?F?B?(F ?)((l, µ), σ) = ((1, 1), (0, 0)). The

associated edge e = (F ?, s,m′) ∈ E1
H ?F?B? has the corresponding level 1 event s = (l, κ) and may

allow concatenation to any level 1 primitive m′ ∈ M1
H ?F?B? , with enabling condition g1

e = {x}, reset
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condition r1
e(x, σ) = xm′ (a starting state), and transformation O1(e) = (1, 1). A similar construction

applies to B?.

The generalization to p outputs is straightforward. Note that although the size of the invariants

of F ? and B? and the number of edges from them increases exponentially with p, M1
H ?F?B? always

consists of just three formation motion primitives. Moreover, a practical implementation does not require

to explicitly write all the states of the invariants and edges, since the formula (5.11) can be generalized.

Remark 5.7.1. By construction provided above, it is easy to see that H1
H ?F?B? is in fact a 1-MA

that abstracts H0
(H FB)p and that it satisfies conditions (viii) and (ix) of well-posedness. Intuitively,

the behavior requirement L(H1
H ?F?B?) ⊂ B? is also satisfied. A formal verification is facilitated by the

observation that all reset conditions enter an initial state in Q1,0
H ?F?B? with all pairwise offsets equal to

zero in (5.10).

Remark 5.7.2. Based on the discrete nature of the design, there is no immediate reason to expect that

the associated output trajectories would exhibit a high degree of coordination at the continuous level.

For example, if the outputs represent two vehicles moving in the same physical direction, assigning F ?

would command both vehicles to move forward exactly one box. If we continue to assign F ?, the vehicles

would continue move exactly forward one box with each assignment of F ?, but not necessarily make

their instantaneous transitions into the next box at the same time instants. Interestingly, it was found

that the supplied design does lead to a coordination at the continuous level as well; this phenomenon is

studied in Chapter 6.

5.8 Quadrocopter Applications

In this section we illustrate how our hierarchical motion planning framework can be applied to a collec-

tion of quadrocopters. We consider two different centralized objectives, formation flight and formation

morphing, and formulate them as behavior-constrained reach-avoid problems. We apply the hierarchical

motion primitive designs from Section 5.7 and show how standard planning algorithms can be used to ef-

ficiently generate control policies at the highest level. The results are then experimentally demonstrated

in Section 5.9. We begin with showing how our designed motion primitives from the previous section

apply to quadrocopters over a gridded output space.
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Figure 5.6: This figure illustrates a level 1 MA design H1
H ?F?B? to achieve the formation behavior

constraint. There are three level 1 motion primitives M1
H ?F?B? , which are Formation Hold (H ?), For-

mation Forward (F ?), and Formation Backward (B?). The implementation of these motion primitives
uses the level 0 MA shown in Figure 5.5. Although this figure depicts the implementation for p = 2, this
design is easily scalable to p outputs. The edges E1

H ?F?B? are independent of p.

5.8.1 Modeling

As in Section 4.8, we can apply the atomic motion primitives for the (xw, yw, zw) directions on all the

quadrocopters. Suppose that we have a collection of N quadrocopters. As also described previously, the

output space grid is induced by gridding the physical 3D space. In what follows, for simplicity we ignore

the zw direction so that p = 2N . The extension to 3D is straightforward.

5.8.2 Policy Generation for Formation Flight

For the formation flight objective, a collection of quadrocopters must reach a goal location in a cluttered

but known environment while maintaining a fixed formation. We encode the formation by a collection

of a relative offsets, which describe the desired box separation in each physical direction from a reference

vehicle to the i-th vehicle. Choosing the first vehicle as the reference, let F i = (F i1, F
i
2) ∈ Z2 for

i = 1, . . . , N denote the relative offsets. Referring to the first step shown in Figure 5.8, we have the

reference vehicle has F 1 = 0 and the other vehicle has F 2 = (0, 2).

Now we specify the objective as a behavior-constrained reach-avoid problem. Let Lf,w ⊂ Z2 be a

finite collection of feasible boxes in the world frame and Lg,w = {lg} ∈ Lf,w be the goal box for the first

vehicle. Then the feasible boxes Lf ⊂ Zp correspond to joint boxes where each vehicle is in Lf,w and

each pair of vehicles has at least a one-box separation in some physical direction for safety. The goal

box Lg ⊂ Lf corresponds to the joint box where the first vehicle is in Lg,w and the other vehicles are
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Figure 5.7: This figure illustrates the various maneuver automata at levels 0, 1, and 2 used to solve the
formation control problem. At the bottom, each vehicle’s xw and yw positional degrees of freedom are
equipped with the atomic Hold, Forward, and Backward motion primitives. These motion primitives are
parallel composed at level 0, abstracted to level 1 to ensure the correct formation behavior, composed
at level 1, and finally abstracted to level 2 to yield a control policy that solves the overall behavior
constrained reach-avoid problem.

translated by F i. The behavior constraint B̂ ⊂ B consists of (5.10) applied to each physical direction

independently among all the vehicles.

To solve the given problem, we use the formation MA designed in Section 5.7.2 to enforce the

behavioral constraint. Then we construct a control policy to achieve the reach-avoid objective for the

entire system. We assume that the vehicles are initially in formation. To ensure that the vehicles remain

in Lf while executing the formation motion primitives, we also assume that for all i, i′ ∈ {1, . . . , N},

i 6= i′,

max{ |F ij − F i
′

j | | j = 1, 2 } ≥ 2. (5.12)

First we describe the hierarchical maneuver automaton, see Figure 5.7. The N outputs corresponding

to the xw directions of the N vehicles are governed by the N -times parallel composed 0-MA H0
(H FB)N .

We assign the 1-MA H1
H ?F?B? � H0

(H FB)N to enforce the formation constraint among these outputs.

This process is repeated for the yw direction. Next we parallel compose these two 1-MAs to obtain the

1-MA H1
(H ?F?B?)2 = ‖2j=1H1

H ?F?B? . Finally, we design a 2-MA H2
(H ?F?B?)2 � H1

(H ?F?B?)2 to serve

as a control policy. The overall 2-HMA is H(H ?F?B?)2 = {H0
(H FB)2N ,H1

(H ?F?B?)2 ,H2
(H ?F?B?)2}.

Now we describe how to construct the control policy, which only requires specifying the invariant
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I2
(H ?F?B?)2(m2) and transition functionX2

(H ?F?B?)2(m2). Observe thatM1
(H ?F?B?)2 = {H ?,F ?,B?}2

always consists of nine composed level 1 motion primitives. In contrast, the gridded output space Zp

and the underlying edges E1
(H ?F?B?)2 for the transitions in X2

(H ?F?B?)2(m2) grow exponentially with

N . To make the computation tractable, we exploit knowledge of the formation to construct a policy

based on a single reference vehicle, see Figure 5.8.

The second step shown in Figure 5.8 constructs a reduced grid

Lr = {l ∈ Z2 | l + F i ∈ Lf,w, i = 1, . . . , N} ⊂ Lf,w,

which creates virtual obstacles for the reference vehicle based on the other vehicle locations F i and the

physical obstacles. The reference vehicle is equipped with the level 0 Hold, Forward, and Backward

motion primitives composed in each physical direction, M0
(H FB)2 = {H ,F ,B}2, which is essentially

equivalent as planning for the overall system with the motion primitives M1
(H ?F?B?)2 . The third step

shown in Figure 5.8 assigns these motion primitives over the reduced grid such that all paths lead to

the reference vehicle goal box lg ∈ Lr. Since motion primitives such as (F ,F ) may result in multiple

possible next boxes, we use a non-deterministic Dijkstra algorithm to assign these motion primitives, as

in Chapter 4. Also, since the algorithm expands outwards from the goal box, each box with a path to

the goal is a valid initial condition. Other algorithms can also be implemented.

The above steps are carried out offline. The computation is generally very efficient for any number

of vehicles N , as the generation of the reduced grid (step 2) scales linearly with N and the assignment

of motion primitives of the reference vehicle using Dijkstra (step 3) scales only with the number of boxes

in Lr ⊂ Z2 and not on N .

The control policy H2
(H ?F?B?)2 is implicitly described by the above steps. Each location on the re-

duced grid equipped with a motion primitive gives rise to a number of states in the invariant I2
(H ?F?B?)2(m2).

Referring to Step 3 of Figure 5.8, suppose the lower-left box is the origin of the reduced grid Lr and the

outputs are ordered as shown. For example, since (F ,H ) is assigned at the lower-left box (0, 0), we ob-

tain the corresponding states ((0, 0, 0, 2), (F ?,H ?)), ((1, 0, 0, 2), (F ?,H ?)), and ((0, 1, 0, 2), (F ?,H ?))

in I2
(H ?F?B?)2(m2), which arise from all the combinations of the first and second vehicles having made

progress in the xw direction due to F ?. Similarly, each transition between locations on the reduced grid

gives rise to multiple transitions in X2
(H ?F?B?)2(m2) to account for the combinations in which a level 1

motion primitive can reach an enabling condition.

It is possible to verify that the behavior-constrained reach-avoid problem is solved by checking that

H(H ?F?B?)2 is complete and well-posed, and checking conditions (i), (ii), and (iii) of Theorem 5.5.2.
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A formal verification is lengthy, so we give an intuitive sketch. Completeness follows by construction

and well-posedness follows from well-posedness of levels 0 and 1. Condition (i) follows because the

reduced grid ensures that all vehicles are safe and (5.12) holds. Condition (ii) follows because all paths

on the reduced grid reach the reference vehicle goal box. Condition (iii) follows by construction of

the formation 1-MAs and since Lemma 5.4.13 ensures that behaviors are preserved when adding more

hierarchical levels, L(H2
(H ?F?B?)2) ⊂ L(H1

(H ?F?B?)2).

5.8.3 Policy Generation for Formation Morphing

In the formation morphing objective, a collection of quadrocopters must reach a goal configuration

in a known but cluttered environment. In this problem, there is no formation requirement. Instead,

knowledge of the starting configuration is assumed to be known.

Once again, let Lf,w ⊂ Z2 be the feasible boxes in the world frame. For i = 1, . . . , N , let lis ∈ Lf,w
and lig ∈ Lf,w be the start and goal box for each vehicle, respectively. The joint feasible boxes Lf are

obtained as before and the joint goal box Lg is obtained by stacking individual goals lig. We do not

specify a behavioral constraint, so B̂ = B.

To solve this problem, we employ a variation of the formation MA designed in Section 5.7.2. Rather

than coupling all the outputs to increment the same amount, we can similarly design additional level 1

motion primitives to cause each output to move a desired box increment of 0, 1 or -1. In this setting, we

do not need to distinguish between the xw and yw directions specifically, so each level 1 motion primitive

commands the desired level 0 motion primitives for each output among all the vehicles. When all outputs

have completed their increment, the next level 1 motion primitive is chosen. Denoting this new HMA

as H1
cmd, the level 1 motion primitives M1

cmd command each output to increment 0, 1, or -1, so that

there are 3p such motion primitives. The hierarchical structure is shown in Figure 5.9, which may be

contrasted to Figure 5.7. The p = 2N outputs are governed by the parallel composed 0-MA H0
(H FB)2N .

We assign the 1-MA H1
cmd � H0

(H FB)2N , and finally construct a control policy H2
cmd � H1

cmd.

To construct the control policy, we use a variation of greedy search with the Manhattan distance as the

heuristic, which is the sum of the distances in each direction to the goal box, see Figure 5.10 with N = 2

vehicles. The current box for each vehicle is initialized as the start box. For each vehicle, a neighboring

direction from the current box that is both collision-free and decreases the Manhattan distance to the

goal box is selected. Once a vehicle has chosen a neighboring direction, the other vehicles must take

into account the selected neighboring direction in order to avoid collisions. Then the next current box is

determined from the selected neighboring direction for each vehicle and the process continues until each
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Figure 5.8: The procedure for computing a control policy is illustrated for the case of two vehicles
(N = 2) over a physical 2D grid.
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vehicle reaches the goal. The output of the algorithm is a sequence of motion primitives m1
j ∈ M1

cmd

generated from each step. Referring to Step 1 in Figure 5.10, the vehicle on the left selects a positive

increment in xw and yw, while the vehicle on the right selects negative increments. Following the order

of outputs shown in Figure 5.7, the corresponding level 1 motion primitive is (1,−1, 1,−1) ∈ M1
cmd.

Similarly, Step 2 selects (1,−1, 0, 0) ∈M1
cmd.

The control policy’s invariant I2
cmd(m2) and transitions X2

cmd(m2) are induced from the sequence

m1
j ∈ M1

cmd and starting boxes of the vehicles, similar to the previous section. For example, if the

origin is the lower-left box, Step 2 with the selected motion primitive m1
2 = (1,−1, 0, 0) ∈ M1

cmd gives

((1, 3, 3, 1),m1
2), ((2, 3, 3, 1),m1

2), and ((1, 2, 3, 1),m1
2) in I2

cmd(m2), arising from the combinations in

which the first and second vehicle make progress moving right and left respectively.

Since the heuristic guides the vehicles to the goals and collisions are easily accounted for at each step,

the control policy can be generated quickly offline using greedy search. Its complexity scales linearly with

the number of the vehicles N . On the downside, it may fail to generate a control policy if the physical

obstacles have long or non-convex shapes, or if the goals lig are not spaced out sufficiently. Our goal here

was to provide a simple baseline algorithm to illustrate the applicability of planning with more abstract

motion primitives. We envision that more sophisticated discrete planning algorithms can potentially be

utilized in order to improve the ability to find a feasible solution, or even an optimal one.

When greedy search produces a control policy, it can be verified that the reach-avoid problem is

solved. The control policy is complete by construction and well-posed because levels 0 and 1 are well-

posed. Condition (i) of Theorem 5.5.2 follows because greedy search only selects collision-free neighboring

directions, condition (ii) follows because greedy search found a path from the start to goal boxes for all

the vehicles, and condition (iii) follows trivially.

5.8.4 Sequence of Reach-Avoid Objectives

As an extension to more complex task specifications, we consider a sequence of reach-avoid objectives.

First we construct a level 2 control policy as in the previous sections for each individual reach-avoid

objective. Each policy is then considered as an individual level 2 motion primitive and feasible concate-

nations among these motion primitives are constructed. Finally, a level 3 control policy is created that

assigns the sequencing of the reach-avoid tasks. In this way, we may intermingle formation flight and

formation morphing seamlessly within a single framework.

Several technical points are now discussed. Observe that both control policy methods from the

previous sections generate level 2 motion primitives with no enabling conditions; that is, all vehicles
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Figure 5.9: This figure illustrates the various maneuver automata at levels 0, 1, and 2 used to address
the morphing control problem. At the bottom, each vehicle’s positional degrees of freedom is equipped
with the atomic Hold, Forward, and Backward motion primitives. These motion primitives are parallel
composed at level 0, abstracted to level 1, and finally abstracted to level 2 to yield a control policy that
morphs the system from one formation to another.
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Figure 5.10: Two agents (p = 4) must swap places in a constrained planar space with an obstacle.
The policy encoding a solution constitutes a level 2 motion primitive and is composed of level 1 motion
primitives M1

cmd that command each output an increment of 0, 1, or -1. As each step commands a level
1 motion primitive, it is easy to enforce safety.
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reach and stabilize within their goal boxes in accordance with the reach condition (ii) of Problem 5.3.1.

Thus the reach condition (ii) is relaxed so that trajectories only need to reach the goal once: there exists

T ≥ 0 such that y(T, x0) ∈ ⋃l∈Lg Yl. Next, in order to concatenate two level 2 motion primitives, the

goal box is removed from the first motion primitive and appears instead at the beginning of the second

motion primitive. To satisfy well-posedness (viii), internal transitions of a level 2 motion primitive that

previously led to a removed goal box are now required to be made into external transitions to other level

2 motion primitives. These edges between level 2 motion primitives are formally added using the union

of HMA from Section 5.6.2 to ensure a feasible construction.

5.9 Experimental Results

Our experimental platform is the same as described in Section 4.8.3. We showcase three different

scenarios on up to eight quadrocopters, using a combination of the control policy strategies discussed

earlier. These scenarios illustrate the ease, intuitiveness, and effectiveness with which our multi-level

hierarchical approach can handle complex specifications involving many vehicles. A video showing the

results is found at http://tiny.cc/hier-moprim. In our code implementation, the user can select the

number of vehicles, the grid parameters, the obstacle locations, the goal locations, and other parameters

such as the formation offsets or whether to morph instead. Mixing the two objectives in a general way

was not implemented.

The control policy strategies from the previous section are computed offline. In runtime, Algorithm

1 is used to correctly implement the motion primitives at each level. Since in practice the state estimates

x ∈ Rn are finitely sampled, the level 0 events s0 are calculated by measuring the current box l ∈ Zp

such that h(x) ∈ Yl rather than checking guard sets. The determination of higher level events on line 6

of Algorithm 1 can be efficiently implemented for our designed motion primitives using a generalization

of (5.11).

5.9.1 Room Transition in Line Formation

In this scenario, six vehicles are placed in a line formation, see Figure 5.11. The physical space is

partitioned into a 7× 13× 1 grid, as shown in Figure 5.12. In the first trial, the vehicles must fly from

the left side of the room to the right side in the (xw, yw) plane. An obstacle lies on the direct path

between the start and goal boxes only for the bottom vehicle. To maintain the formation, consequently

all of the vehicles must navigate in the yw direction so that the bottom vehicle avoids collision. The

level 2 control policy is generated using the method in Section 5.8.2. The computation time using the
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Figure 5.11: Snapshot of the room transition in line formation scenario.

Dijkstra algorithm is around 0.08 seconds. Figure 5.12 shows the paths followed in the (xw, yw) plane

and the trajectories as a function of time. The alternating grey lines on the trajectories as a function of

time indicate the size of the boxes on the grid.

The second trial illustrates several notable features compared to the first trial. Here, the vehicles

must fly repeatedly from one side of the room to the other. We formulate this as a sequence of two

reach-avoid objectives, following Section 5.8.4. The first level 2 motion primitive, denoted m2
→, causes

all vehicles to reach the right side, as in the first trial. The second level 2 motion primitive, m2
←, causes

all vehicles to reach the left side. The motion primitive m2
→ concatenates to m2

← and m2
← concatenates

back to m2
→. Figure 5.13 shows the resulting motion and annotates the duration of each motion primitive

m2
→ and m2

←. Also the vehicles started from a different location compared to the first trial. The motion

primitives m2
→ and m2

← provide paths to the goal from a wide range of starting locations since they were

computed using a Dijkstra algorithm.

The second trial can be considered a case of a heterogenous collection of vehicles, which may arise, for

example, when one vehicle is defective. The bottom vehicle is equipped with a 0-MA in the xw direction

that causes a slower speed during Forward and Backward relative to the other vehicles. We achieve this

effect in this output by changing the maximum acceleration design parameter u∗ in the 0-MA H0
H FB
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Figure 5.12: Experimental results for line formation in the first trial. The vehicles transition from the
left to the right side of the room.
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Figure 5.13: Experimental results for line formation in the second trial. The vehicles transition back
and forth continuously with the bottom vehicle moving slower in xw.
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from Section 4.7.2. The resulting behavior is shown in Figure 5.13. In particular, the xw trajectories as

a function of time show that the bottom vehicle (yellow) moves at its slower nominal speed, while the

other vehicles move at their faster speed and then stop as necessary in order to maintain the formation.

This behavior emerges automatically from the design of the level 1 formation motion primitives. This

feature is extremely robust, as the computation of the motion primitives m2
→ and m2

← does not require

knowledge that the system is heterogenous, nor does it require any information on the implementation

of the underlying level 0 motion primitives, such as timing estimates to transition through boxes. Our

entire framework of motion primitives is based upon feedback, both at the continuous and discrete levels,

and does not require specifying any timed reference trajectories.

5.9.2 Morphing

In this scenario, eight vehicles morph from one configuration to another on a 9× 5× 8 grid. Figure 5.14

shows a snapshot of the initial and goal configurations in the (xw, zw) plane, while Figure 5.15 shows

the trajectories projected onto the (xw, yw) plane and as a function of time. The initial configuration

is a spiral that forms a circular-shape in the (xw, yw) and an s-shape in the (xw, zw) plane. The goal

configuration is a v-shape in the (xw, zw) plane which is situated in the middle row of boxes on the yw

axis. The greedy search algorithm described in Section 5.8.3 was used (generalized to 3D), resulting in a

computation time of around 3.5 milliseconds. The computed control policy consists of only 8 steps m1
j ,

j = 1, . . . , 8, as all the vehicles can typically move into some neighboring direction towards their goal

box at each step.

Notice that at each step, the underlying level 1 motion primitives M1
cmd cause vehicles to wait once

they have reached their neighboring box until all the other vehicles have reached their neighboring box

before moving onto the next step. This feature accounts for the motion of all the vehicles so that

collisions are easy to avoid. Although the individual waiting time for a given vehicle is typically short,

the resulting motion is not the most efficient, especially for vehicles that are far away from all the

other vehicles. Planning with these motion primitives affords a reasonable compromise between solution

quality and efficient computation of a policy for a large number of vehicles, while ensuring strict safety

guarantees.

5.9.3 Various Formations in a Cluttered Environment

In the final scenario, we combine both formation flight and formation morphing on a 14 × 14 × 5 grid.

Figure 5.16 demonstrates the flow of tasks, each of which is specified as a reach-avoid objective. Following
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Figure 5.14: Snapshot of the morphing scenario. The top shows the initial configuration and the bottom
shows the goal configuration.
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Figure 5.15: Experimental results for the morphing scenario. In the top figure, the arrowheads indicate
the direction of motion.
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Section 5.8.4, each objective is carried out by a level 2 motion primitive, denoted m2
j , j = 1, . . . , 4. The

first objective is formation flight in a 2 × 4 arrangement, requiring to navigate past the three pillar

obstacles. The second objective morphs into an octogonal formation. The third objective is formation

flight, requiring to encircle a large obstacle. Finally, the fourth objective requires rotating about the

encircled obstacle. Figure 5.17 shows a few snapshots, Figure 5.18 shows the trajectories in 3D, and

Figure 5.19 shows the trajectories as a function of time. The execution of the level 2 motion primitives

m2
j are also annotated on Figures 5.18 and 5.19.

The computation time for each of the level 2 primitives m2
1 and m2

3 for formation flight was about

1.2 seconds using the Dijkstra algorithm (generalized to 3D) from Section 5.8.2. The second objective is

addressed using greedy search from Section 5.8.3 and is completed rather trivially in just two steps. The

fourth objective is also formulated as a morphing problem; while greedy search could have been used,

we chose to design the steps m1
j manually. The construction is an extension of the idea shown in Figure

5.10 from two to eight vehicles, which results in 16 steps for each vehicle to complete a full revolution.

This scenario illustrates the richness of the possible motions that can be encoded with our hierarchical

motion primitives framework and also the ease and intuitiveness with which many vehicles can be

controlled. The proposed level 1 motion primitives for motion planning introduced in Section 5.7 and

the planning strategies for quadrocopters introduced in Section 5.8 offer a taste of what is potentially

possible. It is not hard to see that other interesting behavioral constraints such as a wave pattern or

contraction and dilation effect can also be tackled efficiently using hierarchical motion primitives. The

use of hierarchy is advantageous as complex behaviors can be represented in a more economical and

intuitive way.

The significance of our HMA framework is that it provides general but provably correct guidelines for

well-designed hierarchical motion primitives in the context of motion planning. In our applications, we

hand-designed the underlying level 0 and level 1 motion primitives using our intuition, created control

policies at level 2 using standard planning algorithms, and even combined these at level 3. A different

application may reuse some of the strategies we have proposed in this chapter. Alternatively, one may

construct new lower level motion primitives, employ an arbitrary number of hierarchical levels, and

adapt different planning algorithms at the top level or even plan among several levels. The strength

of our approach lies in its modularity, as it affords the designer the ability to customize each of these

components.
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Figure 5.16: Objectives for experiment involving multiple formations.

5.10 Conclusion

We have presented a multi-level hierarchical framework for motion planning of a large collection of agents.

Central to our methodology is the notion of a hierarchical maneuver automaton (HMA), which allows for

a recursive construction of motion primitives, starting from a concrete implementation using low-level

feedback controllers, to an increasing level of abstraction that specifies the rules for connecting lower-

level motion primitives. We have characterized the solvability of reach-avoid problems with behavior

constraints using our framework. To demonstrate practical applicability, we have designed a versatile

library of hierarchical motion primitives to address formation flight and morphing. The effectiveness of

the approach is validated experimentally on a collection of quadrocopters.

We provide a brief discussion on some of the limitations of the proposed hierarchical methodology

and potential future work. As this work is an extension of Chapter 4, some of the same limitations

are inherited, so we discuss some of the new complications that arise. First, just as we did not present

an automated method of generating motion primitives (at level 0) in Chapter 4, we did not present an

automated way of constructing motion primitives at higher levels. Even if we assume the existence of

useful level 0 motions, such as those we have provided based on integrator systems, one of the main
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Figure 5.17: Snapshots of the scenario intermingling formation flight and morphing.
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Figure 5.18: Experimental results involving multiple formations, showing 3D trajectories.
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complications is that there is an infinite number of possible feasible motion primitives that can be

defined at higher levels (of course, only a small number should actually be designed). Moreover, the

number of hierarchical levels is also a free parameter. While we have left these aspects to the discretion

of the designer and have shown some examples of significant computational savings, planning in a free

hierarchical fashion can generally be quite daunting. Clearly the use of intuition plays an important role,

and so the development of some heuristics could be helpful. Overall, it may be interesting to investigate

methods to automatically generate a hierarchy (or in some sense, an optimal hierarchy) that solves a

given instance of the behavior-constrained reach-avoid problem.

Second, as in Chapter 4, we made an effort in this chapter to characterize the existence of Zeno

executions in the hierarchical setting. Our constraint on the reach property in the main theorem is quite

conservative in order to bypass the difficulty. For example, in the hierarchical setting it is quite possible

to reach a collection of goal boxes and to cycle through these boxes. If the underlying level 0 motion

primitives are not well designed, a Zeno execution may exist.

Finally, we note the overall complexity of employing a hierarchical approach. While we have provided

sufficient conditions for the solvability of the behavior-constrained reach-avoid problem, it can be argued

that an efficient verification of these conditions is in many cases quite prohibitive. Indeed, we did not

supply formal verifications of well-posedness and the conditions of the main theorem in our applications;

while these results are intuitive and verified experimentally, a complete proof is quite challenging to

produce. Moreover, we did not provide a rigorous definition of the parallel composition and union

procedures at higher levels because our efforts have suggested that it becomes a combinatorial nightmare.

The complexity of the original problem is in some ways transferred to the complexity of encoding the

hierarchy.



Chapter 6

Analysis of Formation Motion

Primitives

6.1 Introduction

In this chapter, we examine in greater detail a characteristic of the formation motion primitives intro-

duced in Chapter 5. The presentation of this analysis is motivated by the pleasant observation that

a purely discrete design of higher level motion primitives could lead to remarkable properties at the

continuous level, even though not explicitly designed for.

Consider the hierarchical maneuver automaton (H0
(H FB)p ,H1

H ?F?B?) for formation control from

Section 5.7, where p ≥ 1 is the number of outputs. We have observed that a “hybrid” limit cycle emerges

in any hierarchical execution that continually assigns the level 1 motion primitive Abstract Forward, F ?,

as first pointed out in Remark 5.7.2. By symmetry, the same would be observed for Abstract Backward,

so it is not explicitly considered. Let us consider some examples and then motivate the implications.

Due to the modularity of our approach, we may use either the single integrator design from Section

4.7.1 or the double integrator design from Section 4.7.2 for the implementation ofH0
H FB. For simplicity,

let us consider the case of single integrators with a unity canonical box, Y ∗ =
∏p
i=1[0, 1]. First suppose

that p = 1. In this trivial case, we keep applying F ? at level 1, which simply implements F at level 0.

There is only one resulting (hybrid) trajectory, which consists of repeating the following: the position y

increases with constant speed, and the position is reset to y = 0 when y = 1.

Next suppose that p = 2. Applying F ? at level 1 consists of applying the level 0 motion primitives

(F ,F ), (F ,H ), and (H ,F ), see Figure 6.1. Trajectories start in the lower left region with (F ,F )

159
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and may progress in three ways to complete F ?. First, a trajectory may enter the lower right region

with (H ,F ), eventually leading to upper right region, which is shown as blank to indicate that F ?

repeats by reseting the trajectory to the lower left region with (F ,F ). Second, a trajectory may enter

the top left region with (F ,H ), eventually leading again to the upper right region. Third, a trajectory

may exactly enter the upper right region. It should be clear that the reset action, which consists of

subtracting 1 in each component at the completion of the level 1 motion primitive F ?, is employed as a

convenience to analyse these hybrid trajectories in a compact domain without the need for re-expressing

translated versions of the same equations. The hybrid nature of these trajectories refers to the switching

among different closed-loop vector fields, corresponding to the different level 0 motion primitives.

Referring again to Figure 6.1, we see for this particular example that the hybrid trajectories seem

to converge to the “diagonal” trajectory. Moreover, if we interpret the two outputs as corresponding

to the motion of two vehicles along the same axis, this means that the individual output component

trajectories “synchronize” as F ? is repeatedly executed, in the sense that both vehicles take the same

amount of time to complete their respective initial level 0 F motion primitive of F ?. In the context of

formation flight, this synchronization property is highly desirable because the resulting motion would be

smoother, as opposed to the two vehicles taking turns jerking forward. Our claim is that the presence of

a hybrid limit cycle is a general phenomenon that occurs for any number of outputs for both the single

and double integrator cases. This claim is proven for the single integrator case and is left as an open

problem for the double integrator case.

Although we shall not provide a detailed survey of existing literature on limit cycles of hybrid

systems, a notable example can be found in [48], which investigated limit cycles in bipedal locomotion by

applying the concept of a Poincaré return map. We follow a fundamentally similar approach, employing

a customized analysis based on applying the contraction principle from real analysis. Given that our

design of the Abstract Forward motion primitive was first introduced by the author, the result stated in

this chapter is a novel contribution.

This chapter is organized as follows. In Section 6.2 we recall the associated feedback controllers for

the motion primitives and derive some useful expressions. Section 6.3 presents the main results. We

conclude in Section 6.4.

6.2 Preliminaries

Next we recall the controller designs for Hold (H ) and Forward (F ) for both the single and double

integrators (in both cases, the number of outputs is p = 1). The free parameters are the length of Y ∗,
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Figure 6.1: Hybrid trajectories of Abstract Forward (F ?) tend to a limit cycle (red). A hybrid trajectory
(magenta) is shown over three applications of F ?.

d > 0, and the maximum control effort, u∗ > 0. In particular, we shall write some expressions that will

assist us in the stating and proving the main result.

6.2.1 Single Integrator

First consider the single integrator, ẋ = u. From Section 4.7.1, the controllers can be expressed as

u1
H (x) = (−2u∗/d)(x− d/2), u1

F (x) = u∗.

It will be useful to normalize the dynamics for each controller so that the box length is unity. Define

x̂ = (1/d)x ∈ R and ρ = u∗/d. Then the dynamics become ˙̂x = u, with the new controllers

û1
H (x̂) = −2ρ(x̂− 1/2), û1

F (x̂) = ρ.

In this form, the explicit solutions to the ODEs ˙̂x = û1
H (x̂) and ˙̂x = û1

F (x̂) for Hold and Forward

respectively, with initial condition x̂0 ∈ R, are especially easy to compute:

x̂H (t) = (x̂0 − 1/2) exp(−2ρt) + 1/2, x̂F (t) = ρt+ x̂0. (6.1)
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6.2.2 Double Integrator

Now consider the double integrator, ẋ1 = x2 and ẋ2 = u. Let v∗ =
√
du∗ be the derived maximum

speed. From Section 4.7.2, the controllers can be expressed as

u2
H (x) = (−2u∗/d)(x1 − d/2) + (−2u∗/v∗)x2, u2

F (x) = (−2u∗/v∗)(x2 − v∗/2).

Once again, we normalize the equations, letting x̂ =
[
1/d 1/v∗

]
x ∈ R2 and ν =

√
ρ =

√
u∗/d.

Then the dynamics become ˙̂x1 = νx̂2 and ˙̂x2 = u, with the new controllers

û2
H (x̂) = −2ν(x̂1 − 1/2)− 2νx̂2, û2

F (x̂) = −2ν(x̂2 − 1/2).

In this form, the explicit solutions to the ODEs are still easy to compute. For Hold, the solution to

˙̂x1 = νx̂2 and ˙̂x2 = û2
H (x̂), with initial condition x̂0 ∈ R2, is

(x̂H )1(t) = exp(−νt) [c1 cos(νt) + c2 sin(νt)] + 1/2, (6.2)

(x̂H )2(t) = exp(−νt) [(−c1 + c2) cos(νt) + (−c1 − c2) sin(νt)] . (6.3)

where c1 = (x̂0)1 − 1/2 and c2 = (x̂0)1 + (x̂0)2 − 1/2. For Forward, the solution to ˙̂x1 = νx̂2 and

˙̂x2 = û2
F (x̂), with initial condition x̂0 ∈ R2, is

(x̂F )1(t) = 1/2 [(1/2− (x̂0)2)(exp(−2νt)− 1) + νt] + (x̂0)1, (6.4)

(x̂F )2(t) = ((x̂0)2 − 1/2) exp(−2νt) + 1/2. (6.5)

6.3 Main Results

6.3.1 Single Integrators

Consider now p ≥ 1 single integrators stacked together. We consider each single integrator in normalized

form (6.1), with their own ρi > 0, i = 1, . . . , p, and drop the hats for convenience. Since the states are

equivalent to the outputs, we may refer to these interchangeably.

Now we formulate our problem of a hybrid limit cycle. We construct a set S ⊂ Rp and a map

F : S → Rp that acts essentially as a Poincaré return map, in the following sense:

(1) S is defined as the product of the invariant sets of Forward in each output, and F may begin at

any point x ∈ S;
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(2) in each output i = 1, . . . , p, F first applies the Forward closed-loop vector field to xi until the

guard set is reached (at position value 1), which defines the crossing time Ti through the equation

1 = ρiTi + xi; let T be the largest of the Ti;

(3) in each output, once the guard set is reached, the state is reset (to position value 0) and then the

Hold closed-loop vector field (from position 0) is applied for a time duration of T − Ti (seconds),

waiting until the “slowest” output completes Forward; the new point F (x) occurs at time T (there

is no need to reset again since we are still in Y ∗).

Following the above recipe, we formally define the set S as S =
∏p
i=1 I

0(F ) = [0, 1]p ⊂ Rp and we

define the map F : S → Rp component-wise for i = 1, . . . , p as

Fi(x) = (0− 1/2) exp(−2ρi(T − Ti)) + 1/2 (6.6)

= 1/2 [1− exp(−2ρi(T − Ti))] , (6.7)

where Ti = (1 − xi)/ρi ≥ 0, and T = max{Ti | i = 1, . . . , p}. To show that the return map concept

works, we will show that F (S) ⊂ S.

The main result is the following.

Theorem 6.3.1. The map F defined by (6.6) has a unique fixed point x∗. Moreover, for all x ∈ S the

iterate Fn(x) = F ◦ · · · ◦ F (x) converges to x∗ as n→∞ (in the standard topology of Rp).

Modulo the “resetting action”, it should be clear that the associated hybrid limit cycle is generated by

any state trajectory that goes through the fixed point. Moreover, the hybrid limit cycle is attractive.

See Figure 6.2 for a generic example.

The contraction principle seems like it would be the ideal tool to use in proving this result. However,

some preliminary attempts have indicated that this approach is complicated by the hybrid nature of F ,

which applies the two different vector fields of Forward and Hold with different timings in each output.

Our strategy is to first show that for each point x ∈ S, applying F iteratively a finite number of times will

reach a certain invariant subset of S, Ŝ, which contains the fixed point. Then applying the contraction

principle to the restriction of F to Ŝ gives the result.

We characterize the invariant subset by considering the outputs associated with the smallest or

“slowest” parameters ρi. Let ρ = min{ρi | i = 1, . . . , p}, Iρ= = {i = 1, . . . , p | ρi = ρ}, and Iρ< = {i =

1, . . . , p | ρ < ρi}. We define the subset Ŝ as those states in S which have at least one slowest output

starting at zero:

Ŝ = {x ∈ S | (∃i ∈ Iρ=) xi = 0}. (6.8)



Chapter 6. Analysis of Formation Motion Primitives 164

y1
0 0.5 1 1.5 2

y
2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x∗

x

F (x)

F 2(x) F 3(x)

x′

F (x′)
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Ti. The points mapped by F are shown, and they converge to the point x∗ on the limit cycle. The point
x∗ is non-trivial, since ρ1 = 1.2 and ρ2 = 1.

We define F̂ : Ŝ → Rp as the restriction of F to Ŝ. First we establish some basic properties.

Lemma 6.3.2. We have that

(i) F (S) ⊂ S,

(ii) F̂ (Ŝ) ⊂ Ŝ,

(iii) and for all x ∈ Ŝ, the maximum crossing time is T = 1/ρ.

Proof. First we prove (i). Since for all i = 1, . . . , p, ρi > 0 and T − Ti ≥ 0, we must have that

0 < exp(−2ρi(T − Ti)) ≤ 1, and thus 0 ≤ Fi(x) < 1/2 < 1.

Next we prove (ii) and (iii). Let x ∈ Ŝ and write xi = 0 for some i ∈ Iρ=. To show that F (x) ∈ Ŝ,

we will show that Fi(x) = 0; T = 1/ρ will be deduced in the process. Since Ŝ ⊂ S, for all j = 1, . . . , p,

0 ≤ xj ≤ 1, and thus 0 ≤ 1− xj ≤ 1. By definition of ρ, ρj ≥ ρi for all j = 1, . . . , p. Altogether, we get

for all j = 1, . . . , p that

(1− xi)ρj = ρj ≥ ρi ≥ ρi(1− xj) ⇒ Ti ≥ Tj .

This shows that T = Ti = 1/ρ, which proves (iii). Then the formula for Fi(x) gives that Fi(x) = 0,

which proves (ii).
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The next results establish convergence to Ŝ in a finite number of iterations and that F̂ has a unique

fixed point. Referring to Figure 6.2 for an illustration, we see that Ŝ = {x ∈ [0, 1]2 | x2 = 0} since

ρ2 < ρ1. For the sample points x, x′ ∈ S, they reach Ŝ in a finite number of iterations, since F 2(x) ∈ Ŝ

and F (x′) ∈ Ŝ.

Lemma 6.3.3. For all x ∈ S, there exists N ≥ 0 such that the iterate FN (x) := F ◦ · · · ◦ F (x) ∈ Ŝ.

Proof. Let x ∈ S. First, observe that for all n ≥ 0, the iterations Fn(x) are well-defined, since by

Lemma 6.3.2 (i), Fn(x) ∈ S.

If x ∈ Ŝ ⊂ S, the result is trivial with N = 0 (F 0(x) := x). Thus suppose that x ∈ S \ Ŝ 6= ∅

and write the iterates as Fn(x) for n ≥ 0. For each n ≥ 1, let Tni be the individual output crossing

times for i = 1, . . . , p, and let Tn = Tni(n) be the maximal crossing times (occurring at some output

i(n) ∈ {1, . . . , p}). It suffices to show that there exists some smallest N ≥ 1 and j ∈ Iρ= such that

TN = TNj , assuming that i(n) 6∈ Iρ= for all n < N . Our strategy is the following. For each output

i ∈ Iρ=, we independently bound from above its iterated values by a suitably chosen function gi. This

function is essentially the worst-case mapping Fi assuming the maximal crossing time always occurs at

some output i′ with second slowest speed or parameter ρi′ from position 0. Moreover, this function has

the property that it decreases to negative infinity. Then we choose N and j such that the iterate gNj (xj)

first becomes negative; this will allow us to conclude that the output j gives the maximal crossing time.

Since S\Ŝ 6= ∅ implies that Iρ< 6= ∅, let ρ′ = min{ρi | i ∈ Iρ<} denote the second smallest parameter.

For each i ∈ Iρ=, define the scalar mapping gi : R→ R as

gi(z) = 1/2 [1− exp(−2ρ(1/ρ′ − ti)] ,

where ti = (1− z)/ρ. Since ρ < ρ′, it can be observed that for any fixed initial z ∈ [0, 1] that the iterate

gni (z) tends to −∞. Starting from xi, write gni (xi) as the iterates for n ≥ 0, with crossing times tni for

n ≥ 1. Since gni (xi) tends to −∞, let Ni ≥ 1 be the earliest iteration where gNii (xi) < 0, or equivalently

1/ρ′ − tNii < 0. Let N = min{Ni | i ∈ Iρ=} and j = argmin{Ni | i ∈ Iρ=}. Thus 1/ρ′ < tNj .

Next, for all 0 ≤ n < N we claim that Fnj (x) ≤ gnj (xj). This result is established by induction.

The result is clearly true when n = 0. Supposing it is true for 0 ≤ n − 1 < N − 1 we show it is true

for n. By direct manipulation, Fnj (x) ≤ gnj (xj) is equivalent to Tni(n) − Tnj ≤ 1/ρ′ − tnj . First, from

Fn−1
j (x) ≤ gn−1

j (xj), we establish that −Tnj ≤ −tnj (a). Second, since F (S) ⊂ S by Lemma 6.3.2 (i) and

for all n′ < N , i(n′) 6∈ Iρ=, ρi(n−1) ≥ ρ′ implies 1/ρ′ ≥ Tni(n) = (1− Fn−1
i(n−1)(x))/ρi(n−1) (b). Subtracting

tnj from both sides of (b) and using (a) gives the desired result.



Chapter 6. Analysis of Formation Motion Primitives 166

Since FN−1
j (x) ≤ gN−1

j (xj) by the above result, direct manipulation gives tNj = (1− gN−1
j (xj))/ρ ≤

(1 − FN−1
j (x))/ρ = TNj . Since TNi ≤ 1/ρ′ for all i ∈ Iρ< and recalling that, 1/ρ′ < tNj , we have that

TN = TNj is the maximum crossing time, completing the proof.

Lemma 6.3.4. The map F̂ has a unique fixed point x∗ ∈ Ŝ and for all x ∈ Ŝ, the iterate F̂n(x)

converges to x∗ as n→∞ (in the standard topology of Rp).

Proof. We invoke the contraction principle. We equip Ŝ with the standard topology of Rp, and use the

infinity-norm metric, d(x, x′) = max{|xi − x′i| | i = 1, . . . , p}, for convenience. First observe that Ŝ is

compact (since Ŝ ⊂ Rp is both closed and bounded) and F̂ (Ŝ) ⊂ Ŝ by Lemma 6.3.2 (ii). It remains to

show that F̂ is a weak contraction.

Let x, x′ ∈ Ŝ, x 6= x′. We must show that d(F̂ (x), F̂ (x′)) < d(x, x′). For each i = 1, . . . , p, write

the crossing times as Ti and T ′i for x and x′ respectively. Moreover, x, x′ ∈ Ŝ and Lemma 6.3.2(iii)

implies that the maximum crossing times are T = T ′ = 1/ρ. Consider a fixed i ∈ {1, . . . , p} such that

xi 6= x′i. Define βi = exp(−2ρi/ρ+ 1), zi = min{1− 2xi, 1− 2x′i}, and z′i = max{1− 2xi, 1− 2x′i}. Since

ρ ≤ ρi, it is easy to show that βi ≤ 1/e. Then we invoke the Mean Value Theorem for the function

exp on the domain [zi, z
′
i] so that there exists c ∈ (zi, z

′
i) such that exp(z′i) − exp(zi) = exp(c)(z′i − zi).

Taking absolute values gives | exp(z′i) − exp(zi)| = | exp(c)||z′i − zi|. Since 0 ≤ xi, x
′
i ≤ 1, we have that

−1 ≤ zi, z
′
i ≤ 1, and so | exp(c)| < | exp(1)| = e. Combining, we have | exp(z′i) − exp(zi)| < e|z′i − zi|.

Using this (Lipschitz) condition with βi ≤ 1/e, direct computation then gives

|F̂i(x)− F̂i(x′)| =
∣∣∣∣
1

2

ï
1− exp

Å
−2ρi

Å
1

ρ
− 1− xi

ρi

ããò
− 1

2

ï
1− exp

Å
−2ρi

Å
1

ρ
− 1− x′i

ρi

ããò∣∣∣∣
=
βi
2
| exp(z′i)− exp(zi)| <

1

2e
e|z′i − zi| = |xi − x′i| ≤ d(x, x′).

Finally, since |F̂i(x) − F̂i(x
′)| < d(x, x′) is true for all i ∈ {1, . . . , p} such that xi 6= x′i, we have

d(F̂ (x), F̂ (x′)) < d(x, x′).

Now we can easily prove the main result.

Proof of Theorem 6.3.1. Let x ∈ S and consider the iterations Fn(x), n ≥ 0. These iterations are well-

defined, since by Lemma 6.3.2 (i), Fn(x) ∈ S for n ≥ 0. By Lemma 6.3.3, there exists N ≥ 0 such that

FN (x) ∈ Ŝ. The iterations for n ≥ N then converge to a unique fixed point x∗ ∈ Ŝ by Lemma 6.3.4.

The uniqueness of x∗ ∈ S is established by observing that another point x′ 6= x ∈ S also reaches Ŝ in a

finite number of iterations.
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Remark 6.3.5. Finally we make the connection to the synchronization property shown in Figure 6.1,

which follows immediately as a special case of Theorem 6.3.1. Suppose that all the parameters are the

same for all the outputs, that is, Iρ< = ∅. Then after one iteration, any point x ∈ S reaches Ŝ. The

fixed point is x∗ = 0, and so the individual crossing times Ti all tend to 1/ρ over the iterations. If the

outputs represent the motion of vehicles in the same physical direction, this means that eventually all the

vehicles move with the same constant speed and cross into the next box at the same time instant, even if

they start with at different relative positions in their box with different speeds.

6.3.2 Double Integrators

Consider now p ≥ 1 double integrators stacked together. We consider each double integrator in normal-

ized form, using (6.2), (6.3), (6.4), and (6.5) with their own νi > 0, i = 1, . . . , p, and drop the hats for

convenience. There are 2p states, and we identify the outputs as the states with an odd index.

We apply the same concept of a Poincaré map. Let S =
∏p
i=1 I

0(F ) ⊂ R2p, where in normalized

coordinates the Forward invariant region I0(F ) is the convex hull of the six vertices (0, 0), (0, 1), (1, 0),

(1, 1), and (1,−1) in R2. Define the map F : S → R2p component-wise for i = 1, . . . , p as

F2i−1(x) = exp(−νi(T − Ti)) [ci,1 cos(νi(T − Ti)) + ci,2 sin(νi(T − Ti))] + 1/2, (6.9)

F2i(x) = exp(−νi(T − Ti)) [(−ci,1 + ci,2) cos(νi(T − Ti)) + (−ci,1 − ci,2) sin(νi(T − Ti))] , (6.10)

where Ti is the unique non-negative solution to

1 = 1/2 [(1/2− x2i)(exp(−2νiTi)− 1) + νiTi] + x2i−1, (6.11)

T = max{Ti | i = 1, . . . , p}, ci,1 = 0− 1/2 = −1/2, and

ci,2 = 0 + [(x2i − 1/2) exp(−2νiTi) + 1/2]− 1/2 = (x2i − 1/2) exp(−2νiTi). (6.12)

Unfortunately, the proofs given in the single integrator case do not easily generalize to the double

integrator case, because the times Ti cannot be solved for analytically due to the complexity of more

states. However, a similar procedure of identifying an invariant subset Ŝ, showing convergence to it from

S, and then applying the contraction principle on Ŝ, seems promising.

We sketch out some ideas. Again, consider the smallest parameter ν = min{νi | i = 1, . . . , p} and the

indices Iν= = {i = 1, . . . , p | νi = ν}. Our main observation, which follows by manipulating the above
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equations, is: for x ∈ S and for all i ∈ Iν=, if x2i−1 = 0, x2i = 0.5, and Ti = T , then F2i−1(x) = 0 and

F2i = 0.5. This result isn’t so useful because we have to assume that Ti = T , unlike Lemma 6.3.2(iii)

which proved this. Also, in contrast to how Ŝ was defined in the single integrator case, the candidate

set given below for Ŝ does not work:

Sc = {x ∈ S | (∃i ∈ Iν=) x2i−1 = 0, x2i = 0.5}.

A simple counterexample is obtained from considering ν1 = 1, ν2 = 1.1, and x = (0, 0.5, 0, 0) ∈ Sc; one

can verify that F (x) 6∈ Sc, since T = T2 > T1. Thus a suitable invariant set Ŝ is non-trivial to find, but

simulation results support its existence.

We conclude by stating our main conjecture. Our numerical simulations support its validity.

Conjecture 6.3.6. The map F : S → R2p defined above has a unique fixed point x∗. Moreover, for all

x ∈ S the iterate Fn(x) = F ◦ · · · ◦ F (x) converges to x∗ as n→∞ (in the standard topology of Rp).

6.4 Conclusion

In this chapter we analyzed the periodic motions associated with the Abstract Forward motion primitive

introduced in Chapter 5. For the case of single integrators for each output, we proved that there always

exists a unique, attractive limit cycle. Moreover, when the parameters are selected accordingly, this

results in a synchronization of the outputs, which is useful in the context of formation control. We

conjectured that a similar result exists for the case of double integrators.

The analysis in this chapter was specific to the application that motivated its study. Experience

with designing reach controllers has also suggested the existence of limit cycles, see for example Figure

1.1. This motivates a more general study of limit cycles in the context of hybrid systems with affine

dynamics.
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Conclusion

This thesis investigated the application of formal methods in control to obtain a systematic and scalable

methodology for motion planning in robotics. In the first research direction, we formulated an optimal

control problem as an alternative to the RCP for obtaining feedback controllers more easily on higher

dimensional systems. Our formulation led to the study of an unresolved problem in the area of indefinite

linear quadratic optimal control, which we solved. In the second research direction, we formulated a novel

modular framework for motion planning by combining feedback-based motion primitives with planning

techniques in a compatible and rigorous way so as to ensure performance and safety. The methodol-

ogy was demonstrated experimentally on quadrocopters and led to additional study into hierarchical

structures and limit cycle analysis.

With regards to the two approaches considered, the literature on both optimal control and motion

planning is vast. Throughout our investigations and contributions to these fields, a number of areas for

future work were observed and elaborated in the conclusions of each chapter, which we now highlight.

• Through the classical or “geometric” approach to analytical optimal control, there are still many

cases in which the solution to the optimization problem is not completely resolved. For example,

in the indefinite linear quadratic control problem that we considered, necessary and sufficient

conditions for a finite value function is still an open question. Although not considered in this

thesis, singular optimal control problems, where the weighting on control need not be strictly

positive definite, are much more difficult and contain many more unresolved cases [37]. Finally, we

recognized the difficulty in applying controllers derived from optimization problems in the context

of hybrid control, where often there are stringent requirements on reachability and safety. To this

end, we highlighted some directions for optimal control problems with constraints in Section 3.8.

169
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• The proposed framework for motion planning, both hierarchical and non-hierarchical versions,

placed great emphasis on the fundamental architectural requirements that establish a formal guar-

antee on safety and implementability. The framework applies to nonlinear systems with sym-

metries, although we have placed emphasis on multi-agent systems. It would be worthwhile to

investigate the application of our framework to other vehicle classes, particularly unicycles and

robotic manipulators. Also it would be of interest to identify alternative methods of construction

for motion primitives and planning algorithms for better automation of the controller synthesis

process. In the context of the multi-level hierarchy we proposed, there is also potential for inves-

tigating different hierarchical structures to improve scalability and achieve very complex motions.

• The proposed framework for motion planning focused exclusively on reach-avoid problems in known

static environments in a centralized manner. While an essential starting point for any motion

planning framework, this restrictive scenario is not representative of many practical situations in the

real world. Nevertheless, the modularity and robustness of our approach suggests applicability to

dynamic environments or decentralized operation. In such modalities, we expect that the majority

of our framework can be reused, with the difference of employing online planning algorithms to

generate control policies at the highest level only.

• A theoretical issue in the design of motion primitives and maneuver automata was that of avoiding

Zeno behavior. We highlighted some of the associated difficulties in numerous remarks throughout

Chapters 4 and 5. From this point of view, our theory on maneuver automata is not complete.

It is generally recognized in the hybrid systems literature that the study of Zeno behavior is very

technically challenging.

• Our analysis of a limit cycle in Chapter 6 opened many research questions. First, there is the im-

mediate resolution of our conjecture for the double integrator case. Second, and more importantly,

is a more thorough analysis on the stability of limit cycles for hybrid systems with affine dynamics.

In the author’s view, this is an exciting time for robotics and control. There are still many open

questions, both on the theoretical and practical side. By engaging both sides through a feedback process

of inquiry, better integration can ultimately be achieved.
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