
DISS. ETH N◦ xxxxx

Safe Exploration in Reinforcement Learning:
Theory and Applications in Robotics

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

FELIX MICK FINN BERKENKAMP

MSc ETH in Mechanical Engineering, ETH Zurich

born on Dec. 10, 1990

citizen of Germany

accepted on the recommendation of

Prof. Dr. Andreas Krause (ETH Zurich), examiner
Prof. Dr. Angela P. Schöllig (University of Toronto), co-examiner

Prof. Dr. Manfred Morari (University of Pennsylvania), co-examiner

2019

Abstract

Reinforcement learning has seen significant advances over the last decade in simulated
or controlled environments. These successes have lead to interest in deploying learning
algorithms in the real world, where they face significant prior uncertainties. While these
algorithms are often able to find high-performance control strategies eventually, they typi-
cally do not provide any safety guarantees during the learning process. As a consequence,
they cannot be deployed in safety-critical systems without posing a significant safety risk
to both the learning system and its environment.

In this dissertation, we introduce safe exploration algorithms that provide rigorous safety
guarantees during the learning process. In particular, our algorithms explicitly model
uncertainty about their environment in order to make safe decisions. These kind of
algorithms are conservative in the beginning, when uncertainties are large, but become
more confident over time as they acquire more data and learn about their environment.
Importantly, they remain safe at all times during the learning process.

We first consider direct policy optimization, where we optimize the parameters of a policy
without explicitly learning a transition model of the environment. We extend existing
Bayesian optimization algorithms to the setting with multiple safety constraints. Moreover,
we show how to safely transfer knowledge between different tasks that are parameterized
by ‘contexts’. We evaluate the resulting algorithms in extensive experiments on a flying
robotic vehicle and show that it can safely learn high-performance controllers.

Secondly, we consider model-based reinforcement learning. In this setting, algorithms
learn an explicit model of the environment that includes uncertainties and actively collect
data in order to improve it. We theoretically show that we can safely learn policies in
this setting by restricting exploration to the set of states where a safe backup strategy is
available. Moreover, we provide a safe exploration algorithm based on model predictive

i

control that safely collects data and restricts exploration to the region of the state space
where it can always recover back to this safe region. Lastly, we provide regret bounds
for an optimistic exploration scheme without safety constraints and discuss how it can be
applied in the safety-constrained setting.

ii

Zusammenfassung

Das Verstärkungslernen hat in den letzten Jahren erhebliche Fortschritte in simulierten
oder kontrollierten Umgebungen gemacht. Diese Erfolge haben zu Interesse am Einsatz von
Lernalgorithmen in der realen Welt geführt, wo sie mit erheblichen Unsicherheiten konfron-
tiert sind. Diese Algorithmen sind zwar oft in der Lage leistungsfähige Steuerungsstrategien
zu finden, bieten aber in der Regel keine Sicherheitsgarantien während des Lernprozes-
ses. Infolgedessen können sie nicht in sicherheitskritischen Systemen eingesetzt werden,
ohne ein erhebliches Sicherheitsrisiko für das unterliegende System und seine Umgebung
darzustellen.

In dieser Dissertation stellen wir sichere Erkundungsalgorithmen vor, die die Sicherheit
während des Lernprozesses garantieren. Insbesondere modellieren unsere Algorithmen
Unsicherheiten in ihrer Umgebung explizit, um sichere Entscheidungen zu treffen. Diese
Art von Algorithmen sind zu Beginn konservativ, wenn die Unsicherheiten groß sind,
werden aber mit der Zeit selbstbewusster wenn sie mehr Daten erfassen und somit mehr
über ihre Umgebung erfahren. Wichtig ist, dass die Sicherheit des Lernprozesses zu jeder
Zeit garantiert ist.

Wir betrachten zunächst die direkte Steuerungsoptimierung, bei der wir die Parameter eines
Reglers optimieren, ohne ausdrücklich ein Modell des Systems zu lernen. Wir erweitern exi-
stierende Bayes’sche Optimierungsalgorithmen mit mehreren Sicherheitseinschränkungen.
Darüber hinaus zeigen wir, dass Informationen zwischen verschiedenen Aufgaben, die von
‘Kontexten’ parametrisiert werden, sicher transferiert werden können. Wir werten die re-
sultierenden Algorithmen in umfangreichen Experimenten auf einem fliegenden Roboter
aus und zeigen, dass diese in der Lage sind leistungsfähige Regler sicher zu lernen.

Zweitens betrachten wir das modellbasierte Verstärkungslernen. Diese Algorithmen ler-
nen ein explizites Modell der Umgebung inklusive Unsicherheiten und sammeln aktiv

iii

Daten um das Modell zu verbessern und die Unsicherheiten zu reduzieren. Wir zeigen,
dass wir in dieser Situation sicher Regler lernen können, indem wir die Erkundung auf
Zuständen beschränken, in denen eine sichere Ausweichsstrategie verfügbar ist. Darüber hin-
aus entwickeln wir einen sicheren Erkundungsalgorithmus, der auf einer modellprädiktiven
Steuerung basiert. Dieser Regler ist in der Lage Daten sicher zu sammeln, indem der die Er-
kundung auf Zustände beschränkt, von denen er sich jederzeit wieder in eine sichere Region
zurückbewegen kann. Schlussendlich zeigen wir, dass ein optimistische Erkundungsstrate-
gie ohne Sicherheitseinschränkungen garantiert zu nah-optimalen Reglern konvergiert und
diskutieren wie diese Strategie mit einem sicherheitsbeschränkten Algorithmus kombiniert
werden kann.

iv

Acknowledgments

I would like to thank my two advisors, Andreas Krause and Angela Schöllig. Their
respective expertise, advice, and willingness to explore new ideas have been essential for
the success of this thesis. Thank you for all the invaluable discussions over the years.
I would also like to thank Manfred Morari, who kindly agreed to serve on my Ph.D.
committee.

I am extremely grateful to all my fantastic collaborators and co-authors. In particular
Matteo Turchetta, who has been involved in large parts of the work presented in this
dissertation. Within the group, I have also enjoyed the collaborations with Johannes
Kirschner and Sebastian Curi, during which I have learned a lot from their different point
of views. I am also thankful to have had the chance to collaborate with Alonso Marco,
Manuel Wüthrich, Rikky Duivenvoorden, and Shromona Ghosh outside of the institute.
Lastly, I want to thank Karen Bodie and Maximilian Brunner for the discussions about
their cool Voliro robot.

I am also fortunate to have had the opportunity to work with numerous fantastic master
students at ETH. In particular I want to thank Torsten Koller, Silvan Melchior, Robin
Spiess, Nikolay Nikolov, Spencer M. Richards, Riccardo Moriconi, Nicolas Carion and
Hany Abdelrahman, who went on to write publications beyond their respective projects.
Your motivation and new ideas were part of what made this Ph.D. exciting. I also want to
thank Jan Poland for the long and ongoing collaboration with ABB that enabled several
of these projects.

Beyond academics, I would like to thank everyone at the Institute for Machine Learning,
and at the Learning & Adaptive Systems group specifically, for all the great conversations
and fun times both at and outside of work. I am also grateful to all the people in the
robotics group at the University of Toronto, who were always happy to help and made my

v

short visits there extremely fun. I am also indebted to the administrative staff at ETH,
especially Rita, for all their help over the years.

I am happy to acknowledge institutions that have supported the research in this dissertation.
In particular, the Department of Computer Science at ETH Zurich. I was also supported by
a fellowship from the Open Philanthropy Project, SNSF grant 200020 159557, ERC grant
no. 815943, NSERC grant RGPIN-2014-04634, and a stipend from the Vector Institute.

Lastly, I want to thank Özge for all the support over the years and making my life happier
overall. I am also grateful to my family for their boundless support and encouragement.

vi

Contents

1 Introduction 1

1.1 Contributions . 3

1.2 Publications Relevant to this Dissertation 3

1.3 Collaborators . 4

2 Background and Related Work 5

2.1 Notation . 5

2.2 Dynamical Systems . 8

2.3 Optimal Control . 9

2.3.1 Approximate Dynamic Programming 10

2.3.1.1 Policy Evaluation . 11

2.3.1.2 Policy Improvement . 12

2.3.2 Model Predictive Control . 12

2.3.3 Episodic Control . 13

2.3.4 Sparse Rewards . 13

2.3.5 Certainty Equivalence . 14

2.4 Safe Control . 14

2.4.1 Definition . 15

2.4.1.1 Lyapunov Stability and Regions of Attraction 15

2.4.1.2 Constraint Satisfaction . 17

vii

Contents

2.4.2 Stochastic Safety . 18

2.4.3 Safety-constrained Markov Decision Process 19

2.5 Reinforcement Learning . 20

2.5.1 Policy Improvement Without a System Model 20

2.5.2 Model-based Reinforcement Learning 21

2.5.3 Aleatoric versus Epistemic Uncertainty 22

2.6 Modelling Epistemic Uncertainty . 22

2.6.1 Gaussian Processes . 23

2.6.1.1 Information Capacity . 25

2.6.2 Functions in a Reproducing Kernel Hilbert Space 26

2.6.2.1 Confidence Intervals . 27

2.6.3 Other Models . 28

2.7 Uncertainty-based Exploration . 28

2.7.1 Bandits and Bayesian Optimization 28

2.7.1.1 Bayesian Optimization . 29

2.7.2 Reinforcement Learning . 32

2.7.2.1 Reward Uncertainty . 32

2.7.2.2 Value Uncertainty . 32

2.7.2.3 Model Uncertainty . 33

2.8 Safe Reinforcement Learning . 34

2.8.1 Safe Model-free Reinforcement Learning 36

2.8.1.1 High-confidence Policy Improvement 36

2.8.1.2 Safe Bayesian Optimization 37

2.8.2 Safe Model-based Reinforcement Learning 38

2.8.2.1 Unknown Constraints . 38

2.8.2.2 Robust Control . 39

2.8.2.3 Safe Learning Control . 40

2.8.3 Safe Exploration . 41

viii

Contents

3 Safe Direct Policy Optimization 43

3.1 Problem Statement . 43

3.2 Multi-output RKHS Functions . 45

3.2.1 Confidence Intervals . 47

3.3 SafeOpt-MC (Multiple Constraints) . 48

3.3.1 The Algorithm . 49

3.3.2 Theoretical Results . 53

3.4 Context . 54

3.5 Practical Implementation . 56

3.6 Quadrotor Experiments . 58

3.6.1 Experimental Setup . 58

3.6.2 Kernel Selection . 59

3.6.3 Linear Control . 60

3.6.4 Nonlinear Control . 63

3.6.5 Circle Trajectory . 65

3.6.6 Context-Dependent Optimization 66

3.7 Conclusion . 68

4 Safety Analysis of Learned Dynamical Systems 71

4.1 Learning reliable models of dynamical systems 71

4.1.1 Regularity Assumptions . 72

4.1.2 Bounding the Epistemic Uncertainty 74

4.1.3 Bounding the Aleatoric Uncertainty 75

4.2 Stability of Uncertain Systems . 75

4.2.1 State constraints . 78

4.3 Confidence Intervals for Finite-time Trajectories 78

4.3.1 Ellipsoids . 79

4.3.2 Robust Multi-step Predictions . 80

ix

Contents

4.3.2.1 One-step Predictions with Uncertain Inputs 80

4.3.2.2 Multi-step Predictions . 84

4.3.2.3 Predictions under State-Feedback Control Laws 84

4.3.2.4 Safety Constraints . 85

4.4 Conclusion . 86

5 Safe Exploration for Model-based Reinforcement Learning 89

5.1 Exploration by Uncertainty Sampling . 90

5.1.1 Safe Policy Optimization . 91

5.1.2 Exploration Guarantees . 92

5.1.3 Practical Implementation and Experiments 96

5.2 Safe Exploration with Model Predictive Control 100

5.2.1 Safety and Performance . 102

5.2.2 Practical Considerations . 104

5.2.3 Experiments . 105

5.3 Task-driven Exploration . 109

5.3.1 Challenges for Safe Exploration . 110

5.3.1.1 Unlearnable, yet Desirable Decisions 110

5.3.1.2 Safe and Informative, yet Undesirable Decisions 111

5.3.2 Exploration Without Safety Constraints 112

5.3.2.1 Problem Definition . 113

5.3.2.2 Expected Performance . 114

5.3.2.3 Optimistic Performance 116

5.3.2.4 Practical Implementation 121

5.3.3 Safe Exploration . 122

5.4 Conclusion . 126

6 Conclusion 127

6.1 Future Work . 128

x

Contents

A Proofs for Safe Direct Policy Optimization 129

B Proofs for Model Analysis 139

B.1 Noise Bound . 139

B.2 Lyapunov Stability . 141

C Proofs for Safe Exploration 145

C.1 Safe Exploration . 146

C.2 Safety and Policy Adaptation . 154

D Proofs for Exploration Regret Bound 157

D.1 Bounding the Domain Under Aleatoric Uncertainty 162

D.2 Regret Bound . 166

D.3 Bounding the Mutual Information . 167

D.4 Bound With Lipschitz Constraint . 168

D.5 Lipschitz Continuity of the Gaussian Process Variance 171

D.6 Practical Implementation . 171

xi

1
Introduction

Over the last decade, reinforcement learning (Sutton and Barto, 1998) has become an
increasingly popular paradigm to learn optimal control strategies directly by interacting
with an a priori unknown dynamical system. For example, the resulting control strategies
are able to control complex video games like Atari directly from image observations (Mnih
et al., 2015) and can surpass the best human players at boardgames like Go (Silver, Huang,
et al., 2016). While training in simulation can mostly be thought of as a form of model-
based control, the data-driven nature of these methods means that they can also be applied
directly in the physical world, notably in robotics (Kober and Peters, 2014).

Unlike in simulation, in the physical world actions have real consequences. As a result,
any algorithm that is deployed on real-world systems needs to ensure the safety of itself
and the environment that it interacts with. Safety in known environments has long
been considered and formalized by the control and formal methods communities, where
control strategies can be synthesized that comply with a given specification. Moreover, in
stochastic systems one can define different stochastic measures of the risk of violating the
safety constraints. However, all these methods rely on a known model of the system. In
contrast, in reinforcement learning the environment is a priori unknown.

There are two main sources of unsafe behavior in reinforcement learning (Amodei et al.,
2016). For the first one, we know how to quantify safety of our system, but we do not
know the environment in advance. Without a known model of the environment, we cannot
reason about the safety of control actions in advance and thus do not know a priori if a

1

Chapter 1. Introduction

control policy is safe to deploy. The second source is the consequence of not knowing or
miss-specifying the performance objective for the reinforcement learning agent, so that the
resulting system behaves in an undesirable, unfair, or unethical way. In these cases, we
often do not know how to quantify safety and the unsafe behavior would even exist if the
model was perfectly known. In this dissertation, we focus on the former, since it is more
tractable to analyze. This means that, we must safely explore the environment to collect
data without ever violating the safety constraints during exploration.

For example, consider an autonomous flying vehicle. While it is desirable for the algorithm
steers the robot to improve over time (e.g., by adapting to changing environment condi-
tions), any policy applied to the system has to guarantee the safety of the system. Safety
here can, for example, be defined as not crashing into any obstacles. However, without a
given model of the environment it is not possible to know which control actions are likely
to cause the robot to crash. In this setting, safe exploration requires the system to fly
conservative in the beginning, for example, by stabilizing the system in hover. Once the
algorithm safely gathers data on this simple task and learns about the system, it can start
to fly slowly so that it can always stop in time whenever it detects an obstacle. Only
once it has learned about the environment, can the algorithm fly safely and with high
performance.

In contrast to the safe exploration behavior described above, most existing learning algo-
rithms rely on randomized exploration to gather relevant data for the learning process.
This randomization ensures that, eventually, all actions have been tried and the algorithm
can determine the optimal ones. At the same time, this random exploration is likely
to violate the safety specification at some point during the exploration process. As a
consequence, these algorithms cannot be applied to safety-critical, physical systems.

Safe exploration can be achieved in many ways by incorporating additional knowledge into
the learning process (Garćıa and Fernández, 2015). For example, one may have access to
human supervision or a known backup strategy at every state. However, these strategies
often solve the problem by assumption and switch between learning and safety whenever
possible. In this dissertation, we instead consider algorithms that directly quantify and use
uncertainties during the learning process and only evaluate actions when they are known
to be safe.

2

1.1. Contributions

1.1 Contributions

In this dissertation, we investigate safe exploration schemes that explicitly reason about
uncertainties during the learning process. These algorithms can guarantee safety by
ensuring that they act safely with respect to their internal uncertainties. That is, they
know what they do not know and only evaluate actions where they are confident about
safety. The primary contributions of this dissertation are summarized below.

Chapter 3: We analyze a safe exploration scheme for direct policy search subject to a
priori unknown constraints. The resulting Bayesian optimization algorithm can safely
optimize controller parameters and transfer knowledge about tasks. We evaluate these
algorithms in extensive experiments on a flying robotic vehicle.

Chapter 4: We show how to learn a reliable model of a dynamical system under certain
statistical assumptions. Next, we show that, given a policy, this assumption can be used
to analyze the stability of the closed-loop system. Furthermore, we construct confidence
intervals on trajectories in order to verify finite-time properties of the system.

Chapter 5: We exploit the analysis tools from Chapter 4 to design safe exploration algo-
rithms. First, we show that it is possible to safely learn a model of the system and
optimize the control policy at the same time, while respecting stability constraints
encoded by a Lyapunov function. Next, we explicitly design a safe exploration strategy
based on model predictive control. Lastly, we analyze an exploration scheme with-
out safety constraints and show that it provably converges and discuss how it can be
combined with the safe learning algorithms derived before.

1.2 Publications Relevant to this Dissertation

This dissertation is to large parts based on the following publications and technical reports.

• Felix Berkenkamp, Angela P. Schoellig, and Andreas Krause (2016). “Safe controller
optimization for quadrotors with Gaussian processes”. In: Proc. of the IEEE
International Conference on Robotics and Automation (ICRA), pp. 493–496

3

Chapter 1. Introduction

• Felix Berkenkamp, Andreas Krause, and Angela P. Schoellig (2016). “Bayesian opti-
mization with safety constraints: safe and automatic parameter tuning in robotics”.
In: arXiv:1602.04450 [cs.RO]

• Felix Berkenkamp, Riccardo Moriconi, Angela P. Schoellig, and Andreas Krause
(2016). “Safe learning of regions of attraction in nonlinear systems with Gaussian
processes”. In: Proc. of the Conference on Decision and Control (CDC), pp. 4661–
4666

• Felix Berkenkamp, Matteo Turchetta, Angela P. Schoellig, and Andreas Krause
(2017). “Safe model-based reinforcement learning with stability guarantees”. In:
Proc. of Neural Information Processing Systems (NeurIPS), pp. 908–918

• Torsten Koller, Felix Berkenkamp, Matteo Turchetta, Joschka Boedecker, and An-
dreas Krause (June 27, 2019). “Learning-based model predictive control for safe
exploration and reinforcement learning”. In: arXiv: 1906.12189 [cs, eess]

• Felix Berkenkamp, Angela P. Schoellig, and Andreas Krause (2019). “No-Regret
Bayesian optimization with unknown hyperparameters”. In: Journal of Machine
Learning Research (JMLR) 20.50, pp. 1–24

While we point out the relevant publications at the beginning of each chapter, Chapter 1
and Chapter 2 are based on material from all these publications.

1.3 Collaborators

The main content of this dissertation was developed in collaboration with Andreas Krause
and Angela P. Schoellig. Chapters 4 and 5 were developed together with Matteo Turchetta.
Riccardo Moriconi contributed to the continuous-time analogue of the Lyapunov stability
verification in Sections 4.2 and 5.1, while the results in Sections 4.3 and 5.2 were developed
together with Torsten Koller and Joschka Boedecker.

4

https://arxiv.org/abs/1906.12189

2
Background and Related Work

In this chapter, we provide an overview of the field and state relevant background infor-
mation for the remainder of the dissertation.

2.1 Notation

We start by introducing an overview of the notation used. As any interdisciplinary work,
we face the issue of different notations being used in the reinforcement learning and control
communities. In this dissertation, we use the classical notation from control and dynamic
programming (Bertsekas et al., 1995) to define states x and control actions u, which as a
rich history (Bennett, 1996), rather than the modern reinforcement learning notation with
s and a, respectively (Sutton and Barto, 1998). As a diplomatic middle ground, we use
the more positive notion of rewards from the reinforcement learning literature, as opposed
to costs, to define our control and learning objectives. Note that these choices are without
loss of generality.

We generally use lower case variables like x and f to denote scalars or functions. Vectors
are bold, x, and matrices bold upper case, A. Sets are generally denoted by calligraphic
variables, e.g., D.

A subscript xi denotes the ith vector x and we use x1:4 = {x1,x2,x3,x4} do denote a
range of vectors. We denote the ith element of the vector x as [x]i. For a function

5

Chapter 2. Background and Related Work

f(x,u), we sometimes write a corresponding scalar function over an extended input space,
f(x,u, i) = [f(x,u)]i, to index the output dimensions. We write Eω[·] = Eω∼p(ω)[·] without
specifying a distribution to denote the expected value when this is clear from context.
Similarly, Eω1:2 [·] is the expectation over ω1 and ω2. For discrete sets A = {a1, a2},
|A| = 2 denotes the size of the set, while |A| denotes the determinant of the matrix A.

The following tables give an overview of the main symbols used throughout the thesis.

Table 2.1: Greek letters

Symbol Meaning
β Scaling factor for the Gaussian process confidence intervals, see Lemma 1
γ The worst-case mutual information.
ω The transition noise vector in (2.1) and (4.1). Also the observation noise in

model-free RL.
θ The parameters of the control policy πθ.
π The control policy π
σ The noise is σ-sub Gaussian for the RKHS regression. For the GP, the noise

is Gaussian with N (0, σ2).
τ A trajectory of a dynamic system
κ The discretization constant for the grid in Section 4.2

Table 2.2: Sets

Symbol Meaning
D Parameter space θ ∈ D ⊆ Rd

Hk Reproducing kernel Hilbert space associated with the kernel k
N The natural numbers
R The real numbers
U Feasible region of the linear input constraints
Uκ Discretization of the action-space
V(c) Level-set of the Lyapunov function s.t. v(x) ≤ c

X Feasible region of the linear state constraints
Sn Safe set of states (states that fulfill the stability constraint under the policy

πn.)
Xκ Discretization of the state-space

6

2.1. Notation

Table 2.3: Scalars and vectors

Symbol Meaning
a Input to the statistical model in Section 2.6
c(·) Safety constraint in safe, model-based RL
d Dimensions of the parameters θ ∈ D ⊆ Rd

d(·, ·) Distance metric
f(·, ·) transition dynamics (2.1)
fπ(·) Closed-loop transition dynamics f(·, π(x))
g Known model part in (4.1)
h Unknown model part in (4.1)
i Generic index
j Generic index

k(·, ·) Kernel function for the Gaussian process Section 2.6.1 and RKHS functions
Section 2.6.2

ln(·) Lower confidence interval
m Number of safety constraints in Chapter 3.
n Iteration count.
p Dimension of the state x ∈ Rp

q Dimension of the control input u ∈ Rq

r(·, ·) Reward function
rn Regret at iteration n

Rn The cumulative regret at iteration n, Rn = ∑n
i=1 rn

t Discrete time step in the state space model (2.1)
u Control input to the dynamic system (2.1)

un(·) Upper confidence interval
v(·) Lyapunov function, see Section 2.4.1.1
wn Width of the confidence interval. wn(·) = un(·)− ln(·)
x State of the dynamic system (2.1)
y Noisy observations for the Gaussian process in Section 2.6.1
z Context variables in (2.36)

7

Chapter 2. Background and Related Work

2.2 Dynamical Systems

The key component of both control theory and reinforcement learning are dynamical
systems, which describe the behavior of a system over time. In particular, we consider a
discrete-time Markovian system, which at every discrete time step t is completely described
by a state xt, so that the next state xt+1 is independent of all past states given xt ∈ Rp.
We can control the system by applying control actions ut ∈ Rq at each time step t,

xt+1 = f(xt,ut,ωt), (2.1)

where the function f describes the evolution of the system and depends on the i.i.d.
transition noise ωt with E[ωt] = 0. The distribution of the noise ωt encodes the probability
of transitioning from one state to another. While we assume that the noise is i.i.d., the
mapping through the nonlinear function f can lead to heteroscedastic noise that depends
on the state and control input. Instead of the stochastic system (2.1), some models consider
a deterministic system with ωt = 0 (a dirac distribution) for all t ≥ 0, which we write as

xt+1 = f(xt,ut). (2.2)

Throughout the dissertation we assume that the state x is observed directly without ob-
servation noise. This assumption is standard the Markov Decision Process framework that
the reinforcement learning community typically considers, see Section 2.5. For notational
consistency and convenience, we also keep this assumption in Chapter 3, even though that
method is also applicable to partially-observed systems.

We generally assume that the state x0 is known in advance. This is a relatively weak
assumption given that the state is observed directly. However, most results and definitions
can be extended to the case where x0 is a random variable and its distribution is well-
behaved (e.g., bounded moments or sub-Gaussian).

To control the system, we us a policy ut = π(xt, t) that, given the state xt and time
step t, decides which control action ut to apply to the system f . In general this policy
can be time-dependent and depend on all past information up to time step t. We write
π(xt) when the policy is time-independent. We denote the resulting closed-loop system by
fπ(x,ω) = f(x, π(x),ω) and fπ(x) = f(x, π(x)). Whenever we want to highlight that the
policy is parameterized by parameters θ ∈ D ⊆ Rd, we write πθ for the resulting policy
under the parameters θ. However, we still denote the closed-loop system under this policy

8

2.3. Optimal Control

as fπ = fπθ
whenever it is clear from context. Note that not all policies are parameterized.

For example, evaluating the policy might involve solving an optimization problem for every
state x, see Section 2.3.

2.3 Optimal Control

The goal of control is to make a dynamical system behave in a certain way or to solve a
task. This goal is typically specified via a deterministic reward function r : Rp × Rq → R,
so that the reward signal r(x,u) encodes how desirable it is to apply the control input u in
state x in order to solve the control task. Ultimately, we want to select a policy so that the
closed-loop system fπ spends as much time as possible in high-reward states. We quantify
this via the value Jπ(x) of a state x under the policy π, which is defined as the expected
sum of all discounted future rewards under the closed-loop dynamics with policy π,

Jπ(x) = Eω0:∞

[∞∑
t=0

γtr (xt, π(xt))
∣∣∣x0 = x

]
, (2.3)

s.t. xt+1 = f(xt, π(xt),ωt), (2.4)

where γ ∈ [0, 1) is a discount factor that ensures the infinite sum remains finite and
well-defined. Setting γ = 1 is only allowed when the infinite sum in (2.3) is finite. For
example, this happens when the system has absorbing (terminal) states with zero reward.
Intuitively, the smaller we choose γ the more myopic the encoded value Jπ(x) is. Finding
a policy π that maximizes the expected performance (2.3) subject to the system dynamics
(2.4) is generally known as dynamic programming.

This setting can be modeled as a Markov Decision Process, see Figure 2.1. We are given
a environment that internally represents a stochastic, dynamical system as in (2.1). We
can apply control actions ut and observe the resulting next state xt+1 together with the
corresponding reward r(xt,ut). A plethora of different methods exist to solve this problem
under various assumptions and a full review is beyond the scope of this dissertation. Here,
we provide a high-level introduction to approximate dynamic programming and review
methods that are relevant for the remainder of the dissertation.

9

Chapter 2. Background and Related Work

Figure 2.1: Illustration of a Markov Decision Process. At every time step t the agent
(control policy) uses all past knowledge to decide on new actions ut. It then observes
the effects of a noisy transition according to (2.1) in form of the next state xt+1 and the
corresponding reward r(xt,ut). We assume that the agent knows the reward function. The
goal of the agent is to maximize the cumulative reward.

2.3.1 Approximate Dynamic Programming

Approximate dynamic programming summarizes a large class of methods that, for a given
policy π, approximate the value function Jπ(x) for each state x with a parametric function
approximator. This is known as policy evaluation. Subsequently this estimate can then be
used for policy improvement, i.e., computing a policy with superior expected performance.
In general, approximate dynamic programming is a large umbrella term that encompasses
methods from reinforcement learning as well. Here we consider it only as a method to
find an optimal policy given the dynamical system f and focus on continuous state-action
spaces.

10

2.3. Optimal Control

2.3.1.1 Policy Evaluation

For policy evaluation, we must approximate the true value function Jπ under a given policy.
It is easy to show that Jπ satisfies the recursive definition

Jπ(x) = Eω0:∞

[∞∑
t=0

γtr (xt, π(xt))
∣∣∣x0 = x

]
, (2.5a)

= r(x, π(x)) + Eω0:∞

[∞∑
t=1

γtr (xt, π(xt))
∣∣∣x0 = x

]
, (2.5b)

= r(x, π(x)) + γEω0

[
Jπ(x1)

∣∣∣x0 = x
]

(2.5c)

= r(x, π(x)) + γEω[Jπ(f(x, π(x),ω))]. (2.5d)

This recursive property of the value Jπ(x) of a state x under the policy π is usually taken
as a starting point.

One of the simplest methods to approximate Jπ is to minimize the temporal difference
error between (2.5d) and Jπ(x), which is known as the TD(0) algorithm (Sutton, 1988;
Dayan, 1992). To define a loss for the parametric approximation Jψπ , typically the squared
distance is used,

∆Jψπ (x) =
(
r(x, π(x)) + γEω

[
Jψπ (f(x, π(x),ω)

]
︸ ︷︷ ︸

Training target (2.5d)

− Jψπ (x)
)2
, (2.6)

which measures the squared error from the Bellman equation. When this error is zero for all
states x ∈ Rp, then we approximate the value function perfectly. However, ∆Jψπ (x) = 0 for
some x ∈ Rp generally does not imply that Jψπ (x) = Jπ(x), since the definition recursively
depends on the estimate Jψπ at other states. To minimize the error (2.6), we need to decide
at which states x we want to approximate Jπ. This is typically accomplished by specifying
a distribution p(x) (or weighting function) over states. Thus, we can obtain an estimate
of the parameters ψ of our value function estimate Jψπ by minimizing the error,

min
ψ

Ex∼p(x)
[
∆Jψπ (x)

]
. (2.7)

One choice for p(x) that is particularly common in reinforcement learning is to manually
specify a distribution over initial states x0 and then sample finite-length trajectories of
states from the transition dynamics to obtain a distribution over x (Powell, 2009). The
resulting distribution is

p(x) ∝ p(x0)
T∑
t=1

P(xt = x |x0, π), (2.8)

11

Chapter 2. Background and Related Work

which is proportional to the probability of the system being in state x at any of the T
time steps. This is also known as the state visitation probability under the policy π. The
intuition behind this choice is that we want to approximate the value function at states
that are likely to be visited under the policy π when initial states are drawn from p(x0).

2.3.1.2 Policy Improvement

Given an approximation Jψπ of Jπ, we want to optimize a parametric policy πθ given the
estimated value function; a process known as policy improvement. We write Jθ for Jπθ

.
A simple method to improve the policy is to maximize the expected reward under the
dynamics and bootstraps after T time steps using the estimated value function,

max
θ

Ex0∼p(x0)

[
Eω0:T

[
γTJψθ (xT) +

T−1∑
t=0

γtr (xt, π(xt))
]]
, (2.9)

s.t. xt+1 = f(xt, π(xt),ωt). (2.10)

This optimization problem approximates the cost using the given system dynamics, but
estimates the tail using the learned value function. One way to solve this problem is via
gradient descent, where derivatives with respect to the expectations over the noise can
be computed using the reparameterization trick (Kingma and Welling, 2013), see also
(Lillicrap et al., 2015).

2.3.2 Model Predictive Control

An alternative method is to not parameterize the control policy by parameters θ, but
instead optimize over control inputs ut directly over a finite horizon T . To account for
the truncated horizon, we can use a value function Jπ∗ under some policy π∗ in order to
approximate the cost beyond the T steps. Thus, the control policy is given by

π(x) = argmin
u0

min
u1:T

Eωt

[
γTJπ∗(xT) +

T−1∑
t=0

γtr (xt,ut)
∣∣∣x0 = x

]
, (2.11)

s.t. xt+1 = f(xt, πθ(xt),ωt), (2.12)

which plans an optimal sequence of control actions u0:T for a given state x0 = x and then
applies only the first control action of this sequence, u0. Solving this optimization problem
at every time step t is known as model predictive control (Morari and H. Lee, 1999;

12

2.3. Optimal Control

Francesco Borrelli et al., 2017). A notable advantage of this formulation is that constraints
can be enforced explicitly as part of the optimization. Note that the bootstrapping with
Jπ∗ can improve performance significantly in practice (U. Rosolia and F. Borrelli, 2018).

In practice, the nonlinear program (2.11) is often approximated to solve it efficiently. For
example, approximating the dynamics to first order (linearizing) and the cost function
to second order leads to a sequential quadratic programming (Boggs and Tolle, 1995)
scheme. Without constraints, the quadratic programs can be solved in closed form using
the iterative linear quadratic regulator (iLQR) (Tassa et al., 2012), while approximating
the dynamics to second order leads to differential dynamic programming (DDP) (Jacobson
and Mayne, 1970).

Rather than solving the optimization problem online, we can instead solve it offline and ap-
proximate the resulting control inputs, a process known as explicit model predictive control
(Chen et al., 2018). From this perspective, the policy improvement step in Section 2.3.1.2
can be viewed as an explicit model predictive control scheme, which approximates the
model predictive control policy π(x) in (2.11) with a parametric policy πθ in expectation
over p(x0).

2.3.3 Episodic Control

One special case of the infinite-horizon optimal control problem is when the system is reset
to the initial state x0 every T time steps. In this case, we can write the objective directly
as a function of the policy parameters θ,

J(θ) = Eω0:T−1

[
T∑
t=0

γtr (xt, πθ(xt, t))
∣∣∣x0

]
(2.13)

s.t. xt+1 = f(xt, πθ(xt, t),ωt). (2.14)

This setting is known as episodic control, since the system operates in episodes that always
start from the same state x0.

2.3.4 Sparse Rewards

In general, it is intractable to solve the optimization problems posed in this section. Thus,
in practice, the model predictive control programs are solved with local approximations to
both the dynamics and the cost. Similarly, the policy improvement step in Sections 2.3.1.2

13

Chapter 2. Background and Related Work

and 2.3.3 is usually conducted via gradient descent, which leads to local improvements
under the policy.

As a consequence of these local optimization strategies, optimal control and approximate
dynamic programming become challenging when the rewards are sparse. This means that
most states yield a reward of zero, except for a small set of states with positive reward.
For example, an extreme case of sparsity is if we have r(x,u) = 1 only when x = 0 and
r(x,u) = 0 otherwise. Since the probability of the system visiting the state x = 0 is zero,
local changes to the policy do not improve the reward. The same holds true empirically if
the policy is unlikely to visit states that incur reward.

As a result, policy optimization can only be expected to work if either the reward is
sufficiently rich, or the state visitation probability p(x) in (2.8) is non-zero for the states
that have sparse rewards; that is, under our initial policy the system eventually visits
states with high reward.

2.3.5 Certainty Equivalence

In linear, stabilizable systems with quadratic reward functions (even with γ = 1), it is well-
known that the optimal policy is linear and can be computed in closed form (Kwakernaak
and Sivan, 1972). More importantly, the certainty-equivalence principle holds, so that the
optimal control policy for the stochastic linear system with additive, zero-mean noise with
bounded second moment is the same as the optimal policy for the deterministic system.
While this equivalence does not hold in general, this principle is often applied to nonlinear
systems too; that is, the nonlinear stochastic optimal control problem is approximated
with a nonlinear deterministic optimal control problem.

2.4 Safe Control

In Section 2.3, we consider optimizing the performance (cumulative reward) of a dynamical
system. In practice, we also have to guarantee that the resulting system is safe. For example,
we cannot only optimize a plane that carries passengers to fly as fast as possible, but also
have to ensure that it is safe and respects the comfort constraints of passengers. In this
section, we first discuss how to define safety in deterministic dynamical systems, and then

14

2.4. Safe Control

discuss extensions to stochastic systems. Lastly, we discuss these constraints in the context
of optimal control from Section 2.3.

2.4.1 Definition

In general, the safety of a dynamical system f is a property of a sequence of states visited
and actions applied under a control policy π. We denote these sequences (trajectories)
of potentially infinite length with τ = {(x0,u0), (x1,u1), . . . }. In general, safety can be
defined for these trajectories with a specification (Woodcock et al., 2009). For example,
this specification may analyze reachability or state and input constraints. It condenses all
these constraints into a single function c : T → R that maps a trajectory of state-action
pairs τ ∈ T to a scalar value, so that a given trajectory is safe if

c(τ) ≥ 0. (2.15)

Many frameworks to specify the function c exist that exploit different assumptions, e.g.,
(Maler and Nickovic, 2004). In the following, we review the two most commonly-used
constraints in control: Stability and constraints on states and actions.

2.4.1.1 Lyapunov Stability and Regions of Attraction

A key concept in control is that of stability of an equilibrium point. Without loss of
generality, this equilibrium point is assumed at the origin, so that fπ(0) = 0. Stability is
a property of infinitely long trajectories. Specifically, the origin of a closed-loop system is
stable if the state stays within some norm-ball around the origin for all time steps and it is
asymptotically stable if it converges to the origin eventually. We provide formal definitions
below.

Definition 1 (Bof et al. (2018)). The equilibrium point x = 0 of a closed-loop system
xt+1 = fπ(xt) is

• stable if, for each ε > 0, there exists a δ > 0 such that

‖x0‖ < δ =⇒ ‖xt‖ < ε,∀t ≥ 0; (2.16)

• unstable if it is not stable;

15

Chapter 2. Background and Related Work

• asymptotically stable if it is stable and there exists a δ > 0 such that for any x0

with ‖x0‖ < δ it holds that
lim
t→∞
‖xt‖ = 0; (2.17)

• globally asymptotically stable if the system is asymptotically stable for any
δ > 0.

Remark 1. In the following, we call a closed-loop system asymptotically stable if the
origin of that system is asymptotically stable as in Definition 1.

Since Definition 1 reasons about trajectories, for a given trajectory τ we can define c(τ) = 1
whenever the corresponding property in Definition 1 holds and c(τ) = −1 otherwise. In
general, proving asymptotic stability of a system is a difficult proposition, as it requires
reasoning about all trajectories of a system within a norm-ball around the origin. Fortu-
nately, Lyapunov (1992) (originally published in 1892) provides a method to analyze the
stability of systems that are Lipschitz continuous. This method uses Lyapunov functions
v(x) and allows to verify the asymptotic stability condition in Definition 1 with a simple
one-step condition (Khalil and Grizzle, 1996).

Theorem 1 (Bof et al., 2018). Let x = 0 be an equilibrium point for the autonomous
system xt+1 = fπ(xt) where fπ : F → Rp is locally Lipschitz in F ⊂ Rp and 0 ∈ F . Let
v : Rp → R be a continuous function such that

v(0) = 0, (2.18)

v(x) > 0, ∀x ∈ F \ {0}, (2.19)

‖x‖ → ∞ =⇒ v(x)→∞, (2.20)

v(fπ(x))− v(x) < 0, ∀x ∈ F \ {0}, (2.21)

then x = 0 is globally asymptotically stable.

The key idea behind using Lyapunov functions to show stability of the system (2.2) is
similar to that of gradient descent on strictly quasiconvex functions: if one can show that,
given a policy π, applying the dynamics fπ on the state x maps it to strictly smaller
values on the Lyapunov function (‘going downhill’) as in (2.21), then the state eventually
converges to the equilibrium point at the origin (minimum, according to (2.18) and (2.19)).
In contrast to reasoning about trajectories of the system in Definition 1, Theorem 1 only
requires us to check the decrease condition throughout the state space.

16

2.4. Safe Control

In general, it is not easy to find suitable Lyapunov functions that satisfy (2.21). However,
for physical models the energy of the system (e.g., kinetic and potential for mechanical
systems) is a often a good candidate Lyapunov function. Moreover, it has recently been
shown that it is possible to compute suitable Lyapunov functions (Li and Grüne, 2016;
Giesl and Hafstein, 2015). In our experiments in Section 5.1, we exploit the fact that the
negative value function −Jπ is a Lyapunov function if the rewards are strictly negative
throughout the state space and zero only at the origin.

As a direct consequence of the proofs for Theorem 1, we can also define a local version
of global asymptotic stability. In particular, each level set of the Lyapunov function that
fulfills all the requirements of Theorem 1 forms a region of attraction, so that if the state
x0 lies within this level set eventually xt converges to the origin.

Corollary 1. Under the assumptions of Theorem 1, if v(fπ(x)) < v(x) for all x within
the level set V(c) = {x ∈ X \ {0} | v(x) ≤ c}, c > 0, then V(c) is a region of attraction, so
that x0 ∈ V(c) implies xt ∈ V(c) for all t > 0 and limt→∞ xt = 0.

Note that Corollary 1 implicitly assumes that the Lyapunov function is radially increasing,
so that level-sets of the Lyapunov function are connected. We assume that this holds true
for the Lyapunov functions that we consider in this dissertation.

2.4.1.2 Constraint Satisfaction

Next to stability, we often want to enforce constraints on the controlled system. For
example, we may want an autonomous car to stay within the lanes in order to avoid
crashes. This kind of safety can be encoded as a constraint on the states x that the system
is allowed to visit. In particular, we can write these requirements as inequality constraints
of the form

cx(xt) ≥ 0, ∀t ≥ 0, (2.22)

cu(ut) ≥ 0, ∀t ≥ 0. (2.23)

As a result, we can write the corresponding constraint function c(·) for a trajectory in
(2.15) as

c(τ) = min
(xt,ut)∈τ

min(cx(xt), cu(ut)), (2.24)

17

Chapter 2. Background and Related Work

which is the minimum value of the two constraints in (2.22) and (2.23) along the trajectory τ .
If we encode the feasible region of these constraints functions in the sets

X = {x ∈ Rp | cx(x) ≥ 0}, (2.25)

U = {u ∈ Rq | cu(u) ≥ 0}, (2.26)

we can also write the safety constraints as

xt ∈ X , ut ∈ U , ∀t ≥ 0, (2.27)

For parametric policies πθ, the input constraints can typically be enforced by structuring
the policy in an appropriate way so that the range of the function is restricted to U , that is
πθ(x) ∈ U for all x ∈ Rp. Enforcing the state constraints is equivalent to the requirement
that the set X must be positive invariant.

Definition 2. A set X is positive invariant under the dynamics fπ if, for every x0 ∈ X ,
we have xt ∈ X for all t > 0.

Notably the region of attraction in Corollary 1 is positive invariant, so that V(c) ⊆ X
implies that, if x0 ∈ V(c), we have xt ∈ X for all time steps t > 0 and we satisfy the state
constraints. However, asymptotic stability is not a necessary condition to comply with the
state constraints, nor vice-versa.

State constraints can be verified with control barrier functions (Ames et al., 2019), analo-
gously to the Lyapunov functions in Section 2.4.1.1. While we do not review these functions,
they can be thought of as enforcing the Lyapunov decrease condition only on the boundary
of the set X in order to render X positive invariant, without requiring convergence of the
state to the origin.

2.4.2 Stochastic Safety

So far, we have considered safety in deterministic systems. For the stochastic system (2.1)
it is generally impossible to make any deterministic statements about safety. In particular,
for a given starting state x0, the resulting trajectories are random variables. As a result,
c(τ) is a random variable too. Thus, in order to reason about safety, we have to decide on
a measure of uncertainty for this random variable.

18

2.4. Safe Control

The option that is closest to the optimal control framework is to consider expected safety.
This notion is conceptually similar to certainty-equivalence control Section 2.3.5. However,
while expected performance is a reasonable objective, expected safety is generally less
desirable. In particular, we may have E[c(τ)] ≥ 0 and still have the system violate the
safety constraints frequently. Instead, risk-sensitivity (Luce and Raiffa, 1958) not only
penalized the expected value but also includes higher moments. A stronger notion is the
value at risk (Duffie and Pan, 1997), which considers safety with high probability. Lastly,
one can also consider the conditional value at risk (Rockafellar and Uryasev, 2002), which
considers the expected safety over the tail of the distribution.

Next to measures of uncertainty, formal methods and robust control (Woodcock et al.,
2009; Zhou and Doyle, 1998) typically consider a worst-case criterion. For example, for
the stochastic system stability can be required to hold with probability one (Afanas’ev
et al., 1996).

2.4.3 Safety-constrained Markov Decision Process

Ultimately our goal is to find optimal policies as in Section 2.3 that also adhere to the
safety constraints. To this end, we can choose any of the stochastic or worst-case safety
definitions discussed in the previous section.

The risk-based notions of stochastic safety introduced in the previous section have all
been explored in the context of finite Markov Decision Processes as well. Altman (1999)
considers a constraint on the expected performance/safety, while Howard and Matheson
(1972), Marcus et al. (1997), and Ruszczyński (2010) consider risk-sensitivity. Lastly,
Bäuerle and Ott (2011) consider the value at risk for the performance. All of these
typically assume that the safety function c decomposes additively over time steps, similar
to the reward function for performance.

In continuous domains, safety constraints can be enforced by carefully designing con-
trollers that are asymptotically stable (Khalil and Grizzle, 1996). The most direct way
to incorporate constraints is in model predictive control. There, stability can be en-
forced by appropriately selecting the value function for bootstrapping or via terminal
set constraints (Rawlings and Mayne, 2009). For stochastic systems, Schwarm and Niko-
laou (1999) consider satisfying constraints with high-probability, which leads to so-called
chance-constraints.

19

Chapter 2. Background and Related Work

Another way to design safe controllers is by explicitly computing reachable subsets of
the state space (Ding et al., 2011). These sets are characterized by a special kind of
value function that measures worst-case disturbances from an adversary and also provide a
corresponding safe policy. No closed-form solutions for these reachable sets exist, but they
can be approximated using a discrete grid (Mitchell et al., 2005) or a function approximator
(Akametalu et al., 2018).

2.5 Reinforcement Learning

In the optimal control section, Section 2.3, we have assumed that both the dynamics model
f and the reward function r are known. The key different between reinforcement learning
and optimal control is that the transition function f is not known a priori (Sutton and
Barto, 1998). Despite this, we still aim to solve the optimal control problem in Section 2.3.

Remark 2. In the general reinforcement learning setting, the reward function r is often
assumed to be unknown and stochastic as well. In this dissertation, we consider a less
general setting and assume that the reward function is a known, deterministic function.

One strategy to find an optimal policy is to apply a two-stage method that first learns
about the environment and then uses this knowledge to find the optimal policy as in
Section 2.3. This is the typical combination of system identification and model-based
control that is predominant in control theory. However, this procedure incurs low rewards
during the system identification phase. Moreover, it has to learn about the environment
globally, not only at the states that are relevant for solving the optimal control problem.

The goal of reinforcement learning instead is to maximize the rewards also during the
learning process. Thus we have to simultaneously learn about the environment and optimize
our actions to achieve high cumulative reward.

2.5.1 Policy Improvement Without a System Model

The key insight of many reinforcement learning algorithms is that we can solve the optimal
control problems in Section 2.3 without a known dynamics model. Instead, we can use
sampled trajectories from the system directly to optimize the policy.

In episodic reinforcement learning problems, see Section 2.3.3, we can estimate the gradients
of the cost (2.14) directly. If the policy is stochastic, the REINFORCE algorithm (R. J.

20

2.5. Reinforcement Learning

Williams, 1992) estimates gradients by weighting the empirical sum of rewards observed
for samples trajectories. Note that, in principle, one can also use gradient-free algorithms,
e.g., genetic algorithms (Davidor, 1991), to optimize the policy directly.

We can also use the samples for policy evaluation in Section 2.3.1.1, by replacing the
expectation with a finite sum over samples. Sutton, McAllester, et al. (1999) show that we
can replace the empirical returns of REINFORCE by those of a learned value function.
This method forms the basis of modern policy search algorithms (Peters and Schaal, 2006;
Kober and Peters, 2014; Schulman et al., 2017). Similar results can be obtained for
deterministic policies (Silver, Lever, et al., 2014), which leads to algorithms like the one
proposed by Lillicrap et al. (2015). Their method optimizes (2.9) for T = 0 by taking
gradients with respect to the learned value function directly. Notably, these methods can
also be applied in the off-policy case, when the behavior policy that we collect samples
from is not the same as the one that we optimize (Munos et al., 2016).

Similar ‘model-free’ results exist for model predictive control, where the optimal control
policy can be computed by perturbing the selected actions by noise and updating the control
actions based on the weighted trajectories (G. Williams et al., 2017). This approach is
similar to path-integral reinforcement learning for parameterized policies (Theodorou et al.,
2010).

These approaches are similar to the optimal control methods in Section 2.3, but replace
the system model with a sample-based representation to, for example, estimate gradients
or value functions. As a consequence, these algorithms inherit the properties of the original
control problem in Section 2.3.1, including the difficulty of applying local optimization
methods with sparse rewards, see Section 2.3.4.

2.5.2 Model-based Reinforcement Learning

Alternatively, we can use the data directly to learn a model and use the learned model to
control the system using the methods in Section 2.3. This is often referred to as model-based
reinforcement learning. The model here only refers to the dynamics f , since ‘model-free’
algorithms that do not learn f directly may also learn a model of, for example, the value
function. This is similar to the typical system identification and control process (Atkeson
and Santamaria, 1997), except that the model and policy are updated simultaneously
online.

21

Chapter 2. Background and Related Work

2.5.3 Aleatoric versus Epistemic Uncertainty

None of the methods presented in this section directly consider uncertainty during the
learning process. This can cause these methods to be data-inefficient or even to converge
to local optima. For example, a learned model or value function might be inaccurate
due to lack of data, so that the policy update can decrease performance. In this section,
we characterize uncertainty in reinforcement learning and discuss methods that use it for
exploration in Section 2.7.

The uncertainty in the reinforcement learning problem can be split into two parts (Der
Kiureghian and Ditlevsen, 2009). On the one hand, we face aleatoric uncertainty that is
introduced by the transition noise ωt in (2.1). If we were to repeat the same experiment
twice, starting from the same initial state x0, we would obtain two different trajectories.
This uncertainty is inherent to the environment and is thus irreducible. This uncertainty
is also present in the optimal control problem in Section 2.3.

The uncertainty arising from not knowing the dynamics f a priori is called epistemic or
structural uncertainty. This uncertainty incorporates any knowledge about the environment
that we could know, e.g., the transition function f , but that we do not know a priori.
Epistemic uncertainty can be reduced by exploration and gathering additional data about
the environment.

The difference between these two sources of uncertainty in reinforcement learning has been
highlighted by Gal (2016) and exploiting this structure can lead to large performance gains
in practice. In the next section, Section 2.6, we discuss how to model epistemic uncertainty
and discuss uncertainty-based exploration schemes in Section 2.7.

2.6 Modelling Epistemic Uncertainty

The aleatoric uncertainty in the reinforcement learning problem is described by the process
noise ω in (2.1). In this section, we introduce models for the epistemic uncertainty of a
generic function f ′ : A → R. For now, this function f ′ is a placeholder and we discuss
where it can be used in the context of reinforcement learning in Section 2.7.

In this setting, at iteration n we are given a finite dataset of function inputs An with
corresponding, noisy observations of the function f ′ given by yn = yAn = {f ′(ai)+ωi}ai∈An .
Here ωi is i.i.d. observations noise that follows a known distribution.

22

2.6. Modelling Epistemic Uncertainty

In general, any model that uses these observations to output a set of values or a distribution
over values of f ′, rather than a point-estimate, can be used to model uncertainty. However,
in for this model to be reliable it must describe the true function sufficiently well. We call
such a model well-calibrated. In particular, we use the following type of error bounds for
the remainder of the thesis.

Definition 3 (well-calibrated model). Let µn(a) and σn(a) denote outputs of our statistical
model after observing data at inputs in An after iteration n. This model is well-calibrated
with respect to f ′ over a setA if there exists a sequence βn ∈ R>0 such that, with probability
at least (1− δ), it holds jointly for all n ≥ 0 and all a ∈ A that |f ′(a)− µn(a)| ≤ βnσn(a).

Definition 3 requires our model to be contained in a set of confidence intervals for all
iterations and data points. If we have a model that provides reliable point-estimates
(reliable marginal distributions) with high probability, we can generalize these to finite
sets A by applying the union bound or to continuous domains by employing continuity
arguments and additional assumptions on f ′. While the requirement that this should hold
for all n > 0 may seem like a difficult requirement, this can generally be achieved by
applying a union bound with a particular choice of probability budget at every step n, see
(Srinivas et al., 2012, Lemma 5.1).

Definition 3 places an assumption on the model. In practice, we often prefer assumptions
on the function f ′ that imply Definition 3 for a given model. Moreover, Definition 3 does
not provide any insights over whether the confidence intervals shrink as we gather more
data. In the following, we discuss two special cases.

2.6.1 Gaussian Processes

A Bayesian belief over a function f ′ naturally models epistemic uncertainty given data
with the posterior distribution. In general, computing the posterior distribution through
Bayes’ rule is not possible in closed form and approximate inference has to be used (Blei
et al., 2017).

One particular, nonparametric model that has a tractable, closed-form posterior distribu-
tion are Gaussian processes (Carl Edward Rasmussen and C. K. Williams, 2006). The
goal of Gaussian process inference is to infer a posterior distribution over the nonlinear
map f ′(a) : A → R from an input vector a ∈ A with A ⊆ Rd to the function value f ′(a).

23

Chapter 2. Background and Related Work

Inputs a

f′
(a

)

(a) Gaussian process prior.

Inputs a

f′
(a

)

(b) Gaussian process posterior.

Figure 2.2: Gaussian process model illustration for a Matérn kernel. Samples from a GP
typically have a regular rate of change (gray line). By assumption, the Gaussian process
prior mean (blue line) is zero in Figure 2.2a. Moreover, since the Matérn kernel depends
only on the distance between two parameters, the prior marginal confidence intervals for
each input a are also constant (blue shaded). After observing three measurements (red
crosses) in Figure 2.2b, the Gaussian process confidence intervals are reduced close to the
measurements.

This is accomplished by assuming that the function values f ′(a), associated with different
values of a, are random variables and that any finite number of these random variables
have a joint normal distribution (Carl Edward Rasmussen and C. K. Williams, 2006).

A Gaussian process distribution is parameterized by a prior mean function and a covariance
function or kernel k(a, a′), which defines the covariance of any two function values f(a)
and f(a′) for a, a′ ∈ A. In this work, the mean is assumed to be zero without loss of
generality. The choice of kernel function is problem-dependent and encodes assumptions
about the unknown function. A review of potential kernels can be found in (Carl Edward
Rasmussen and C. K. Williams, 2006).

We can condition a Gaussian process on the observations yn at input locations An. The
Gaussian process model assumes that observations are noisy measurements of the true
function value with Gaussian noise, ω ∼ N (0, σ2). The posterior distribution is again a
Gaussian process with mean µn, covariance kn, and variance σn, where

µn(a) = kn(a)(Kn + Iσ2)−1yn, (2.28)

kn(a, a′) = k(a, a′)− kn(a)(Kn + Iσ2)−1kT
n (a′), (2.29)

σ2
n(a) = kn(a, a). (2.30)

24

2.6. Modelling Epistemic Uncertainty

The covariance matrix Kn ∈ R|An|×|An| has entries [Kn](i,j) = k(ai, aj) with ai, aj ∈ An and
the vector kn(a) =

[
k(a, a1), . . . , k(a, a|An|)

]
contains the covariances between the input a

and the observed data points in An. The identity matrix is denoted by I. An illustration of
the Gaussian process prior and posterior marginal distributions can be seen in Figure 2.2.

Given the Gaussian process assumptions, we obtain point-wise confidence estimates from
the marginal Normal distribution specified by µn and σn. For finite sets, the Gaussian
process belief induces a joint normal distribution over function values that is correlated
through (2.29). We can use this to fulfill Definition 3 for continuous sets by using a union
bound and exploiting that samples from a Gaussian process are Lipschitz continuous with
high probability (Srinivas et al., 2012, Theorem 2).

2.6.1.1 Information Capacity

One important property of normal distributions is that the confidence intervals contract
after we observe measurement data. How much data we require for this to happen generally
depends on the variance of the observation noise, σ2, and the size of the function class; i.e.,
the assumptions that we encode through the kernel. In the following, we use results by
Srinivas et al. (2012) and use the mutual information to construct such a capacity measure.

Formally, the mutual information between the Gaussian process prior on f ′ at locations A
and the corresponding noisy observations yA is given by

I(yA; f) = 0.5 log |I + σ−2KA|, (2.31)

where KA is the kernel matrix [k(a, a′)]a,a′∈A and | · | is the determinant. Intriguingly,
for Gaussian process models this quantity only depends on the inputs in A and not
the corresponding measurements yA. Intuitively, the mutual information measures how
informative the collected samples yA are about the function f . If the function values are
independent of each other under the Gaussian process prior, they provide large amounts
of new information. However, if measurements are taken close to each other as measured
by the kernel, they are correlated under the Gaussian process prior and provide less
information.

The mutual information in (2.31) depends on the locations An at which we obtain mea-
surements. While it can be computed in closed-form, it can also be bounded by the largest
mutual information that any algorithm could obtain from n noisy observations,

γn = max
A⊂D, |A|≤n

I(yA; J). (2.32)

25

Chapter 2. Background and Related Work

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Input x

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

O
ut

pu
t

f′
(x

)

Figure 2.3: Example of an RKHS function. The individual weighted kernel evaluations at
representer points (colored lines) add up to form a nonlinear function (black line).

We refer to γn as the information capacity, since it can be interpreted as a measure of
complexity of the function class associated with a Gaussian process prior. It was shown
by Srinivas et al. (2012) that γn has a sublinear dependence on n for many commonly used
kernels such as the Gaussian kernel. This sublinear dependence is generally exploited by
exploration algorithms in order to show convergence, see Section 2.7

2.6.2 Functions in a Reproducing Kernel Hilbert Space

Instead of the Bayesian Gaussian process framework, we can also consider frequentist
confidence intervals. Unlike the Bayesian framework, which inherently models a belief over
a random function, frequentists assume that there is an a priori fixed underlying function
f ′ of which we observe noisy measurements.

The natural frequentist counterpart to Gaussian processes are functions inside the Re-
producing Kernel Hilbert Space (RKHS) spanned by the same kernel k(a, a′) as used
by the Gaussian process in Section 2.6.1. An RKHS Hk contains well-behaved func-
tions of the form f(a) = ∑

i≥0 αi k(a, ai), for given representer points ai ∈ Rd and
weights αi ∈ R that decay sufficiently quickly, see Figure 2.3 for an example. For ex-
ample, the Gaussian process mean function (2.28) lies in this RKHS. The kernel function
k(·, ·) determines the roughness and size of the function space and the induced RKHS
norm ‖f ′‖2

k = 〈f, f〉k = ∑
i,j≥0 αiαjk(ai, aj) measures the complexity of a function f ′ ∈ Hk

with respect to the kernel. In particular, the function f ′ is Lipschitz continuous with

26

2.6. Modelling Epistemic Uncertainty

respect to the kernel metric

d(a, a′) =
√
k(a, a) + k(a′, a′)− 2k(a, a′), (2.33)

so that |f ′(a) − f ′(a′)| ≤ ‖f ′‖kd(a, a′), see the proof of Proposition 4.30 by Christmann
and Steinwart (2008).

2.6.2.1 Confidence Intervals

We can construct an estimate together with reliable confidence intervals if the measurements
are corrupted by σ-sub-Gaussian noise. This is a class of noise where the tail probability
decays exponentially fast, such as in Gaussian random variables or any distribution with
bounded support. Specifically, we have the following definition.

Definition 4 (Vershynin (2010)). A random variable X is σ-sub-Gaussian if P {|X| > s} ≤
exp(1− s2/σ2) for all s ≥ 0.

While the Gaussian process framework makes different assumptions about the function and
the noise, Gaussian processes and RKHS functions are closely related (Kanagawa et al.,
2018) and it is possible to use the Gaussian process posterior marginal distributions to
infer reliable confidence intervals on f ′.

Lemma 1 (Abbasi-Yadkori (2012) and Chowdhury and A. Gopalan (2017)). Assume that
f has bounded RKHS norm ‖f ′‖k ≤ B and that measurements are corrupted by σ-sub-
Gaussian noise. If β1/2

n = B + 4σ
√

I(yn; f) + 1 + ln(1/δ), then for all a ∈ A and n ≥ 0 it
holds jointly with probability at least 1− δ that | f ′(a)− µn(a) | ≤ β1/2

n σn(a).

Lemma 1 implies that, with high probability, the true function f ′ is contained in the
confidence intervals induced by the posterior Gaussian process distribution that uses the
kernel k from Lemma 1 as a covariance function, scaled by an appropriate factor βn. In
contrast to Section 2.6.1, Lemma 1 does not make probabilistic assumptions on f ′. In fact,
f ′ could be chosen adversarially, as long as it has bounded norm in the RKHS.

Since the frequentist confidence intervals depend on the mutual information and the
marginal confidence intervals of the Gaussian process model, they inherit the same con-
traction properties up to the factor βn. However, note that the confidence intervals in
Lemma 1 hold jointly through the continuous domain A. This is not generally possible
for Gaussian process models without employing additional continuity arguments, since

27

Chapter 2. Background and Related Work

Gaussian process distributions are by definitions only defined via a multivariate Normal
distribution over finite sets. This stems from the difference between a Bayesian belief and
the frequentist perspective, where the function is unknown but fixed a priori.

2.6.3 Other Models

Beyond the Bayesian Gaussian processes and the frequentist confidence intervals for RKHS
regression, many other methods exist to build confidence intervals. For example, Liu et al.
(2019) and Guo et al. (2017) investigate providing calibrated confidence intervals for neural
networks. Bayesian inference for more complicated models than Gaussian processes is
often intractable and approximate inference methods have to be used to obtain uncertainty
estimates (Gal, 2016). Another effective method is to train ensembles of point-wise function
estimators in order to estimate uncertainty (Johnson, 2001; Lakshminarayanan et al., 2017).

Analyzing these methods theoretically is challenging. However, in practice one may have
sufficient trust in these methods to yield reliable confidence intervals regardless. That is,
in practice one might have sufficient trust in a particular model to fulfill Definition 3 by
assumption.

2.7 Uncertainty-based Exploration

Given a statistical model of the uncertainty, we face a tradeoff between exploration, where
we collect data to learn more about the environment and improve our statistical model,
and exploitation, where we use the existing statistical model to make better decisions. In
this section, we review several methods from the literature used to solve it in the context
of reinforcement learning.

2.7.1 Bandits and Bayesian Optimization

The exploration-exploitation tradeoff has been studied extensively is in the bandit literature
(Lattimore and Szepesvári, 2018). These are one-state Markov Decision Processes where
all control actions lead back to the same state. Generally, bandit algorithms aim to solve
optimization problems of the form maxθ∈D J(θ) efficiently by querying a sequence of inputs
(arms/actions) θn and observing the corresponding noise-perturbed realizations of J(θ).

28

2.7. Uncertainty-based Exploration

For example, in a reinforcement learning setting bandit algorithms can be used to optimize
the episodic cost (2.14) directly, where after each evaluation the system is reset back to
its initial state and the bandit can evaluate a new set of parameters θ. In this case, θ are
the actions (arms) selected by the bandit algorithm, while J(θ) is the unknown objective
function.

Regret In order to judge the quality of a bandit algorithm we must define what it
means to solve the exploration - exploitation problem efficiently. We aim to construct a
sequence of input evaluations θn that eventually maximizes the function value J(θn). One
natural way to prove this convergence is to show that an algorithm has sublinear regret.
The instantaneous regret at iteration n is defined as rn = maxθ∈D J(θ) − J(θn) ≥ 0,
which is the loss incurred by evaluating the function at θn instead of at the a priori
unknown optimal inputs. The cumulative regret is defined as RN = ∑N

n=1 rn, the sum of
instantaneous regrets incurred over N steps. If we can show that the cumulative regret is
sublinear for a given algorithm, that is, limn→∞Rn / n = 0, then eventually the algorithm
evaluates the function at inputs that lead to close-to-optimal function values most of
the time. We say that such an algorithm has no-regret. Intuitively, if the average regret
approaches zero then, on average, the instantaneous regret must approach zero too, since rn
is strictly greater or equal than zero. This implies that there exists an iteration n > 0
such that J(θn) is arbitrarily close to J(θ∗) and the algorithm converges. Thus, we aim
to design optimizations algorithm that have sublinear cumulative regret.

2.7.1.1 Bayesian Optimization

Several Bandit algorithms with various model assumptions and definitions of regret exist.
We refer to (Lattimore and Szepesvári, 2018) for a thorough review. One class of Bandit
algorithms that has been successfully applied to reinforcement learning and robotics is
Bayesian optimization (Mockus, 2012). Bayesian optimization methods treat J(θ) as an
unknown function and make regularity assumptions about it. These regularity properties
are used to actively learn a model of the objective function.

Bayesian optimization methods often model the unknown function as a Gaussian process,
see Section 2.6.1, and assume that any randomness in the evaluation of J(θ) can be modeled
as noise. Gaussian process-based methods use the posterior mean and variance predictions
in (2.28) and (2.30) to compute the next sample location (Mockus, 2012; Jones, 2001).

29

Chapter 2. Background and Related Work

The resulting algorithms are practical and, if their assumptions are satisfied, provably find
the global optimum of the objective function (Bull, 2011; Srinivas et al., 2012). Moreover,
they tend to be data-efficient and only require few function evaluations.

Example applications of Bayesian optimization in robotics include gait optimization of
legged robots (Calandra, N. Gopalan, et al., 2014; Lizotte et al., 2007) and the optimiza-
tion of the controller parameters of a snake-like robot (Tesch et al., 2011). Marco et al.
(2017) optimize the weighting matrices of an LQR controller for an inverted pendulum by
exploiting additional information from a simulator. Several different Bayesian optimiza-
tion methods are compared by Calandra, Seyfarth, et al. (2014) for the case of bipedal
locomotion.

In the following, we discuss the main methods that are generally used to construct no-regret
algorithms in bandits. These also form the basis of exploration in reinforcement learning.
We specifically focus on Bayesian optimization.

Optimisim in the Face of Uncertainty One way to solve the exploration-exploitation
dilemma is to be optimistic with respect to the uncertainty encoded in the statistical model
(Lai and Robbins, 1985). For example, the GP-UCB algorithm by Srinivas et al. (2012)
uses confidence intervals on the function J , e.g., from Lemma 1, in order to select as next
input θn that optimistically and plausibly can achieve the largest plausible performance
value according to the model,

θn+1 = argmax
θ∈D

µn(θ) + β1/2
n σn(θ). (2.34)

Intuitively, (2.34) selects new evaluation points at locations where the upper bound of the
confidence interval of the Gaussian process estimate is maximal. Repeatedly evaluating
the function J at inputs θn+1 given by (2.34) improves the mean estimate of the underlying
function and decreases the uncertainty at candidate locations for the maximum, so that
the global maximum is provably found eventually (Srinivas et al., 2012). While (2.34) is
also an optimization problem, it only depends on the Gaussian process model of J and
solving it therefore does not require any expensive evaluations of J .

Srinivas et al. (2012) show that the GP-UCB algorithm has cumulative regret Rn =
O
(√

nβnγn
)

for all n ≥ 1 with the same (1 − δ) probability as the confidence intervals,
e.g., in Lemma 1, hold. Since γn in (3.6) is sublinear for many commonly-used kernels, see
Section 2.6.2, the cumulative regret Rn has a sublinear dependence on n so that Rn/n→ 0
and therefore GP-UCB converges to function evaluations close to J(θ∗).

30

2.7. Uncertainty-based Exploration

Thompson Sampling An alternative to optimism is to instead sample from the poste-
rior distribution over plausible candidates and select the next parameters θn that achieve
maximal performance on this sample (D. J. Russo et al., 2018). This strategy was shown to
have sublinear regret in the Bayesian optimization setting by Chowdhury and A. Gopalan
(2017), specifically Rn = Õ

(√
dnβnγn

)
. Sampling from the posterior is especially efficient

in linear models. This is exploited by Mutny and Krause (2018), who approximate the
Gaussian process posterior with a provably accurate linear model, and then sample from
this linear model.

Information-based Criteria More recently, it was proposed to trade off regret for the
information gained during learning by Daniel Russo and Van Roy (2014). This exploration
scheme can be particularly effective if the observation noise, and thus the amount of
information obtained, depends on the parameters θ that we evaluate (Kirschner and
Krause, 2018). This setting with heteroscedastic noise explicitly exploits the different
sources of uncertainty, see Section 2.5.3.

Contextual Bayesian Optimization The bandit framework can be extended to be
closer to state-full Markov Decision Processes, by additionally considering external variables
during the optimization process (Auer, 2002; Langford and Zhang, 2007). These additional
variables z ∈ Z are often called contexts. For example, the performance of a robot may
depend on its battery level or the weather conditions, both of which cannot be influenced
directly. Alternatively, contexts can also represent different tasks that the robot has to
solve, which are specified externally by a user. The idea is to include the functional
dependence on the context in the Gaussian process model, but to consider them fixed
when selecting the next parameters to evaluate.

This setting is called contextual Bayesian optimization (Krause and Ong, 2011). Given a
context z ∈ Z that is fixed by the environment, we can model how the performance and
constraint functions change with respect to different contexts by multiplying the kernel
function kθ over the parameters, with another kernel kz : Z × Z → R over the contexts,

k((θ, z), (θ′, z′)) = kθ(θ,θ′) · kz(z, z′). (2.35)

This kernel structure implies that function values are correlated when both parameters and
the contexts are similar. For example, we would expect selecting the same parameters θ for

31

Chapter 2. Background and Related Work

a control algorithm to lead to similar performance values if the context (e.g., the battery
level) is similar.

Since contexts are not part of the optimization criterion, a modified version of (2.34) has
to be used. It was shown by Krause and Ong (2011) that an algorithm that evaluates the
GP-UCB criterion given a fixed context zn,

θn = argmax
θ∈A

µn−1(θ, zn) + β1/2
n σn−1(θ, zn), (2.36)

enjoys similar convergence guarantees as GP-UCB so that, after seeing a particular context
sufficiently often, the criterion (2.36) queries parameters that are close-to-optimal.

2.7.2 Reinforcement Learning

In the full reinforcement learning setting from Section 2.5, exploration algorithms have
largely been inspired by the bandit algorithms from Section 2.7.1. The main conceptual
difference is that uncertainty can be modeled at different levels. In the following, we review
the three main uncertainties that are modeled and used by algorithms in order to improve
exploration.

2.7.2.1 Reward Uncertainty

One option is to directly model uncertainty about the reward function r(x,u). This
uncertainty can be incorporated into reinforcement learning by providing an exploration
bonus (Sutton, 1990), which is conceptually similar to the optimism in the face of uncer-
tainty principle in Bandits, see Section 2.7.1.1. This concept has also been called curiosity
(Schmidhuber, 1991) and is related to intrinsic motivation (Chentanez et al., 2005). For
example, (Tang et al., 2017) map the continuous domain to a discrete grid and provide
a reward bonus during reinforcement learning when states with low counts are visited.
Alternatively, Pathak et al. (2017) propose to use a dynamics-based prediction error as a
bonus reward signal, which can be viewed as a deterministic estimate of uncertainty.

2.7.2.2 Value Uncertainty

Rather than using uncertain rewards, it is often more natural to consider uncertainty about
the value of a state. In discrete state-action spaces, one of the most-well known algorithms

32

2.7. Uncertainty-based Exploration

is Q-learning (Watkins and Dayan, 1992), a method that estimates values of state-action
pairs and describes a policy directly through the corresponding Q-function. In this setting,
convergence can be shown for a variant of Q-learning that initializes the estimates of the
Q-value optimistically (Even-Dar and Mansour, 2002). Tighter bounds can be obtained
by acting optimistically with respect to an estimate of the Q-function directly (Zanette
and Brunskill, 2019).

As an alternative to optimism, Osband, Van Roy, and Wen (2014) provide regret bounds
for Thompson sampling in the discrete setting with linear function approximation. At
each step, their method samples a value function from a linear, statistical model and acts
greedily with respect to it. Osband, Blundell, et al. (2016) and Osband, Van Roy, Daniel
Russo, et al. (2017) extend this method heuristically to nonlinear function approximators
by learning and sampling from an ensemble of value functions, see Section 2.6.3. As an
alternative to the ensemble method, Deisenroth, C. Rasmussen, et al. (2009) and Engel
et al. (2005) use a Gaussian process to approximate the value function.

Beyond epistemic uncertainty, Nikolov et al. (2019) additionally consider the aleatoric
uncertainty of the value. They use an information-inspired exploration scheme that is
similar to the one in Section 2.7.1.1, which encourages to visit states where the structural
uncertainty is large, but the variance of the return is low.

2.7.2.3 Model Uncertainty

Lastly, one can consider uncertainty about the transition function f in (2.1). This is again
best understood in discrete Markov Decision Processes. The E3 algorithm by Kearns and
S. Singh (2002) provides convergence guarantees for an exploration strategy that performs
exploration only when it encounters a state that it has not visited before. Brafman and
Tennenholtz (2003) extend this result and exploit an optimistic initialization of the value
function in order to drive exploration, while Jaksch et al. (2010) provide regret bounds
for an algorithm that acts with respect to an optimistic Markov Decision Process. Regret
bounds also exist for Thompson sampling. These methods maintain a distribution over
Markov Decision Processes and act optimally with respect to a sampled model (Osband,
Dan Russo, et al., 2013; A. Gopalan and Mannor, 2015).

In continuous state spaces, exploration is best understood for linear models. Dean, Mania,
et al. (2018) show that even random exploration can achieve sublinear regret. Regret
bounds for optimistic algorithms (Abbasi-Yadkori and Szepesvári, 2011; Faradonbeh et al.,

33

Chapter 2. Background and Related Work

2017; Ibrahimi et al., 2012) and Thompson sampling (Osband and Van Roy, 2016) have
also been investigated.

In nonlinear systems, uncertainty-based exploration strategies have mostly been used
heuristically. One of the first practical methods is PILCO by Deisenroth and Carl E.
Rasmussen (2011), which considers optimizing parameterized policies over finite-horizon
trajectories. It uses a Gaussian process dynamics model together with approximate un-
certainty propagation scheme based on moment-matching (Girard et al., 2002) in order to
construct a Gaussian approximation of the posterior distribution over trajectories. It then
selects policy parameters that optimize the expected performance over finite horizons. Gal
et al. (2016) propose to use a sampling-based representation over the posterior instead,
which they then approximate with a Gaussian to compute gradients. Chatzilygeroudis et al.
(2017) instead propose to use trajectory samples together with a gradient-free optimization.
While optimizing for expected performance is not an exploration strategy in its own right,
they often select specific reward functions in order to drive exploration.

Instead of optimizing over parametric policies, Cao et al. (2017) and Kamthe and Deisenroth
(2018) use model predictive control to optimize the expected performance at every time step.
(Chua et al., 2018) propose to replace the Gaussian process model by normal distributions
that are parameterized by an ensemble of neural networks. This is extended by Malik et al.
(2019), who show that better results can be obtained by calibrating the neural networks
to yield reliable uncertainty estimates.

To use the uncertainty information for more efficient exploration, Bechtle et al. (2019)
propose to use an optimal control method that encourages visiting uncertain states. As an
alternative, (Moldovan, Levine, et al., 2015; Xie et al., 2016) propose to act optimistically
with respect to the dynamics model.

In terms of theory for continuous domains, Osband and Van Roy (2014) provided regret
bounds for both Optimistic exploration and Thompson sampling in parametric models.
Recently, these results were extended to nonparametric models by Chowdhury and A.
Gopalan (2019).

2.8 Safe Reinforcement Learning

Physical systems that operate in the real world typically have to adhere to rigorous safety
constraints before they can be deployed. For a known model of the environment, we discuss

34

2.8. Safe Reinforcement Learning

Figure 2.4: Illustration of the safe reinforcement learning process. While we have to
assume access to sufficient prior knowledge in terms of an initially safe policy, this policy
will generally be highly suboptimal. For example, in the example the policy is safe to use
within the blue shaded region and the trajectory induced by the safe policy stays close to
x0. However, the optimal safe trajectory in terms of cost is the dashed line. To achieve
this trajectory, the system must safely learn about the system until it gathers sufficient
information to determine the safety of the high-performance trajectory.

in Section 2.4 how we can define and quantify safety and reviewed methods that adhere to
these safety constraints. For reinforcement learning to be applicable to real-world systems,
we must provide the same kind of safety guarantees during the learning process. However,
in reinforcement learning we do not know the model in advance and have to safely learn
about it online, see Section 2.5. This means that we do not know which control actions can
be safely applied to the system. As a result, guaranteeing safety in reinforcement learning
is significantly more challenging than in control with a known system model. In particular,
if we cannot make any assumptions about the system, the very first control input that we
apply to the system may violate the safety constraints.

Thus, safe reinforcement learning requires us to have some prior information about the
system. The minimal assumption that we require for safe learning is that of a safe starting
point. This means that there must be sufficient initial knowledge about the system to
control it without violating the safety constraints. For example, this may come in the form
of an initial policy that is known to be safe or prior, local knowledge about the model of
the system that allows us to safely control it. Note that this initial policy has no other
requirements than safety. In particular, we do not expect it to be safe for any initial state
in X . Moreover, this policy can have arbitrarily poor performance as long as it is safe
starting from x0. For example, the control objective may be to drive a car as quickly as
possible subject to the safety constraint on staying on the track. A safe initial control
policy for this system could be to stand still or drive very slowly in the center of the lane.

35

Chapter 2. Background and Related Work

It is important to note that assuming the existence of a safe starting point is not the
same as solving the safe reinforcement learning problem by assumption. In particular
the initial policy is typically only certified for safety within a small region of the state
space such as the blue shaded region in Figure 2.4. As a result, the data covered by
the trajectories induced by the safe policy only cover a small part of the space (grey
line). In particular, the optimal safe trajectory (grey dashed line) for the true system is
typically not known to be safe a priori. As a consequence, safe reinforcement learning
faces a challenging exploration problem where it has to safely gather data until it learns
about the safety of the optimal trajectory. Notably, safely learning about the safety of
the optimal trajectory typically requires learning about other trajectories that are known
to be suboptimal. For example, to safely learn about the safety of the optimal trajectory
in Figure 2.4, we may first have to learn how to return the system to the blue shaded
region. This is not required for exploration in reinforcement learning, but it is required
for exploration in safe reinforcement learning. As a consequence, applying safe variants of
existing exploration schemes from Section 2.7 do not enjoy the same kind of performance
guarantees as in the unsafe setting. Thus safe exploration for reinforcement learning is
generally significantly more challenging than unsafe reinforcement learning.

In the following we provide an overview of safe reinforcement learning methods. Alternative
reviews with a different focus can be found in (Pecka and Svoboda, 2014; Garćıa and
Fernández, 2015).

2.8.1 Safe Model-free Reinforcement Learning

In this section, we review two model-free methods for safe reinforcement learning.

2.8.1.1 High-confidence Policy Improvement

A key requirement of safe reinforcement learning is to evaluate whether a new policy
obtained from, e.g., an update to the policy parameters, is safe to apply to the system.
The requirement for guaranteed safety during the learning process means that we must
evaluate the safety of the new policy without trying it out on the system.

This turns out to be tractable when we care about the expected safety in a constrained
Markov Decision Process, see Section 2.4.3. Achiam et al. (2017) and Chow et al. (2019)
provide error bounds on the expected performance and safety of the new policy as a

36

2.8. Safe Reinforcement Learning

function of the average Kullback-Leibler divergence of the old and new policy. This is
then used to guarantee that the updated policy is safe. Moreover, Thomas et al. (2015b)
and Thomas et al. (2015a) show how to build confidence intervals on these estimates in
the finite-sample case, which can build confidence about the safety of a new policy based
on a finite number of episodic trajectories with the old policy. These confidence intervals
can be further improved when the original policy is diverse, which leads to tighter error
bounds (Cohen et al., 2018).

2.8.1.2 Safe Bayesian Optimization

The concept of constraints has also been incorporated into Bayesian optimization, see
Section 2.7.1. Gelbart et al. (2014) introduce an algorithm to optimize an unknown
function subject to an unknown constraint. However, this constraint is not considered to
be safety-critical; that is, the algorithm is allowed to evaluate unsafe parameters. Schreiter
et al. (2015) propose a method to find find a safe subset of the parameters without violating
safety constraints, while Sui et al. (2015) present SafeOpt, a similar algorithm to safely
optimize an objective function subject to a constraint on the minimum performance of any
parameter that is evaluated.

Instead of optimizing the underlying performance function J(θ) globally, SafeOpt re-
stricts itself to a safe set of parameters that achieve a certain minimum performance with
high probability. This safe set is not known initially, but is estimated after each function
evaluation. This can be seen in Figure 2.5a: The Gaussian process model over the true
function provides uncertainty estimates of the performance J(θ) (blue shaded). Only
parameters where the lower confidence interval is above the threshold (red set) are known
to be safe and can thus be safely evaluated.

In this setting, the challenge is to find an appropriate evaluation strategy similar to (2.34),
which at each iteration n not only aims to find the global maximum within the currently
known safe set (exploitation), but also aims to increase the set of controllers that are
known to be safe (exploration). To this end, SafeOpt keeps track of a set of plausible
maximizers (green set) and parameters on the boundary of the safe set (purple set) that
could potentially expand the current safe set. It trades off between selecting parameters
from these two sets by choosing the parameters with with maximum Gaussian process
posterior variance. While this procedure does not provide regret bounds, it automatically
and safely trades off between exploration and exploitation. As a result, the method

37

Chapter 2. Background and Related Work

Parameters θ

Pe
rf

or
m

an
ce

J(
θ)

(a) Initial, safe parameters.

Parameters θ

(b) Safe exploration.

Parameters θ

(c) Safe maximum found.

Figure 2.5: Illustration of the SafeOpt algorithm. Starting from safe, initial parameters
in Figure 2.5a, it only evaluates safe parameters when J(θ) is known to be above the
safety threshold (dashed line) with high probability (confidence intervals shaded in blue).
It trades off between exploration on the boundary of the safe set (purple) and exploitation
of the current plausible maximizers (green set) by selecting the most uncertain parameters.
This way it safely explores in Figure 2.5b and eventually finds a good estimate of the safely
reachable optimum (cyan circle) in Figure 2.5c.

eventually finds the safely reachable optimum of the unknown function in Figure 2.5c.

2.8.2 Safe Model-based Reinforcement Learning

In safe model-based reinforcement learning we learn a model of the system f in (2.1).
However, since we do not know the dynamics in advance, this model has large errors at
the beginning of the learning process. Thus we must guarantee safety during exploration
despite these model errors.

2.8.2.1 Unknown Constraints

A simpler setting than the full safe reinforcement learning problem is to consider a known
model of the environment, but to be uncertain about the safety constraints. For example,
a robot might know its model, but be uncertain about the location of obstacles in the
environment. This setting is strictly less general than the full safe reinforcement learning
problem, since the uncertainty about the constraints can also be modeled by a dynamic
system over an extended state-space, where the additional, static states encode the location
of the constraints/obstacles.

38

2.8. Safe Reinforcement Learning

This setting has been especially studied in discrete state-action spaces. Formally, a state
is defined as safe whenever the constraint cx ≥ 0 is fulfilled, but we do not know the
function cx in advance and can only obtain noisy measurements of cx(x) by visiting the
state x. This problem was first studied by Moldovan and Abbeel (2012), who propose
an exploration scheme that at each step solves for a policy that optimizes the amount of
information gained about cx subject to the constraint that the agent does not ever visits
an unsafe state with high probability. Notably, the probability of failure is computed over
an infinite horizon, so that the resulting exploration policy is safe in the long term. While
the method guarantees safety, it does not provide exploration guarantees. Safe exploration
guarantees were first provided by Turchetta et al. (2016) for an algorithm that operates in
an environment without transition noise and aims to maximally reduce uncertainty within
the current safe set (safe system identification). Without observation noise, Bıyık et al.
(2019) provide stronger exploration guarantees. Lastly, Wachi et al. (2018) additionally
consider exploration for a reinforcement learning objective by optimizing for performance.
They encourage exploration of states where the difference in value between the safety-
constrained Markov Decision Process and an optimistically safe Markov Decision Process
is large.

In continuous state spaces, Sadigh and Kapoor (2016) propose a model predictive control
scheme that does not violate the a priori unknown, but learned safety constraints with
high probability. However, they do not actively learn about the constraints.

2.8.2.2 Robust Control

Guaranteeing safety with respect to model errors has traditionally be considered by the
field of robust control in both discrete (Wiesemann et al., 2012) and continuous systems
(Zhou and Doyle, 1998). Robust control methods characterize model uncertainty through
an a prior fixed set of system models. They then provide safety and performance guarantees
with respect to all models within this set. Computing robust controllers for linear systems
is well-understood and the controllers can be computed by solving semi-definite programs
(Zhou and Doyle, 1998). These methods can also be extended to model predictive control
(Bemporad and Morari, 1999), where safety is defined through recursive feasibility of the
optimization problem together with robust constraint satisfaction and stability. However,
robust control methods tend to be conservative and achieve sub-optimal performance, since
they do not update the model as more data becomes available.

39

Chapter 2. Background and Related Work

2.8.2.3 Safe Learning Control

Robust control methods can be used directly to guarantee safety. For example, Aswani et al.
(2013) and Wabersich and Zeilinger (2018) compute tubes around trajectories of a known
nominal linear model, which accounts for all disturbances. While the former approach
requires disturbances to be bounded in an a priori specified polytope, the latter relies on
sampling to approximate model errors. A different approach by Jin and Lavaei (2018)
provides guarantees for smooth policies when the nonlinearity is bounded. While these
methods, provide safety guarantees and increase performance over time, they generally
consider a fixed model error, so that the resulting controller necessarily stays conservative.

When the model is updated online, safety can be guaranteed by enforcing robustness online.
Berkenkamp and A. P. Schoellig (2015) use a learned Gaussian process model to online
compute robustly stabilizing linear controllers that get less conservative over time. For
general systems, Vinogradska et al. (2017) uses the Gaussian process model together with
quadrature to forward-integrate the uncertainty over the state space at every step. Since
these schemes allow the quantification of errors, they provide reliable uncertainty estimates
under the Gaussian process prior assumption. This enables the verification of stability and
constraints for the learned system.

Beyond stability, safety can be guaranteed by computing a reachable set together with
a safe policy. The safety constraints can be enforced by switching to this safe policy on
the boundary of the safe set, so that the system remains safe (Fisac et al., 2018). This
idea of switching between control policies is similar to that proposed by Alshiekh et al.
(2018) for discrete spaces. This switching also forms the basis for early approaches. For
example, Hans et al. (2008) assume access to a backup policy and Garcia and Fernandez
(2012) define a heuristic to quantify the distance of unsafe states.

While these methods, explicitly compute reachable sets, terminal set constraints in model
predictive control can be used to implicitly define the safety constraint. For example, robust
constraint satisfaction and closed-loop stability for learning-based model predictive control
with nominal linear models and state-dependent uncertainty is shown in Soloperto et al.,
2018. Instead of updating the model of the system, (Ugo Rosolia and Francesco Borrelli,
2019) instead use samples to grow a safe set in a robust model predictive control setting
over time. For learned, nonlinear systems, safety constraints can be satisfied over a finite
horizon by predicting trajectories a finite number of steps and ensuring that the constraint
is not violated over this time horizon. For tractability, Ostafew et al. (2016), Hewing et al.

40

2.8. Safe Reinforcement Learning

(2017), and Polymenakos et al. (2019) use approximate uncertainty propagation schemes
and enforce safety constraints with high probability. Dalal et al. (2018) take this to an
extreme and only consider guaranteeing safety over one step based on a nominal model.
These schemes do not provide recursive safety guarantees.

While these methods provide safety guarantees for learned models with specific structures,
they do not consider safe exploration, where we actively and safely learn about the system
in order to solve a task.

2.8.3 Safe Exploration

In continuous control, exploration guarantees for safe exploration are only understood in the
linear setting with rewards that are quadratic in states and control actions. Dean, Tu, et al.
(2018) and Lu et al. (2017) provide strong exploration, stability, and constraint satisfaction
guarantees. They combine the error bounds from a reliable statistical model with the
system level synthesis framework by Wang et al. (2019) to compute robust controllers. As
in the setting without constraints in Section 2.7.2.3 they use Gaussian noise to drive the
exploration and provide regret bounds for the control performance.

41

3
Safe Direct Policy Optimization

The results in this chapter have been previously published in (Berkenkamp, A. P. Schoellig,
and Krause, 2016) and (Berkenkamp, Krause, et al., 2016).

The SafeOpt algorithm in Section 2.8.1.2 only considers the scalar case, where the safety
constraint is encoded in terms of a lower bound on J(θ). However, in practice it is often
desirable to encode safety constraints separately from the objective. In this chapter, we
extend SafeOpt to multiple constraints and to contextual Bayesian optimization as in
Section 2.7.1.1. Moreover, we evaluate the algorithm to solve several robotic control tasks.

3.1 Problem Statement

To solve a reinforcement learning task, we assume that we are given a control algorithm
that is used to accomplish a certain task with a robot. In general, this algorithm is
arbitrary and may contain several components including vision, state estimation, planning,
and control laws. The algorithm is parameterized by parameters θ ∈ D in some specified,
domain D ⊆ Rd.

The goal is to find the parameters within D that maximize a given, scalar performance
measure, J(θ). For example, this performance measure may represent the negative tracking
error of a robot (Berkenkamp, A. P. Schoellig, and Krause, 2016), the average walking
speed of a bipedal robot (Calandra, N. Gopalan, et al., 2014), or any other quantity

43

Chapter 3. Safe Direct Policy Optimization

that can be computed over a finite time horizon. We can only evaluate the performance
measure for any parameter set θ on finite-time trajectories from experiments on the real
robot. The functional dependence of J(θ) on θ is not known a priori. In the following,
we write the performance measure as a function of the parameters θ, J : D → R, even
though measuring performance requires an experiment on the physical robot and typically
depends on a trajectory of states, control inputs, and external signals. In our setting this
function is the control performance from Section 2.3.

We assume that the underlying system is safety-critical; that is, there are constraints
that the system must respect when evaluating parameters. Similarly to the perfor-
mance measure, J(θ), these constraints can represent any quantity and may depend
on states, inputs, or even environment variables. There are m safety constraints of the
form ci(θ) ≥ 0, ci : D → R, i = 1 . . .m, which together define the safety conditions. This
is without loss of generality, since any constraint function can be shifted by a constant in
order to obtain this form. The functions ci are unknown a priori but can be estimated
through (typically noisy) experiments for a given parameter set θ. For example, in order
to encode a state constraint on an obstacle for a robot, the safety function ci(θ) can return
the smallest distance to the obstacle along a trajectory of states when using algorithm
parameters θ. Note that if the functions were known in advance, we could simply exclude
unsafe parameters from the set D.

The overall optimization problem can be written as

max
θ∈D

J(θ) subject to ci(θ) ≥ 0∀ i = 1, . . . ,m. (3.1)

The goal is to iteratively find the global maximum of this constrained optimization problem
by, at each iteration n, selecting parameters θn and evaluating (up to noise) the correspond-
ing function values J(θn) and ci(θn) until the optimal parameters are found. In particular,
since the constraints define the safety of the underlying system, only parameters that are
inside the feasible region of (3.1) are allowed to be evaluated; that is, only parameters that
fulfill these safety requirements on the real system.

Since the functions J(θ) and ci in (3.1) are unknown a priori, it is not generally possible
to solve the corresponding optimization problem without violating the constraints. The
first problem is that we do not know how to select a first, safe parameter to evaluate. In
the following, we assume that an initial safe set of parameters S0 ⊆ D is known for which
the constraints are fulfilled. These serve as a starting point for the exploration of the safe

44

3.2. Multi-output RKHS Functions

region in (3.1). In robotics, safe initial parameters with poor performance can often be
obtained from a simulation or domain knowledge.

Secondly, in order to safely explore the parameter space beyond S0, we must be able to
infer whether parameters θ that we have not evaluated yet are safe to use on the real
system. To this end, we make regularity assumptions about the functions J(θ) and ci

in (3.1). In particular, in Section 3.2 we extend the assumption of bounded RKHS norm
from Section 2.6.2 to be applicable to multiple functions. Using these continuity properties,
we are able to generalize safety beyond the initial, safe parameters S0. Given the model
assumptions, we require that the safety constraints hold with high probability over the
entire sequence of experiments.

As a consequence of the safety requirements, it is not generally possible to find the global
optimum of (3.1). Instead we aim to find the optimum in the part of the feasible region
that is safely reachable from S0. We formalize this precisely in Section 3.3.

Lastly, whenever we evaluate parameters on the real system, we only obtain noisy estimates
of both the performance function and the constraints, since both depend on noisy sensor
data along trajectories. That is, for each parameter θ the we evaluate, we obtain measure-
ments J(θ) +ω0 and ci(θ) +ωi, where ωi, i = 0, . . . , q, is zero-mean, σ-sub-Gaussian noise.
In general, the noise variables may be correlated, but we do not consider this case in our
theoretical analysis in Section 3.3.2. We only want to evaluate parameters where all safety
constraints are fulfilled, so that ci(θn) ≥ 0 for all i ∈ {1, . . . , q} and n ≥ 1.

3.2 Multi-output RKHS Functions

In Section 2.6, we considered a scalar RKHS function f ′(a) : A → R. In the following, we
want to build confidence intervals that hold jointly for all functions J(θ) and ci in Section 3.1.
To this end, we consider learning a vector-valued function f ′(θ) = (J(θ), c1(θ), . . . , cm(θ)).
In the Gaussian process literature, vector-valued functions can be learned using matrix-
valued kernel functions, where the off-diagonal entries in the matrix model correlation
between different output dimensions (Álvarez et al., 2012). In particular, for the vector-

45

Chapter 3. Safe Direct Policy Optimization

valued function f ′ we can use the kernel

k(θ,θ′) =


kJ(θ,θ) kJ,c1(θ,θ) . . . kJ,cm(θ,θ)
kc1,J(θ,θ) kc1(θ,θ) . . . kc1,cm(θ,θ)

...
kcm,J(θ,θ) kcm,c1(θ,θ) . . . kcm(θ,θ)

 . (3.2)

As in Section 2.6.1, this kernel models the functions J(θ) and ci(θ) with independent
kernels kJ and kci respectively. Additionally, it introduces covariance kernels kJ,ci between
all the function outputs, which model similarities between the different output dimensions
of the function.

To apply the analysis of Lemma 1 to a vector-valued function f ′, we represent f ′(θ) with
an equivalent scalar-valued function that still accounts for the covariance. In particular,
we consider the surrogate, scalar function

f ′(θ, i) = [f ′(θ)]i =

J(θ) if i = 0

ci(θ) if i ∈ Ic,
(3.3)

which returns either the performance function or the individual safety constraints depending
on the additional input i ∈ I with I = {0, . . . ,m}, where Ic = {1, . . . ,m} ⊂ I are the
indices belonging to the constraints. The function f ′(·, ·) is a single-output function
as in Section 2.6.2 and can be modeled as a Gaussian process with scalar output over
the extended parameter space D × I. In particular, this function class has the same
representation power as the matrix kernel in (3.2) if we define the kernel function for the
scalar function as

k((θ, i), (θ′, j)) =
[
δi,0 δi,1 . . . δi,m

]
k(θ,θ)


δj,0

δj,1
...

δj,m

 , (3.4)

where δij is the Kronecker delta. Intuitively, when i = j we obtain the kernel function that
corresponds to the particular function value. However, when i 6= j the kernel returns the
covariance kernel between the corresponding function outputs.

Thus by extending the training data with the extra parameter i to index the function
output, we can use the normal Gaussian process framework to predict function value
and uncertainties of f ′(θ, i). However, in contrast to the scalar case in Lemma 1, at

46

3.2. Multi-output RKHS Functions

every iteration n, we obtain |I| = m+ 1 measurements; one for each function. For ease
of notation, we continue to write µn and σn, even though we have obtained n · (m + 1)
measurements at locations An × I in the extended parameter space.

3.2.1 Confidence Intervals

In order to provide guarantees for safety, the confidence intervals in (3.9) must to hold for all
iterations and functions. In the following, we assume that the surrogate function f ′(θ, i) has
bounded norm in the RKHS corresponding to the kernel (3.4). Thus, the corresponding
RKHS includes functions of the form f ′(θ, i) = ∑

j αjk((θ, i), (θj, ij)) with αi ∈ R and
representer points (θj, ij) ∈ D×I. As in Section 2.6.2, the bounded norm property implies
that the coefficients αj decay sufficiently fast as j increases.

The following Lemma allows us to choose a scaling factor βn for (3.9), so that the true
function is contained in the confidence intervals with a desired probability for all iterations.

Lemma 2 (based on Chowdhury and A. Gopalan (2017)). Assume that f ′(θ, i) = [f ′(θ)]i
has RKHS norm bounded by B and that measurements are corrupted by σ-sub-Gaussian
noise. Let An = Dn × I denote the measurements obtained up to iteration n. If βn = B +
4σ
√

I(yAn ; f ′) + 1 + ln(1/δ), then the following holds for all parameters θ ∈ D, function
indices i ∈ I, and iterations n ≥ 0 jointly with probability at least 1− δ:∣∣∣ f ′(θ, i)− µn(θ, i)

∣∣∣ ≤ βnσn(θ, i) (3.5)

As before, the scaling factor βn in Lemma 2 depends on the mutual information. For
consistency, we define this quantity with respect to scalar observations,

γn = max
A⊆D×I,|D|≤n

I(yA; f ′). (3.6)

As a consequence, we have I(yA; f ′) ≤ γ|A|, where |A| returns the number of observations
in A.

Importantly, using this surrogate function enables us to lift theoretical results of Sui et al.,
2015 to the more general case with multiple constraints and provide theoretical guarantees
for our algorithm in Section 3.3.2.

47

Chapter 3. Safe Direct Policy Optimization

3.3 SafeOpt-MC (Multiple Constraints)

In this section, we use the confidence intervals from Lemma 2 and introduce the SafeOpt-
MC algorithm for multiple constraints. The goal of the algorithm is to solve (3.1) by
evaluating different parameters from the domain D without violating the safety constraints.
To this end, any algorithm has to consider two important properties:

(i) Expanding the region of the optimization problem that is known to be feasible or
safe as much as possible without violating the constraints,

(ii) Finding the optimal parameters within the current safe set.

For objective i), we need quantify the size of the safe set. To do this in a tractable
manner, we focus on finite sets D in the following. Moreover, while Lemma 2 already
exploits the continuity assumptions in order to construct reliable confidence intervals, the
generalization behavior is difficult to analyze. Instead, we use the continuity properties
of the RKHS function in order to quantify the generalization behavior. In particular, we
assume that J(θ) and ci(θ) are L-Lipschitz continuous with respect to some metric d(·, ·).
For example, the kernel metric (2.33) can be used.

Lastly, since we only observe noisy estimates of both the performance function and the
constraints, we cannot expect to find the entire safe region encoded by the constraints
within a finite number of evaluations. Instead, we follow Sui et al., 2015 and consider
learning the safety constraint up to some accuracy ε. This assumption is equivalent to a
minimum slack of ε on the constraints in (3.1).

Baseline As mentioned in Section 3.1, we assume that we have access to initial, safe
parameters S0 ⊆ D, for which we know that the safety constraints are satisfied a priori.
Starting from these initial parameters, we ask what the best that any safe optimization
algorithm could hope to achieve is. In particular, if we knew the safety constraint func-
tions ci(·) up to ε accuracy within some safe set of parameters S, we could exploit the
continuity properties to expand the safe set to

Rε(S) := S ∪
⋂
i∈Ic
{θ ∈ D | ∃θ′ ∈ S : ci(θ′)− ε− Ld(θ,θ′) ≥ 0} , (3.7)

where Rε(S) represents the number of parameters that can be classified as safe given that we
know the safety constraints ci up to ε-error inside S and exploiting the Lipschitz continuity

48

3.3. SafeOpt-MC (Multiple Constraints)

to generalize to new parameters outside of S. The baseline that we compare against is
the limit of repeatedly applying this operator on S0; that is, with Rn

ε (S) = Rε(Rn−1
ε (S))

and R1
ε (S) = Rε(S) the baseline is R̄ε(S0) := limn→∞R

n
ε (S0). This set contains all the

parameters in D that could be classified as safe starting from S0 if we knew the function
up to ε error. This set does not include all the parameters that potentially fulfill the
constraints in (3.1), but is the best we can do without violating the safety constraints.
Hence the optimal value that we compare against is not the one in (3.1), but

J∗ε = max
θ∈R̄ε(S0)

J(θ), (3.8)

which is the maximum performance value over the set that we could hope to classify as
safe starting from the initial safe set, S0.

3.3.1 The Algorithm

In this section, we present the SafeOpt-MC algorithm that guarantees convergence to
the previously set baseline. The most critical aspect of the algorithm is safety. However,
once safety is ensured, the second challenge is to find an evaluation criterion that enables
trading off between exploration, trying to further expand the current estimate of the safe
set, and exploitation, trying to improving the estimate of the best parameters within the
current set.

To ensure safety, we construct confidence intervals that contain the true functions J(θ)
and ci with high probability. In particular, we use the posterior Gaussian process estimate
given the data observed so far. The confidence intervals for the surrogate function in (3.3)
are defined as

Qn(θ, i) :=
[
µn−1(θ, i)± β1/2

n σn−1(θ, i)
]
, (3.9)

where βn is chose as in Lemma 2. This set contains all possible function values between
the lower and upper confidence interval based on the Gaussian process posterior. This
confidence interval contains the true function value with probability at least (1− δ).

Rather than defining the lower and upper bounds based on (3.9), the following analysis
requires that consecutive estimates of the lower and upper bounds are contained within
each other. This assumption ensures that the safe set does not shrink from one itera-
tion to the next, which we require to prove our results. We relax this assumption in
Section 3.5. We define the contained set at iteration n as Cn(θ, i) = Cn−1(θ, i) ∩Qn(θ, i),

49

Chapter 3. Safe Direct Policy Optimization
Pe

rf
or

m
an

ce
f(

a)

Inputs a

Sa
fe

ty
g(

a)

(a) Initial, safe parameters.

Inputs a

(b) Safe exploration.

Inputs a

(c) After 10 evaluations: safe
maximum found.

Figure 3.1: Optimization with the SafeOpt-MC algorithm after 1, 2 and 10 parameter
evaluations. Based on the mean estimate (blue) and the 2σ confidence interval (light blue),
the algorithm selects evaluation points for which c(θ) ≥ 0 (black dashed) from the safe
set Sn (red), which are either potential maximizersMn (green) or expanders Gn (magenta).
It then learns about the function by drawing noisy samples from the unknown, underlying
function (light gray). This way, we expand the safe region (red) as much as possible and,
simultaneously, find the global optimum of the unknown function (3.16) (cyan circle).

where C0(θ, i) is [0,∞] for all θ ∈ S0 and R otherwise. This ensures that parameters in
the initial safe set S0 remain safe according to the Gaussian process model after additional
observations. The lower and upper bounds on this set are defined as lin(θ) := min Cn(θ, i)
and uin(θ) := max Cn(θ, i), respectively. For notational clarity, we write lJn(θ) := l0n(θ)
and uJn(θ) := u0

n(θ) for the performance bounds.

Based on these confidence intervals for the function values and a current safe set Sn−1, we
can enlarge the safe set using the Lipschitz continuity properties,

Sn =
⋂
i∈Ic

⋃
θ∈Sn−1

{
θ′ ∈ D | lin(θ)− Ld(θ,θ′) ≥ 0

}
. (3.10)

The set Sn contains all points in Sn−1, as well as all additional parameters that fulfill
the safety constraints given the Gaussian process confidence intervals and the Lipschitz
constant.

50

3.3. SafeOpt-MC (Multiple Constraints)

With the set of safe parameters defined, the last remaining challenge is to trade off between
exploration and exploitation. One could, similar to Schreiter et al., 2015, simply select the
most uncertain element over the entire set. However, this approach is not sample-efficient,
since it involves learning about the entire function rather than restricting evaluations to
the relevant parameters. To avoid this, we first define subsets of Sn that correspond to
parameters that could either improve the estimate of the maximum or could expand the
safe set. The set of potential maximizers is defined as

Mn :=
{
θ ∈ Sn |uJn(θ) ≥ max

θ′∈Sn
lJn(θ′)

}
, (3.11)

which contains all parameters for which the upper bound of the current performance
estimate is above the best lower bound. The parameters in Mn are candidates for the
optimum, since they could obtain performance values above the current conservative
estimate of the optimal performance.

Similarly, an optimistic set of parameters that could potentially enlarge the safe set is

Gn := {θ ∈ Sn | en(θ) > 0} , (3.12)

en(θ) :=
∣∣∣{θ′ ∈ D \ Sn | ∃i ∈ Ic : uin(θ)− Ld(θ,θ′) ≥ 0

}∣∣∣. (3.13)

The function en enumerates the number of parameters that could additionally be classified
as safe if a safety function obtained a measurement equal to its upper confidence bound.
Thus, the set Gn is an optimistic set of parameters that could potentially expand the safe
set.

We trade off between the two sets, Mn and Gn, by selecting the most uncertain element
across all performance and safety functions; that is, at each iteration n we select

θn = argmax
θ∈Gn∪Mn

max
i∈I

wn(θ, i), (3.14)

wn(θ, i) = uin(θ)− lin(θ) (3.15)

as the next parameter set to be evaluated on the real system. The implications of this
selection criterion will become more apparent in the next section, but from a high-level view
this criterion leads to a behavior that focuses almost exclusively on exploration initially, as
the most uncertain points typically lie on the boundary of the safe set for many commonly
used kernels. This changes once the constraint evaluations return results closer to the safety
constraints. At this point, the algorithm keeps switching between selecting parameters
that are potential maximizers, and parameters that could expand the safe set and lead to

51

Chapter 3. Safe Direct Policy Optimization

Algorithm 1 SafeOpt-MC
Inputs: Domain D,

Gaussian process prior k((θ, i), (θ′, j)),
Lipschitz constant L,
Initial safe set S0 ⊆ D

1: for t = 1, . . . do
2: Sn ←

⋂
i∈Ic

⋃
θ∈Sn−1

{θ′ ∈ D | lin(θ)− Ld(θ,θ′) ≥ 0}

3: Mn ←
{
θ ∈ Sn |uJn(θ) ≥ maxθ′∈Sn lJn(θ′)

}
4: Gn ← {θ ∈ Sn | en(θ) ≥ 0}
5: θt ← argmaxθ∈Gn∪Mn

maxi∈I wn(θ, i)
6: Noisy measurements J(θn), ĉi(θn)∀i = 1, . . . ,m
7: Update Gaussian process with new data

new areas in the parameter space with even higher function values. Pseudocode for the
algorithm is found in Algorithm 1.

We show an example run of the algorithm in Figure 3.1. It starts from an initial safe
parameter θ0 ∈ S0 at which we obtain a measurement in Figure 3.1a. Based on this,
the algorithms uses the continuity properties of the safety function and the Gaussian
process in order to determine nearby parameters as safe (red set). This corresponds to
the region where the high-probability confidence intervals of the Gaussian process model
(blue shaded) are above the safety threshold (grey dashed line). At the next iteration in
Figure 3.1b, the algorithm evaluates parameters that are close to the boundary of the safe
set, in order to expand the set of safe parameters. Eventually the algorithm converges to
the optimal parameters in Figure 3.1c, which obtain the largest performance value that
is possible without violating the safety constraints. A local optimization approach, e.g.
based on estimated gradients1, would have gotten stuck in the local optimum at the initial
parameter θ0.

At any iteration, we can obtain an estimate for the current best parameters from

θ̂n = argmax
θ∈Sn

lJn(θ), (3.16)

which returns the best, safe lower-bound on the performance function J(θ).
1If gradient information is available, it can be incorporated in the Gaussian process model too (Solak

et al., 2003)

52

3.3. SafeOpt-MC (Multiple Constraints)

3.3.2 Theoretical Results

In this section, we show that the same theoretical framework from the SafeOpt algorithm
(Sui et al., 2015) can be extended to multiple constraints and the evaluation criterion (3.14).
Here, we only provide the results and high-level ideas of the proofs. The mathematical
details are provided in Appendix A.

Since the confidence intervals hold with probability 1− δ and the safe set is not empty
starting from S0, it is possible to prove that parameters within the safe set Sn are always
safe with high probability. In order for the algorithm to compete with our baseline, we
must additionally ensure that the algorithm learns the true function up to ε confidence in
both the sets Mn and Gn. The number of measurements required to achieve this depends
on the information capacity γn, since it encodes how much information can be obtained
about the true function from n measurements. We use the sublinearity of γn in order to
bound the number of samples required to estimate the function up to ε accuracy. We have
the following result:

Theorem 2. Under the assumptions of Lemma 2, also assume that S0 6= ∅ and ci(θ) ≥ 0
for all θ ∈ S0 and i ∈ Ic. Choose βn as in Lemma 2, define θ̂n as in (3.16), and let n∗(ε, δ)
be the smallest positive integer satisfying

n∗

β2
n∗γ|I|n∗

≥ C1(|R̄0(S0)|+ 1)
ε2

, (3.17)

where C1 = 8/ log(1 + σ−2). For any ε > 0 and δ ∈ (0, 1), when running Algorithm 1 the
following inequalities jointly hold with probability at least 1− δ:

1. Safety: ∀n ≥ 1,∀i ∈ Ic : ci(θn) ≥ 0

2. Optimality: ∀n ≥ n∗, J(θ̂n) ≥ J∗ε − ε

Proof. Main idea: safety follows from Lemma 2, since accurate confidence intervals imply
that we do not evaluate unsafe parameters. For the optimality, the main idea is that, since
we evaluate the most uncertain element in Mn ∪ Gn, the uncertainty about the maximum
is bounded by wn(θn, in). The result follows from showing that, after a finite number
of evaluations, either the safe set expands or the maximum uncertainty within Mn ∪ Gn
shrinks to ε. See Appendix A for derivations and details.

53

Chapter 3. Safe Direct Policy Optimization

Theorem 2 states that, given the assumptions we made about the underlying function,
Algorithm 1 explores the state space without violating the safety constraints and, after
at most n∗ samples, finds an estimate that is ε-close to the optimal value over the safely
reachable region. The information capacity γ|I|n∗ , grows at a faster rate of |I|n compared
to n in SafeOpt, since we obtain |I| observations at the same parameters set θ, while the
SafeOpt analysis assumes every measurement is optimized independently. However, γ|I|n
remains sublinear in n, see Appendix A.

3.4 Context

In this section, we show how the theoretical guarantees derived in the previous section
transfer to contextual Bayesian optimization. In this setting, part of the variables that
influence the performance, the contexts, are fixed by an external process that we do not
necessarily control. In normal Bayesian optimization, it was shown by Krause and Ong,
2011 that an algorithm that optimizes the GP-UCB criterion in (2.36) for a fixed context
converges to the global optimum after repeatedly seeing the corresponding context.

Intuitively, the fact that part of the variables that influence the performance, the contexts,
are now fixed by an external process should not impact the algorithm on a fundamental
level. However, safety is a critical issue in our experiments and, in general, one could always
select an adversarial context for which we do not have sufficient knowledge to determine
safe controller parameters. As a consequence, we make the additional assumption that
only ‘safe’ contexts are visited; that is, we assume the following:

Assumption 1. For any n ≥ 1, the context zn ∈ Z is selected such that Sn(zn) 6= ∅.

Here, Sn(zn) denotes the safe set for the given context zn. Intuitively, Assumption 1 ensures
that for every context there exists at least one parameter choice that is known to satisfy
all safety constraints. This assumption includes the case where safe initial parameters for
all contexts are known a priori and the case where the algorithm terminates and asks for
help from a domain-expert whenever a context leads to an empty safe set.

In order to obtain results that hold jointly across all contexts in Z, we adapt the information
capacity (worst-case mutual information) γn to consider contexts,

γn = max
A⊆D×Z×I,|D|≤n

I(yA; f ′), . (3.18)

54

3.4. Context

Input a

f(
a,

z
=

0)

Input a

f(
a,

z
=

1)

Figure 3.2: Example run of the context-dependent SafeOpt-MC algorithm. For the
first six samples, the algorithm only sees the context z = 0 (left function) and obtains
measurements there (red crosses). However, by exploiting correlations between different
contexts, the algorithm can transfer knowledge about the shape of the function and safe
set over to a different context, z = 1 (right function). This enables the algorithm to be
significantly more data-efficient.

Unlike in (3.6), the mutual information is maximized across contexts in (3.18). As in the
setting without contexts, we can use Lemma 2 to obtain confidence intervals that hold
jointly across all contexts.

One challenge is that contexts are chosen in an arbitrary order. This is in stark contrast to
the parameters θn, which are chosen according to (3.14) in order to be informative. This
means that any tight finite sample bound on Algorithm 1 must necessarily depend on the
order of contexts. The following theorem accounts for both of these challenges.

Theorem 3. Under the assumptions of Theorem 2 and Assumption 1. Choose βn as in
Lemma 2, where γn is now the worst-case mutual information over contexts as in (3.18).
For a given context order (z1, z2, . . .) and any context z ∈ Z, let

n(z) =
n∗(z)∑
n=1

1z=zn (3.19)

be the number of times that we have observed the context z up to iteration n∗ and 1 is the
indicator function. Let n∗(z) be the smallest positive integers such that

n(z)
βn∗(z) γn(z)|I|(z) ≥

C1(|R̄0(S0(z))|+ 1)
ε2

, (3.20)

where C1 = 8/ log(1 + σ−2). We denote the information capacity for a fixed context z by
γn(z). That is, with f ′z(θ, i) = f ′(θ, i, z) it is defined as γn(z) = maxA⊆D×I,|A|≤n I

(
yA×{z}; f ′z

)
.

For any ε > 0 and δ ∈ (0, 1), let f ∗ε (z) = maxθ∈R̄ε(S0) J(θ, z). Then, when running Algo-
rithm 1 the following inequalities jointly hold with probability at least 1− δ:

55

Chapter 3. Safe Direct Policy Optimization

(i) ∀n ≥ 1, i ∈ Ic : ci(θn, zn) ≥ 0

(ii) ∀z ∈ Z, n ≥ n∗(z) : J(θ̂n, z) ≥ J∗ε (z)− ε

Proof. For a fixed context, zn = z∀n, we have n∗(z) = n(z) and the results follow directly
as in Theorem 2. Otherwise, the only difference in the proofs is that β depends on the
information capacity over contexts, making sure that the confidence intervals are valid
across contexts. By visiting contexts in Z \ {z}, we obtain more measurements and β

increases, which in turn increases the upper bound on the number of samples required at
context z.

Theorem 3 states that the contextual variant of Algorithm 1 enjoys the same safety
guarantees as the non-contextual version. Additionally, it shows that, after gaining enough
information about a particular context, it can identify the optimal parameters. In practice,
this upper bound is conservative, since it does not account for knowledge transfer across
contexts. In practice, correlations between contexts significantly speed up the learning
process. For example, in Figure 3.2 we show a contextual safe optimization problem with
two contexts. Even though the algorithm has only been able to explore the parameter
space at the first context (z = 0, left function), the correlation between the functions
means that information can be transferred to the as-of-yet unobserved context (z = 1,
right function). This knowledge transfer significantly improves data-efficiency and the
number of evaluations required by the algorithm.

3.5 Practical Implementation

In this section, we discuss possible changes to Algorithm 1 that make the algorithm more
practical, at the expense of loosing some of the theoretical guarantees. One challenge in
applying Algorithm 1 in practice, is defining a suitable Lipschitz constant. In particular,
specifying the wrong constant can lead to conservativeness or unsafe parameters being
evaluated. Moreover, smoothness assumptions are already encoded by the kernel choice,
which is more intuitive to specify than Lipschitz constants on their own. In practice, we
use only the Gaussian process model to ensure safety (Berkenkamp, A. P. Schoellig, and
Krause, 2016); that is, we define lin(θ) = minQn(θ, i) and uin(θ, i) = maxQn(θ, i) in terms

56

3.5. Practical Implementation

of the confidence intervals of the Gaussian process directly. Thus, we can define the safe
set without a Lipschitz constant as

Sn = S0 ∪
{
θ ∈ D | ∀i ∈ Ic : lin(θ) ≥ 0

}
. (3.21)

While it is difficult to prove the full exploration of the safely reachable set as in Theorem 2,
the resulting algorithm remains safe:

Lemma 3. With the assumptions of Lemma 2, S0 6= ∅, and ci(θ) ≥ 0 for all θ ∈ S0

and i ∈ Ic, when running Algorithm 1 with the safe set defined as in (3.21), the following
holds with probability at least 1− δ:

∀n ≥ 1, ∀i ∈ Ic : ci(θn) ≥ 0. (3.22)

Proof. The confidence intervals hold with probability 1− δ following Lemma 2. Since Sn
in (3.21) is defined as the set of parameters that fulfill the safety constraint and the safe
set is never empty since S0 6= ∅, the claim follows.

Similarly, the set of expanders can be defined in terms of the Gaussian process directly,
by adding optimistic measurements and counting the number of new parameters that are
classified as safe, see (Berkenkamp, A. P. Schoellig, and Krause, 2016) for details. However,
this potentially adds a large computational burden.

The parameter βn, which determines the Gaussian process’ confidence interval in Lemma 2,
may be impractically conservative for experiments. Empirically, depending on the appli-
cation, one may consider setting βn to a constant value. This roughly corresponds to
bounding the failure probability per iteration in the Bayesian setting, rather than over all
iterations.

Learning all the different functions, J(θ) and ci, up to the same accuracy ε may be
restrictive if they are scaled differently. A possible solution is to either scale the observed
data, or to scale the uncertainties in (3.14) by the prior variances of the kernels for that
specific output. This enables (3.14) to make more homogeneous decisions across different
scales.

57

Chapter 3. Safe Direct Policy Optimization

3.6 Quadrotor Experiments

In this section, we demonstrate Algorithm 1 (with the changes discussed in Section 3.5) in
experiments on a quadrotor vehicle, a Parrot AR.Drone 2.0.

A Python implementation of the SafeOpt-MC algorithm that builds on (GPy 2012), a
Gaussian process library, is available at http://github.com/befelix/SafeOpt. Videos
of the experiments can be found at

• Section 3.6.3: http://tiny.cc/icra16_video

• Section 3.6.4: https://youtu.be/rLmwYtoE3yg

• Section 3.6.5: https://youtu.be/4xC4OSiIDGk

3.6.1 Experimental Setup

During the experiments, measurements of all vehicle states are estimated from position
and pose data provided by an overhead motion capture camera system. The quadrotor’s
dynamics can be described by six states: positions x = (x, y, z), velocities ẋ = (ẋ, ẏ, ż),
ZYX Euler angles (φ, θ, ψ), and body angular velocities (ωx, ωy, ωz). The control inputs
u are the desired roll and pitch angles θdes and φdes, the desired z-velocity żdes, and the
desired yaw angular velocity ωz,des, which in turn are inputs to an unknown, proprietary,
on-board controller.

The position dynamics in the global coordinate frame are

ẍ = RZYX(φ, θ, ψ)~f − ~g, (3.23)

where RZYX is the rotation matrix from the body frame to the inertial frame, ~f = (0, 0, c)
is the mass-normalized thrust, and ~g = (0, 0, g) is the gravitational force. The goal of the
controller is to track a reference signal. We assume that z-position and the yaw angle are
controlled by fixed control laws and focus on the position control in x- and y direction.
We use two different control laws in the following experiments.

The simplest control law that can be used for this setting is a PD-controller, defined as

φdes = k1(xt − xdes) + k2(ẋ− ẋdes), (3.24)

θdes = k1(yt − ydes) + k2(ẏ − ẏdes), (3.25)

58

http://github.com/befelix/SafeOpt
http://tiny.cc/icra16_video
https://youtu.be/rLmwYtoE3yg
https://youtu.be/4xC4OSiIDGk

3.6. Quadrotor Experiments

where θ = (k1, k2) are the two tuning parameters. Intuitively, a larger parameter k1

encourages tracking reference changes more aggressively, while k2 is a damping factor that
encourages moderate velocities.

A more sophisticated approach to control quadrotor vehicles is to use estimates of the
angles and accelerations to solve for the thrust c. We use loop shaping on the horizontal
position control loops so that they behave in the manner of a second-order systems with
time constant τ and damping ratio ζ. Based on a given desired reference trajectory,
commanded accelerations are computed as

ẍc = 1
τ 2 (xdes − x) + 2ζ

τ
(ẋdes − ẋ), (3.26)

ÿc = 1
τ 2 (ydes − y) + 2ζ

τ
(ẏdes − ẏ). (3.27)

From the commanded accelerations, we then obtain the control inputs for the desired
roll and pitch angles by solving (3.23) for the angles. Here, the tuning parameters are
θ = (τ, ζ). For details regarding the controllers see (A. Schoellig et al., 2012; Lupashin
et al., 2014).

The quadrotor was controlled using the ardrone autonomy and vicon bridge packages
in ROS Hydro. Computations for the SafeOpt-MC algorithm in Algorithm 1 were
conducted on a regular laptop and took significantly less than one second per iteration.
As a result, experiments could be conducted continuously without interruptions or human
interventions.

3.6.2 Kernel Selection

Algorithm 1 critically depends on the Gaussian process model for the performance and
constraint functions. In this section, we review the kernel used in our experiments and
the kind of models that they encode. A more thorough review of kernel properties can be
found in (Carl Edward Rasmussen and C. K. Williams, 2006).

In our experiments, we use the Matèrn kernel with parameter ν = 3/2 (Carl Edward
Rasmussen and C. K. Williams, 2006),

k(θ,θ′) = κ2
(
1 +
√

3 d̄(θ,θ′)
)

exp
(
−
√

3 d̄(θ,θ′)
)
, (3.28)

d̄(θ,θ′) =
√

(θ − θ′)TM−2(θ − θ′), (3.29)

59

Chapter 3. Safe Direct Policy Optimization

which encodes that mean functions are one-times differentiable. This is in contrast to the
commonly used squared exponential kernels, which encode smooth (infinitely differentiable)
functions. With the Matèrn kernel, the Gaussian process model is parameterized by three
hyperparameters: measurement noise σ2 in (2.28) and (2.30), the kernel’s prior variance κ2,
and positive lengthscales l ∈ RD+, which are the diagonal elements of the diagonal matrix
M, M = diag(l). These hyperparameters have intuitive interpretations: the variance of
the measurement noise κ2 corresponds to the noise in the observations, which includes
any randomness in the algorithm and initial conditions, and random disturbances. The
prior variance κ2 determines the expected magnitude of function values; that is, |J(θ)| ≤ κ

with probability 0.68 according to the Gaussian process prior. Lastly, the lengthscales l
determine how quickly the covariance between neighboring values deteriorates with their
distance. The smaller the lengthscales, the faster the function values can change from one
parameter set to the next. In particular, the high-probability Lipschitz constant encoded
by this kernel depends on the ratio between the prior variance and the lengthscales, κ/l.

When using Gaussian processes to model dynamic systems, typically a maximum likelihood
estimate of the hyperparameters is used based on data; see (Ostafew et al., 2016) for an
example. For Bayesian optimization, the Gaussian process model is used to actively acquire
data, rather than only using it for regression based on existing data. This dependence be-
tween the kernel hyperparameters and the acquired data is known to lead to poor results in
Bayesian optimization when using a maximum likelihood estimate of the hyperparameters
during data acquisition (Bull, 2011). In particular, the corresponding Gaussian process
estimate is not guaranteed to contain the true function as in Lemma 2. In this work, we
critically rely on these confidence bounds to guarantee safety. As a consequence, we do
not adapt the hyperparameters as more data becomes available, but treat the kernel as a
prior over functions in the true Bayesian sense; that is, the kernel hyperparameters encode
our prior knowledge about the functions that we model and are fixed before experiments
begin. While this requires intuition about the process, intuitively the less knowledge we
encode in the prior, the more data and evaluations on the real system are required in order
to determine the best parameters.

3.6.3 Linear Control

In this section, we use SafeOpt-MC to optimize the parameters of the linear control
law in (3.24). The entire control algorithm consists of this control law together with the

60

3.6. Quadrotor Experiments

on-board controller and state estimation.

The goal is to find controller parameters that maximize the performance during a 1-meter
reference position change. For an experiment with parameters θn at iteration t, the
performance function is defined as

J(θn) = c(θn)− 0.95 c(θ0), (3.30)

r(θn) = −
T∑
t=0

xT
t Qxt + uT

t Rut, (3.31)

where, to compute the cost c, the states x = (x− 1, ẋ, φ, ω) and the input u are weighted by
positive semi-definite matrices Q and R. The subscript t indicates the state measurement
at time step t in the trajectory and the time horizon is 5 s (T = 350). Performance is defined
as the cost improvement relative to 95% of the initial controller cost. The safety constraint
is defined only in terms of the performance; that is, the constraint is c(θ) = J(θ) ≥ 0, which
encodes that we do not want to evaluate controller parameters that perform significantly
worse than the initial parameters.

While the optimal controller parameters could be easily computed given an accurate
model of the system, we do not have a model of the dynamics of the proprietary, on-
board controller and the time delays in the system. Moreover, we want to optimize the
performance for the real, nonlinear quadrotor system, which is difficult to model accurately.
An inaccurate model of the system could be used to improve the prior Gaussian process
model of the performance function, with the goal of achieving faster convergence. In this
case, the uncertainty in the Gaussian process model of the performance function would
account for inaccuracies in the system model.

We define the domain of the controller parameters as [−0.6, 0.1]2, explicitly including
positive controller parameters that certainly lead to crashes. In practice, one would exclude
parameters that are known to be unsafe a priori. The initial controller parameters are
(−0.4,−0.4), which result in a controller with poor performance. Decreasing the controller
gains further leads to unstable controllers.

The parameters for the experiments were set as follows: the length-scales were set to
0.05 for both parameters, which corresponds to the notion that a 0.05-0.1 change in the
parameters leads to very different performance values. The prior standard deviation, κ,
and the noise standard deviation, σ, are set to 5% and 10% of the performance of the
initial controller, J(θ0), respectively. The noise standard deviation, σ, mostly models
errors due to initial position offsets, since state measurements have low noise. The size of

61

Chapter 3. Safe Direct Policy Optimization

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1
Controller Gain k1

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

C
on

tr
ol

le
rG

ai
n

k 2

0

30

60

90

120

150

180

Pe
rf

or
m

an
ce

f(
a)

Figure 3.3: Gaussian process mean estimate of the performance function after 30 evalu-
ations. The algorithm adaptively decides which parameters to evaluate based on safety
and informativeness. In the bottom-left corner, there is the magnified section of the first
three samples, which are close together to determine the location of the initial, safe region.
The maximum, magnified in the top-left corner, also has more samples to determine the
precise location of the maximum. Other areas are more coarsely sampled to expand the
safe region.

these errors depends on the choice of the matrices Q and R. By choosing σ as a function
of the initial performance, we account for the Q and R dependency. Similarly, κ specifies
the expected size of the performance function values. Initially, the best we can do is to set
this quantity dependent on the initial performance and leave additional room for future,
larger performance values. For the Gaussian process model, we choose βn = 2 to define
the confidence interval in (3.9).

The resulting, estimated performance function after running Algorithm 1 for 30 experiments
is shown in Fig. 3.3. The unknown function has been reliably identified. Samples are spread
out over the entire safe set, with more samples close to the maximum of the function and
close to the initial controller parameters. No unsafe parameters below the safety threshold
were evaluated on the real system.

Typically, the optimization behavior of Algorithm 1 can be roughly separated into three
stages. Initially, the algorithm evaluates controller parameters close to the initial param-
eters in order for the Gaussian process to acquire information about the safe set (see

62

3.6. Quadrotor Experiments

0 1 2 3 4 5
Time [s]

0.0

0.5

1.0

1.5

x-
po

si
tio

n
[m

]

Figure 3.4: The quadrotor controller performance is evaluated during a 5 s evaluation
interval, where a 1 m reference position change must be performed. The trajectories
correspond to the optimization routine in Figure 3.3. The initial controller (blue) performs
poorly but is stable. In contrast, the optimized controller (red) shows an optimized, smooth,
and fast response. The trajectories of other controller parameters that were evaluated are
shown in gray.

lower-left, zoomed-in section in Figure 3.3). Once a region of safe controller parameters
is determined, the algorithm evaluates the performance function more coarsely in order
to expand the safe set. Eventually, the controller parameters are refined by evaluating
high-performance parameters that are potential maximizers in a finer grid (see upper-left,
zoomed-in section in Figure 3.3). The trajectories of the initial, best and intermediate
controllers can be seen in Figure 3.4.

3.6.4 Nonlinear Control

In the previous section, we showed how to optimize the performance of a linear control law
subject to a simple constraint on performance. In this section, we optimize the nonlinear
controller in (3.26) and (3.27) and show how more complex constraints can be used.

We use the same task as in the previous section, but this time the goal is to minimize
the root-mean-square error (RMSE) over a time horizon of 5 s (T = 350 samples) during a
1-meter reference position change in x-direction. We define the performance function,

J(θn) = c(θn)− 0.75 c(θ0), (3.32)

r(θn) = 1√
T

(
T∑
t=1
‖xt − xdes,t‖2

2

)1/2

, (3.33)

63

Chapter 3. Safe Direct Policy Optimization

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Time constant τ

0.4

0.6

0.8

1.0

1.2

1.4

1.6

D
am

pi
ng

ra
tio

ζ

crash

Safe region
without constraint
Data points

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

Pe
rf

or
m

an
ce

f(
a)

Figure 3.5: Mean estimate of the root-mean-square error when optimizing the parameters
of the nonlinear control law for a step response, subject to safety constraints. The algo-
rithm carefully evaluates only safe parameter combinations, until the safe region cannot be
expanded further without violating constraints. Without the safety constraint, the algo-
rithm explores a larger region of the parameter space (light blue) and eventually evaluates
an unsafe parameter set.

as the performance relative to 75% of the performance of the initial parameters θ0 = (0.9, 0.8).
We define the Gaussian process model of this performance function as follows: in this ex-
periment, measurement noise is minimal, since the positions are measured accurately by
the overhead camera system. However, to capture errors in the initial position, we define
σ = 0.05c(θ0). We assume that we can improve the initial controller by roughly 20%, so
we set κ = 0.2c(θ0). The lengthscales are set to 0.05 in order to encourage cautious explo-
ration. These parameters turned out to be conservative for the real system. Notice that the
cost is specified relative to c(θ0) instead of J(θ0) as in Section 3.6.3. Since c(θ0) > J(θ0),
these hyperparameters are more conservative, so that we require more evaluations on the
real system. The reason for this more conservative choice is that the nonlinear controller
is expected to have a less smooth performance function, unlike the one for linear control,
which is expected to be roughly quadratic.

If, as in the previous section, one were to set the safety constraint to c1(θ) = J(θ), the

64

3.6. Quadrotor Experiments

algorithm would classify the blue shaded region in Figure 3.5 as safe. This region includes
time constants as low as τ = 0.3, which encourage highly aggressive maneuvers, as would
be expected from a performance function that encourages changing position as fast as
possible. However, these high gains amplify noise in the measurements, which can lead to
crashes; that is, the performance-based constraint cannot properly encode safety. Notice
that the blue shaded area does not correspond to full exploration, since the experiment
was aborted after the first, serious crash. The reason for the unsafe exploration is that the
RMSE performance function in (3.33) does not encode safety the same way as as weighting
of state and input errors in Figure 3.3 does. Thus, in order to encode safety, we need to
specify additional safety constraints.

One indication of unsafe behavior in quadrotors are high angular velocities when the
quadrotor oscillates around the reference point. We define an additional safety constraint on
the maximum angular velocity maxk |ωx,k| ≤ 0.5 rad/s by setting c2(θ) = 0.5−maxk |ωx,k|.
The corresponding hyperparameters are selected as σ2 = 0.1, l = 0.2, and κ = 0.25. The
measurement noise can be chosen relatively small here, since it corresponds to a single
measurement of angular velocity. Note that it is difficult to perform the step maneuver
with an angular velocity lower than 0.4 rad/s, so that typical values of c2 are smaller than
0.1.

With this additional safety constraint, the algorithm explores the parameter space and
stops before the safety constraints are violated, as can be seen in Figure 3.5. Rather than
exploring smaller time constants τ (higher gains), the algorithm evaluates larger damping
ratios, which allow slightly smaller values of τ and therefore higher performance without
violating the safety constraints. The optimal parameters are to the top-left of the safe
set, where small time constants encourage tracking the reference aggressively, while the
increased damping ratio ensures a moderate angular velocity.

3.6.5 Circle Trajectory

In this section, we use the same nonlinear controller and cost function as in the previous
section, but aim to optimize the RMSE with respect to a circle trajectory of radius 1 m at
a speed of 1 m/s. The reference is defined as a point moving along the circle at the desired
speed. Feasibility of such motions has been analyzed in A. P. Schoellig et al., 2011.

In order to ensure good tracking behavior, we define safety as a constraint on the maximum
RMSE of 0.2 m. Additionally, we use the same constraint on the maximum angular

65

Chapter 3. Safe Direct Policy Optimization

−1.0 −0.5 0.0 0.5 1.0
x-position [m]

−1.0

−0.5

0.0

0.5

1.0

y-
po

si
tio

n
[m

]

Figure 3.6: The trajectories (gray) resulting from iteratively optimizing the controller
parameters for a unit circle reference trajectory at 1 m/s (black). The trajectory with the
initial parameters (blue) has poor tracking performance, while the optimized parameters
(red) perform significantly better. The flight is safe, i.e., only safe parameters are evaluated.

velocity around the x and y axis of 0.5 rad/s as before. The yaw-angle is set so that
the quadrotor always points to the center of the circle, which ideally should lead to zero
angular velocity. Deviations from this are an indication of unsafe behavior. We use the
same kernel hyperparameters as in Section 3.6.4.

The trajectories that result from running the optimization algorithm are shown in Figure 3.6.
The initial controller parameters lead to very poor performance. In particular, the initial
time constant is too large, so that the quadrotor lags behind the reference. As a result, the
quadrotor flies a circle of smaller radius. In contrast, the resulting optimized trajectory (in
red) is the best that can be obtained given the safety constraints and controller structure
above. The mean estimate of the performance function after the experiments can be seen
in Section 3.6.5. The optimal parameters have smaller time constants, so that the position
is tracked aggressively. Since the reference point moves of 1 m/s, these aggressive controller
parameters do not lead to unsafe behavior. During the entire optimization, only safe
parameters that keep the vehicle within the constraints on RMSE and angular velocity are
evaluated.

3.6.6 Context-Dependent Optimization

In this section, we show how the knowledge about good controller parameters at low speeds
can be used to speed up the safe learning at higher speeds.

66

3.6. Quadrotor Experiments

0.4 0.6 0.8 1.0
Time constant τ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

D
am

pi
ng

ra
tio

ζ

(a) Speed: ẋdes = 1 m
s

0.4 0.6 0.8 1.0
Time constant τ

-0.05

0.0

0.05

0.1

Pe
rf

or
m

an
ce

f(
a)

(b) Speed: ẋdes = 1.8 m
s

Figure 3.7: The mean estimate of the performance function for the circle trajectory in
Figure 3.6 for a speed of 1 m/s (left) and 1.8 m/s (right). Extending the kernel with a
context for speed allows to transfer knowledge to different speeds and leads to speed-
dependent optimal control parameters, speeding up the learning for higher speeds.

In our circle experiment, the quadrotor tracked a moving reference. As this reference
moves with high velocities, the quadrotor gets pushed to its physical actuator limits and
starts to lag behind the reference. This causes the circle that is flown by the quadrotor
to have a smaller radius than the reference trajectory. In this section, the goal is to
maximize the speed of the reference trajectory subject to the safety constraints of the
previous experiment in Section 3.6.5. One way to achieve this goal, is to add the speed
of the reference point to the performance function. However, this would lead to more
experiments, as the algorithm will explore the safe parameter space for every velocity.
Instead, here we define the trajectory speed as a context, which is set externally. In
particular, we set

zn = argmax
v∈R, θ∈D

v subject to: ci(θ, v) ≥ 0, ∀i ∈ Ic, (3.34)

that is, we select the maximum velocity for which there are safe parameters known. While

67

Chapter 3. Safe Direct Policy Optimization

here we select the context manually, in practice contexts can be used to model any external,
measurable variables, such as the battery level, see Section 2.7.1.1.

In order to transfer knowledge about good controller parameters from the slow speed
in Section 3.6.5 to higher speeds, we model how performance and constraints vary with
desired speed by defining a kernel kz(ẋdes, ẋ

′
des) over contexts. We use the same kernel

structure as in (2.35) and hyperparameters κ = 1 and l = 0.25. Based on the data from
Section 3.6.5, the extended model allows us to determine speeds for which safe controller
parameters are known.

Starting from the data of the previous experiments in Section 3.6.5, we run SafeOpt-
MC using the extended kernel with the additional speed context determined by (3.34).
This allows us to find optimal parameters for increasingly higher speeds, which satisfy
the constraints. We can safely increase the speed up to 1.8 m/s. We show the mean
performance function estimates for two speeds in Figure 3.7. For lower speeds, the best
controller parameters track the reference position more aggressively (low τ). For higher
speeds, this behavior becomes unsafe as the quadrotor lags behind the reference point.
Instead, the optimal parameters shift to higher time constants (lower gains). Additionally,
as expected, high speeds lead to higher reference tracking errors. Increasing the reference
velocity any further causes the performance constraint to be violated.

The trajectories that result from applying the optimal parameters for a speed of 1 m/s
and the maximum safe speed of 1.8 m/s can be seen in Figure 3.8. For the relatively
slow speed of 1 m/s the quadrotor can track the circle well using aggressive parameters.
For the higher speed, the reference trajectory moves too fast for the quadrotor to track
perfectly within the actuator limits, so that the best parameters just barely satisfy the
safety constraint on the average deviation from the reference. Overall, this approach allows
us to find context-dependent parameters, while remaining within the safety constraints.

3.7 Conclusion

In this chapter, we presented a generalization of the Safe Bayesian Optimization algorithm
of Sui et al., 2015 that allows multiple, separate safety constraints to be specified and
applied it to nonlinear control problems on a quadrotor vehicle. Moreover, we extended
these results to contextual Bayesian optimization in order to enable safe transfer learning.

68

3.7. Conclusion

−1.0 −0.5 0.0 0.5 1.0
x-position [m]

−1.0

−0.5

0.0

0.5

1.0

y-
po

si
tio

n
[m

]

Figure 3.8: Trajectories with optimal parameters for speeds of 1 m/s (red) and 1.8 m/s
(green) when tracking the black reference. At slower speeds there exist aggressive con-
troller parameters that allow the quadrotor to track the reference almost perfectly. At
higher speeds, actuator saturation limits the achievable performance. Due to the safe
optimization framework the maximum speed can be found that does not deviate more
from the reference trajectory than is allowed by the safety constraint. The corresponding
performance functions can be seen in Figure 3.7.

Overall, the SafeOpt-MC algorithm enabled efficient and automatic optimization of
parameters without violating the safety constraints, which would lead to system failures.

Other Related Work There are several publications which are not part of this dis-
sertation, but that were written during the course of the PhD and are relevant to this
chapter.

• In (Berkenkamp, A. P. Schoellig, and Krause, 2019), we investigated a variant of
the GP-UCB algorithm that obtains regret bounds even when the prior model is
miss-specified.

• In (Ghosh et al., 2018), we use Bayesian optimization to verify specifications in
formal methods. In particular, we show how to exploit the problem structure to
avoid modeling discontinuous functions with a Gaussian process.

• In (Marco et al., 2017), we investigate cost-efficient transfer learning between a cheap
simulation and an expensive real-world experiment.

69

Chapter 3. Safe Direct Policy Optimization

• In (Duivenvoorden et al., 2017), we investigate how to scale up safe Bayesian opti-
mization heuristically.

• In (Abdelrahman et al., 2016), we apply unsafe Bayesian optimization to data from
a real-world photovoltaic power plant.

70

4
Safety Analysis of Learned

Dynamical Systems

Some of the results in this chapter have been previously published in (Berkenkamp, Mori-
coni, et al., 2016; Berkenkamp, Turchetta, et al., 2017; Koller, Berkenkamp, Turchetta,
Boedecker, et al., 2019). Partial results of the last paper were shown in (Koller, Berkenkamp,
Turchetta, and Krause, 2018).

In model-based reinforcement learning, we learn a model of the system dynamics in (2.1)
directly and use it for planning, see Section 2.5. In this chapter, we first introduce
assumptions that allow us to learn a reliable model of f in (2.1). Next, we analyze the
safety of a the model both in terms of stability and finite-time constraint satisfaction. In
contrast to existing methods in Section 2.8.2, we state our results with respect to specific
assumptions about f , rather than broad assumptions about the statistical model.

4.1 Learning reliable models of dynamical systems

We consider a special case of the stochastic system in (2.1) with additive, i.i.d. transition
noise ωt ∈ Rp,

xt+1 = f(xt,ut) + ωt = h(xt,ut)︸ ︷︷ ︸
Known model

+ g(xt,ut)︸ ︷︷ ︸
Unknown error

+ ωt, (4.1)

71

Chapter 4. Safety Analysis of Learned Dynamical Systems

so that f : Rp × Rq → Rp. This implies that the transition noise ωt does not depend on
state and control input and is thus homoscedastic. We additionally split the model into a
known part h and an unknown model error g. For example, the known part may come from
an a priori known physical model, while g captures any model errors. To make inference
tractable, we additionally assume that the noise ωt is σ-sub-Gaussian, see Definition 4.

Assumption 2. For all t ≥ 0 the elements of the noise vector ωt are i.i.d. σ-sub-Gaussian.

4.1.1 Regularity Assumptions

Next to the noise properties, we require additional continuity assumptions for our theo-
retical results. In particular, in the following we make assumptions that ensure that f
is Lipschitz continuous, which we require both to show Lyapunov stability and to over-
approximate the uncertainty over multiple time steps. We also make stronger assumptions
about continuous-differentiability, which we use to make the uncertainty propagation in
Section 4.3 less conservative. However, Lipschitz continuity on its own would be sufficient
for a more conservative version of the results.

Assumption 3. The known model h is continuously differentiable and Lh-Lipschitz con-
tinuous with respect to the 2-norm. Moreover, ‖h(x0)− x0‖2 ≤ Bh.

Assumption 3 ensures the continuity properties of the known model. We introduce the
bound on ‖h(x0)− x0‖2 here only for notational convenience later on, since a system that
explodes to infinity is not particularly interesting for safe learning.

Assumption 4. The model error g has RKHS norm bounded by Bg with respect to a
continuously differentiable kernel k with bounded derivative and k(x0,x0) ≤ kmax.

This assumption allows us to learn a calibrated model of the function g. Since RKHS
functions are linear combinations of the kernel function evaluated at representer points,
the continuity assumptions on the kernel directly transfer to continuity assumptions on
the function g, so that we get the following result.

Corollary 2. The model error g is continuously differentiable and Lg-Lipschitz continuous
with respect to the 2-norm.

72

4.1. Learning reliable models of dynamical systems

Proof. For scalar functions, this is a direct consequence of Assumption 4 and (Christmann
and Steinwart, 2008, Cor. 4.36). This directly generalizes to the vector case.

In the following, we at times consider a closed-loop system under a policy π. To ensure that
the resulting system is well-behaved, we assume that the policy is Lipschitz-continuous
too.

Assumption 5. The control policies πθ lie in a set Π of functions that are Lπ-Lipschitz
continuous with respect to the 2-norm.

Corollary 3. The closed-loop dynamics (4.1) under a policy π ∈ Π are Lf -Lipschitz
continuous with respect to the 2-norm.

Proof.

‖f(x, π(x))− f(x′, π(x′))‖2 ≤ (Lg + Lh)‖(x− x′, π(x)− π(x′))‖2 (4.2)

≤ (Lg + Lh)(‖(x− x′‖2 + ‖π(x)− π(x′))‖2) (4.3)

≤ (Lg + Lh)(1 + Lπ)︸ ︷︷ ︸
:=Lf

‖x− x′‖2 (4.4)

For simplicity, we assume that the policy class Π is designed to respect input constraints.

Assumption 6. For any policy π ∈ Π we have π(x) ∈ U for all x ∈ Rp.

While this may seem restrictive at first, this is common-practice in the reinforcement
learning literature. For example, if Π is the class of policies parameterized by a certain
neural network structure, a tanh nonlinearity can be used on the output of the neural
network in order to ensure that suggested control actions are bounded within [−1, 1]. By
scaling this output and adding a fixed offset, any interval input constraint can be enforced.

Lastly, whenever we have a performance objective we assume that the reward function is
Lipschitz continuous.

Assumption 7. The reward r(x,u) is Lr-Lipschitz continuous with respect to the 2-norm.

This is not a restrictive assumption, since cost functions that are discontinuous are generally
very difficult to optimize. In practice, most reward functions are continuously differentiable.

73

Chapter 4. Safety Analysis of Learned Dynamical Systems

4.1.2 Bounding the Epistemic Uncertainty

Since the state x is observed directly, the assumptions in Section 4.1.1, especially Assump-
tion 4, allow us to learn a reliable statistical model of g. In particular, for each transition
from (xt,ut) to xt+1, we add p observations, one for each output dimension, to An as in
Lemma 2.

Corollary 4. Under Assumptions 2 and 4 with βn as in Lemma 2 and a Gaussian process
model trained on observations xt+1−h(xt,ut) based on an input a = (xt,ut), the following
holds with probability 1− δ for all n ≥ 0, x ∈ Rp, and u ∈ Rq:

|f(x,u, i)− h(x,u, i)− µn(x,u, i)| ≤ βnσn(x,u, i) (4.5)

In the following, we write

µn(x,u) = (µn(x,u, 1), . . . ,un(x,u, p)), (4.6)

σn(x,u) = (σn(x,u, 1), . . . , σn(x,u, p)) (4.7)

to represent the individual elements as vectors. Corollary 4 allows us to build confidence
intervals on the model error g based on the scaled Gaussian process posterior variance. A
direct consequence of these point-wise error bounds is that we can also bound the norm of
the error on the vector-output of f .

Corollary 5. Under the assumption of Corollary 4, with probability 1− δ we have for all
n ≥ 0, x ∈ Rp, and u ∈ Rq that

‖f(x,u)− h(x,u)− µn(x,u)‖2 ≤ βn‖σn(x,u)‖2 (4.8)

Proof.

‖f(x,u)− h(x,u)− µn(x,u)‖2 =
(p∑
i=1
|f(x,u, i)− h(x,u, i)− µn(x,u, i)|2

)1/2

(4.9)

≤
(p∑
i=1
|βnσn(x,u, i)|2

)1/2

= βn‖σn(x,u)‖2 (4.10)

74

4.2. Stability of Uncertain Systems

4.1.3 Bounding the Aleatoric Uncertainty

Corollary 4 allows us to obtain reliable confidence intervals on the model error g for all
iterations n. We can also bound the aleatoric uncertainty by exploiting the sub-Gaussian
property. In particular, we have the following result and provide a proof in Appendix B.1.

Lemma 4. Let ω0,ω1, . . . be i.i.d. random vectors with ωt ∈ Rp such that each entry of
the vector is i.i.d. σ-sub-Gaussian. Then, with probability at least (1− δ),

‖ωt‖2
2 ≤ 2σp+ 4σ

e log (t+ 1)2π2

3δ (4.11)

holds jointly for all t ≥ 0.

This means that, for all time steps t, the noise is bounded within the hyper-sphere defined
through (4.11) with high probability. In particular, the joint confidence intervals only come
at the cost of a O(log t2) increase in the confidence intervals over time. A simple union
bound between Lemma 4 and Corollary 4 can be used to ensure that both the epistemic
and the aleatoric bounds on the uncertainty hold jointly.

The aleatoric noise structure is not particular interesting and can be bounded according
to Lemma 4. To avoid cumbersome notation, in the following we consider safety of the
deterministic certainty-equivalent system (2.2) instead. However, we comment on how
these results can be extended to stochastic systems when applicable.

4.2 Stability of Uncertain Systems

Based on the assumptions in Section 4.1, we can use Corollary 4 to learn a well-calibrated
model of the dynamics f in (4.1). As a first step towards safe learning, we now ask the
question whether a given policy π ∈ Π leads to an asymptotically stable system. Note
that the stochastic system in (4.1) is not asymptotically stable as defined in Definition 1,
since the additive noise ensures that the state can never converge to the origin. Instead
of considering a stochastic notion of stability (Khasminskii, 2012), we instead ask if the
certainty-equivalent system (2.2) is asymptotically stable. That is, while we can learn
confidence intervals from the stochastic system, we only analyze the deterministic system
(ωt = 0) here.

To compute the region of attraction for a fixed policy, we assume that we have access
to a Lv-Lipschitz continuous Lyapunov function with connected level sets V(c) for all

75

Chapter 4. Safety Analysis of Learned Dynamical Systems

c > 0. For example, this is fulfilled for continuously differentiable Lyapunov functions with
∂V (x)/∂x = 0 only at the origin.

In order to use Corollary 1 to estimate a region of attraction, we must verify that the
decrease condition v(fπ(x))− v(x) ≤ 0 holds over a continuous domain. However, the pos-
terior uncertainty in the statistical model of the dynamics means that one step predictions
about v(fπ(·)) are uncertain too. We account for this by constructing high-probability
confidence intervals on v(f(x,u)):

Qn(x,u) := [v(µn−1(x,u))± Lvβn‖σn−1(x,u)‖2] . (4.12)

From Corollary 4 together with the Lipschitz property of v, we know that v(f(x,u)) is
contained in Qn(x,u) with probability at least (1−δ). Based on these confidence intervals,
we define un(x,u) := maxQn(x,u) and ln(x,u) := minQn(x,u) as the upper and lower
confidence interval on v(fπ(·)).

Given these high-probability confidence intervals, the system is stable according to Theo-
rem 1 if v(f(x,u)) ≤ un(x) < v(x) for all x ∈ V(c). However, it is intractable to verify this
condition directly on the continuous domain without additional, restrictive assumptions
about the model. Instead, we consider a discretization of the state space Xκ ⊂ X into
cells, so that ‖x− [x]κ‖2 ≤ κ holds for all x ∈ X . Here, [x]κ denotes the point in Xκ with
the smallest l2 distance to x. Given this discretization, we bound the decrease variation
on the Lyapunov function for states in Xκ and use the Lipschitz continuity to generalize
to the continuous state space X .

Theorem 4. Under Corollaries 3 and 4 with L∆v := LvLf (Lπ + 1) + Lv, let Xκ be a
discretization of X such that ‖x− [x]κ‖2 ≤ κ for all x ∈ X . If, for all x ∈ V(c) ∩ Xκ with
c > 0, u = π(x), and for all n ≥ 0 it holds that

un(x,u) < v(x)− L∆vκ, (4.13)

then v(f(x, π(x))) < v(x) holds for all x ∈ V(c) with probability at least (1− δ) and V(c)
is a positive invariant region of attraction for (2.2) under the policy π.

The proof is given in Appendix B.2. Theorem 4 states that, given confidence intervals on
the statistical model of the dynamics, it is sufficient to check the stricter decrease condition
in (4.13) on the discretized domain Xκ to guarantee the requirements for the region of
attraction in the continuous domain in Corollary 1. The bound in (4.13) becomes tight

76

4.2. Stability of Uncertain Systems

ac
tio

n
u

policy π

state x

v(
x)

l0

u0

(a) n = 1.

π

state x

V(c15)

(b) n = 15.

π

σ
(x
,u

)

state x

∆v
(x
,π

(x
))

−L∆vτ

(c) n = 30.

Figure 4.1: Example for the Lyapunov stability verification using Theorem 4 on a simple
one-dimensional system. Due to input constraints, the system becomes unstable for large
states. Initially the dynamics are uncertain (top, background) in Figure 4.1a, which induces
a large uncertainty about v(f(x, π(x))) under the given policy π (black line, top). As a
result, initially we can only certify a small region of attraction as safe. As the GP model
collect more observations (blue crosses), the uncertainty about the dynamics decreases and
we can verify a large region of the state space as safe in Figure 4.1b. After 30 data points,
we have almost identified the largest possible region of attraction in Figure 4.1c.

as the discretization constant κ and |v(f(·))− un(·)| go to zero. Thus, the discretization
constant trades off computation costs for accuracy, while un approaches v(f(·)) as we obtain
more measurement data and the posterior model uncertainty about the dynamics, βn‖σn‖2,
decreases.

The confidence intervals on v(f(x, π(x)) are show in the bottom half of Figure 4.1 (blue
shaded) for a given Lyapunov function (blue line). If we are uncertain about the transition
dynamics (top, background) in Figure 4.1a, we can only certify a small region of attraction
as safe (red lines, bottom plot). As we gather more data, the uncertainty about the
dynamics decreases and, as a consequence, so does the uncertainty about v(f(x,u)). As a
result, in Figures 4.1b and 4.1c we can certify larger subsets of the state space as safe.

Continuous-time These results can also be extended to continuous-time systems, see
(Berkenkamp, Moriconi, et al., 2016). The main technical caveat is that, in order to build
reliable confidence intervals, we have to assume that derivative observations are available.
This is restrictive in general. We do not state these results here and refer to the paper

77

Chapter 4. Safety Analysis of Learned Dynamical Systems

for details in order to avoid confusion between notation for continuous- and discrete-time
systems.

4.2.1 State constraints

While we focus on stability constraints in the following, we can account for state constraints
by limiting the maximum size of the region of attraction. In particular, we define

cmax = min
x∈Rp\X

v(x) (4.14)

as the minimum value of the Lyapunov function outside the feasible region X . If we make
sure that the region of attraction is positive invariant and that it never includes states
outside of X , the policy cannot violate the state constraints.

Lemma 5. Let V(c) with 0 < c < cmax be positive invariant for the system (4.1) under a
policy π. Then, for any state x0 ∈ V(c), we have

xt ∈ X (4.15)

for all t ≥ 0.

Proof. We have that V(c′) ⊆ X for any c′ < cmax by definition of the level-set and cmax.
The result follows since V(c) is positive invariant.

Lemma 5 ensures that as long as we limit the estimated region of attraction to states with
v(x) < cmax, we satisfy the state constraints. Effectively, V(cmax) is the largest level-set of
the Lyapunov function that is contained within the feasible region of the state space, X .

4.3 Confidence Intervals for Finite-time Trajectories

Next to stability, we would like to verify that, under a given finite sequence of control
inputs, the system adheres to safety constraints as in Section 2.4.1.2. To verify these
conditions, we need to construct confidence intervals on the trajectories that might occur
under a given policy. While Corollary 4 allows us to build confidence intervals for one-
step predictions given the starting point x, for multi-step predictions we must be able
to propagate uncertainty through the uncertain model in a reliable way. While many

78

4.3. Confidence Intervals for Finite-time Trajectories

approximate uncertainty propagation methods have been used in the literature, we would
like to exploit the properties of our model to construct them directly.

We start by reviewing basic properties of ellipsoids and then use these in order to over-
approximate the uncertainty in our model.

4.3.1 Ellipsoids

We use ellipsoids to bound the uncertainty of our system when making multi-step ahead
predictions. Due to appealing geometric properties, ellipsoids are widely used in the
robust control community to compute reachable sets (Filippova, 2017; Asselborn et al.,
2013). These sets intuitively provide an outer approximation on the next state of a system
considering all possible realizations of uncertainties when applying a controller to the
system at a given set-valued input. We briefly review some of these properties and refer
to (Kurzhanskii and Vályi, 1997) for an exhaustive introduction to ellipsoids and to the
derivations for the following properties.

We use the basic definition of an ellipsoid,

E(p,Q) := {x ∈ Rp|(x− p)TQ−1(x− p) ≤ 1}, (4.16)

with center p ∈ Rp and a symmetric positive definite (s.p.d) shape matrix Q ∈ Rp×p.
Ellipsoids are invariant under affine subspace transformations such that, for A ∈ Rp×r, r ≤
p with full column rank and b ∈ Rr, we have that

A · E(p,Q) + b = E(p + b,AQAT). (4.17)

The Minkowski sum E(p1,Q1)⊕ E(p2,Q2), i.e. the pointwise sum between two arbitrary
ellipsoids, is in general not an ellipsoid anymore, but we have

E(p1,Q1)⊕ E(p2,Q2) ⊂ Ec(p̃, Q̃), (4.18)

where p̃ = p1 + p2, Q̃ = (1 + c−1)Q1 + (1 + c)Q2 for all c > 0. Moreover, the minimizer of
the trace of the resulting shape matrix is analytically given as c =

√
trace(Q1)/trace(Q2).

A particular problem that we encounter is finding the maximum distance ρ to the center
of an ellipsoid E(0,Q) under a special transformation, i.e.

ρ(Q,S) = max
x∈E(p,Q)

‖S(x− p)‖2 = max
sTQ−1s≤1

sTSTSs, (4.19)

79

Chapter 4. Safety Analysis of Learned Dynamical Systems

where S ∈ Rm×n has full column rank. This is a generalized eigenvalue problem of the pair
(Q,STS) and the optimizer is given as the square-root of the largest generalized eigenvalue.

Lastly, we can over-approximate a hyper-rectangle. Let a±b := [[a]1± [b]1]× [[a]p± [b]p]
for a,b ∈ Rp denote the hyper-rectangles centered at a with element-wise uncertainty in
b. We can over-approximate this rectangle with an ellipsoid

a ± b ⊂ E(a,√p · diag(b)), (4.20)

where diag(b) is is a square matrix thats zero everywhere, except on the diagonal which
is given by the elements of b.

4.3.2 Robust Multi-step Predictions

In order plan safe trajectories based on our statistical model, we need to reliably estimate
the region of the state space that can be reached over multiple time steps under a sequence
of control inputs. Based on Assumption 4 and our prior model h(xt,ut), we directly obtain
high-probability confidence intervals on f(xt,ut) uniformly for all t ∈ N given a single
control input ut from Corollary 4. We extend this to over-approximate the system after
a sequence of inputs (ut,ut+1, ..,uT−1). The result is a sequence of set-valued confidence
regions that contain the true trajectory of the system with high probability.

4.3.2.1 One-step Predictions with Uncertain Inputs

One key challenge in multi-step predictions is that, while the initial state x is known,
beyond one step the input to the statistical model is uncertain. In this section, we derive
a function that takes as an input an ellipsoidal subset of the state space and outputs a
second ellipsoid that is an outer approximation to the next state if the current state is
contained in the input ellipsoid.

In order to approximate the system, first we linearize our prior model h(xt,ut) and use the
affine transformation property (4.17) to compute the ellipsoidal next state of the linearized
prior model. Next, we approximate the unknown model-error g(xt,ut) using the confidence
intervals of our statistical model. We propose a locally constant approximation of g in
Section 4.3.2.1. We finally apply Lipschitz arguments to outer-bound the approximation
errors. We sum up these individual approximations, which result in an ellipsoidal approx-
imation of the next state of the system. This is illustrated in Figure 4.2. We formally

80

4.3. Confidence Intervals for Finite-time Trajectories

Figure 4.2: Decomposition of the over-approximated image of the system (4.1) under an
ellipsoidal input R0. The exact, unknown image of f (right, green area) is approximated
by the linearized model f̃µ (center, top) and the remainder term d̃, which accounts for the
confidence interval and the linearization errors of the approximation (center, bottom). The
resulting ellipsoid R1 is given by the Minkowski sum of the two individual approximations.

Table 4.1: List of important variables, functions and constants.

Variable Type Definition
R Set Ellipsoidal set of states R = E(p,Q), with center p and shape

matrix Q.
Jφ Matrix Jacobian matrix of a function φ with Jφ = [Aφ, Bφ], where Aφ, Bφ

are the Jacobians w.r.t. the state and control inputs, respectively.
Lφ Vector Vector with Lipschitz constants for each output of a function φ.
P ā
φ Function Taylor approximation of a function φ around linearization point

ā.
m̃(R, πt) Function Function taking ellipsoidal set of states R and affine feedback con-

troller πt. Outputs ellipsoidal over-approximation of next system
state.

derive the necessary equations in the following paragraphs, which result in Lemma 6. We
provide a list of important variables functions and constants in Table 4.1.

Locally constant model approximation We first consider the system f in (4.1) for
a single input vector a = (x,u) so that f(a) = h(a) + g(a). We linearly approximate f
around ā = (x̄, ū) via

f(a) ≈ h(ā) + Jh(ā)(a − ā) + g(ā) = f̃(a), (4.21)

where Jh(ā) = [Ah,Bh] is the Jacobian of h at ā.

81

Chapter 4. Safety Analysis of Learned Dynamical Systems

Next, we use the Lagrangian remainder theorem (Breiman and Cutler, 1993) on the
linearization of h and apply a continuity argument on our locally constant approximation
of g. This results in an upper-bound on the approximation error,

|[f(a)]j − [f̃(a)]j| ≤
L∇h,j

2 ‖a − ā‖2
2 + Lg‖a − ā‖2, (4.22)

where [f(a)]j is the jth component of f with 1 ≤ j ≤ p, L∇h,j is the Lipschitz constant of
the gradient ∇[h]j, and Lg is the Lipschitz constant of g, which exists by Corollary 2.

The function f̃ depends on the unknown model error g. We approximate g with the
statistical model from Corollary 4 with, µ(ā) ≈ g(ā). From Assumption 4 we have

|[g(ā)]j − [µn(ā)]j| ≤ βn[σ(ā)]j, 1 ≤ j ≤ p, (4.23)

with high probability. We combine (4.22) and (4.23) to obtain

|[f(a)]j − [f̃µ(a)]j| ≤ βσn(ā, j) + L∇h,j
2 ‖a − ā‖2

2 + Lg‖a − ā‖2, (4.24)

where 1 ≤ j ≤ p and f̃µ(a) = h(ā) + Jh(ā)(z − ā) + µn(ā). We can interpret (4.24) as the
edges of the confidence hyper-rectangle

m̃(a) = f̃µ(a)±
[
βσn(ā) + 1

2L∇h‖a − ā‖2
2 + Lg‖a − ā‖2

]
, (4.25)

where L∇h = (L∇h,1, .., L∇h,p).

We are now ready to compute a confidence region based on an ellipsoidal state R =
E(p,Q) ⊂ Rp and a fixed input u, by over-approximating the output of the system
f(R,u) = {f(x,u) |x ∈ Rp} for all inputs contained in an ellipsoid R. Here, we choose
p as the linearization center of the state and choose ū = u, i.e. ā = (p,u). Since the
function f̃µ is affine, we can make use of (4.17) to compute

f̃µ(R,u) = E(h(ā) + µn(ā),AhQAT
h), (4.26)

which results in an ellipsoid. This is visualized in Figure 4.2 by the upper ellipsoid in the
center. To upper-bound the confidence hyper-rectangle on the right hand side of (4.25),
we upper-bound the term ‖a − ā‖2 by

l(R,u) := max
x∈R
‖(x,u)− ā‖2, (4.27)

which leads to
d̃(R, u) := βnσn(ā) + L∇hl2(R,u)/2 + Lgl(R,u). (4.28)

82

4.3. Confidence Intervals for Finite-time Trajectories

Due to our choice of ā, we have that maxx∈R ‖(x,u) − ā‖2 = ‖x − p‖2 and we can use
(4.19) to get l(R,u) = ρ(Q, Ip),, where r corresponds to the largest eigenvalue of Q−1 and
is defined in (4.19). Using (4.27), we can now over-approximate the right side of (4.25) for
inputs R by an ellipsoid

0± d̃(R,u) ⊂ E(0, Qd̃(R,u)), (4.29)

where we obtain Qd̃(R,u) by over-approximating the hyper-rectangle d̃(R,u) with the
ellipsoid E(0, Qd̃(R,u)) as in (4.20). This is illustrated in Figure 4.2 by the lower ellipsoid
in the center. Combining the previous results, we can compute the final over-approximation
using (4.18),

R+ = m̃(R,u) = f̃µ(R,u)⊕ E(0, Qd̃(R,u)). (4.30)

Since we carefully incorporated all approximation errors and extended the confidence inter-
vals around our model predictions to set-valued inputs, we get the following generalization
of the reliability Assumption 4 for single inputs.

Lemma 6. Let δ ∈ (0, 1] and choose βn as in Corollary 4. Then, with probability greater
than 1− δ, we have for any ellipsoid R = E(p,Q) ⊂ Rp that

x ∈ R ⇒ f(x,u) ∈ m̃(R,u), (4.31)

uniformly for all n ∈ N.

Proof. Define m(x,u) = h(x,u) + µn(x,u)± βnσn(x,u). From Corollary 4 we have that
f(x,u) ∈ m(x,u). Due to the over-approximations, we have m(x,u) ⊂ m̃(R,u).

Lemma 6 allows us to compute confidence ellipsoid around the next state of the system,
given that the current state of the system is known to be contained in an ellipsoidal
confidence region. Note that m̃ implicitly depends on the statistical model and thus the
data observed up to time step n.

Stochastic system The one-step bound in Lemma 6 can easily be extended to the
stochastic case by employing the bound on the transition noise Lemma 4 and adding the
ellipsoid to the over-approximation in (4.30). Note that we need a union bound between
Corollary 4 and Lemma 4 for the 1− δ guarantee to hold jointly over all n and t.

83

Chapter 4. Safety Analysis of Learned Dynamical Systems

4.3.2.2 Multi-step Predictions

We use the previous result to compute a sequence of ellipsoids that contain a trajectory
of the system with high-probability, by iteratively applying the one-step ahead predic-
tions (4.30).

Given an initial ellipsoid R0 = {x} and a sequence of control inputs ut ∈ Rq, we iteratively
compute confidence ellipsoids as

Rt+1 = m̃(Rt,ut). (4.32)

We can directly apply Lemma 6 to get the following result.

Corollary 6. Under the assumptions of Lemma 6. Let x0 be a given state and u0, . . . ,uT−1

be a sequence of control actions. Compute confidence intervals R1, . . . ,RT as in (4.32)
and let x1, . . .xT denote the true sequence of states of the deterministic system in (2.2).
Then, with probability at least 1− δ

xt ∈ Rt, (4.33)

for all 0 < t ≤ T .

Proof. Direct consequence of Lemma 6 and Corollary 4.

Corollary 6 guarantees that, with high probability, the system is always contained in the
propagated ellipsoids (4.32).

4.3.2.3 Predictions under State-Feedback Control Laws

When applying multi-step ahead predictions under a sequence of feed-forward inputs
ut ∈ U , the individual sets of the corresponding reachability sequence can quickly grow
large. This is because these open loop input sequences do not account for future control
inputs that could correct deviations from the model predictions.

To account for future corrective control actions, we extend (4.30) to affine state-feedback
control laws of the form

uK,t(xt) := Kt(xt − pt) + kt, (4.34)

where Kt ∈ Rq×p is a feedback matrix and kt ∈ Rq is the open-loop input. The parameter
pt is determined through the center of the current ellipsoid Rt = E(pt,Qt). Given an

84

4.3. Confidence Intervals for Finite-time Trajectories

appropriate choice of Kt, the control law actively contracts the ellipsoids towards their
center. This technique is commonly used in tube-based model predictive control, to reduce
the size of tubes around a nominal trajectory of the system that incorporate uncertainties
and disturbances (Rawlings and Mayne, 2009). Similar to the derivations (4.21)–(4.30),
we can compute the function m̃ for affine feedback controllers (4.34) and ellipsoids Rt =
E(pt,Qt). The resulting ellipsoid is

m̃(Rt,uK,t) = E(h(āt) + µn(āt), HtQtH
T
t)⊕ E(0, Qd̃(Rt,uK,t)), (4.35)

where āt = [pt,kt]T and Ht = Ah + BhKt. The set E(0, Qd̃(Rt,uK,t)) is obtained similarly
to (4.27) as the ellipsoidal over-approximation of

0±
[
βnσn(ā) + L∇h

l2(Rt, St)
2 + Lgl(Rt,St)

]
, (4.36)

with St = [Ip,KT
t] and l(Rt,St) = maxx∈Rt ‖St((x,uKt(x))− z̄t)‖2. The theoretical results

of Lemma 6 and Corollary 6 directly apply to the case of the uncertainty propagation
technique (4.35). For the remainder of this dissertation, we assume Kt is pre-specified,
while kt is assumed to be a decision variable. For the sake of generality, we drop the
subscript K and the functional dependency on x in uK,t(x) unless required and refer to
(4.34) when writing ut.

4.3.2.4 Safety Constraints

The derived multi-step ahead prediction technique provides a sequence of ellipsoidal confi-
dence regions around trajectories of the true system f through (4.32). We can use these
to verify finite-time safety constraints in terms of reachability and constraint satisfaction.

A particular class of constraints that we consider are linear constraints on states and
control inputs. In particular, we define the constraints from Section 2.4.1.2 as

−cx(x) = Hxx− hx ≤ 0 (4.37)

−cu(u) = Huu− hu ≤ 0 (4.38)

where Hx ∈ Rmx×p, hx ∈ Rmx , Hu ∈ Rmx×q, and hu ∈ Rmu are given and fixed matrices.
The linear safety constraints must be satisfied for all time steps as in (2.24).

We can guarantee that the system trajectory predicted according to Corollary 6 satisfies
the constraints in (4.37) and (4.38) by verifying that the computed confidence ellipsoids

85

Chapter 4. Safety Analysis of Learned Dynamical Systems

are contained in the feasible region (2.25) and (2.26) that corresponds to the polytopic
constraints. For the special case of linear constraints and ellipsoidal over-approximations,
this is feasible and can be verified with

Rt+1 ⊂ X , ut(Rt) ⊂ U , t = 0, .., T − 1, (4.39)

where (R0, . . . ,RT) is given through (4.32) and ut(Rt) := {uK,t(x)|x ∈ Rt}.

Since our constraints are polytopes, the feasible region X is defined as the intersection of
mx linear constraints, X = ⋂mx

i=1Xi, where Xi = {x ∈ Rp | [Hx](i,·)x− [hx]i ≤ 0} and [Hx](i,·)
is the ith row of Hx. We can now formulate the state constraints through the condition
Rt = E(pt,Qt) ⊂ X as mx individual constraints Rt ⊂ Xi, i = 1, ..,mx, for which an
analytical formulation exists (Hessem and Bosgra, 2002),

[Hx](i,·)pt +
√

[Hx](i,·)Qt[Hx]T(i,·) ≤ [hx]i, (4.40)

∀i ∈ {1, ..,mx}. Moreover, we can use the fact that ut is affine in xt to verify the input
constraints. In particular, we use (4.17) to obtain ut(Rt) = E(kt,KtQt,KT

t), so that the
corresponding control constraint ut(Rt) ⊂ U can be equivalently written as

[Hu](i,·)kt +
√

[Hu](i,·)KtQtKT
t [Hu]T(i,·) ≤ [hu]i, (4.41)

∀i ∈ {1, . . . ,mu}. This provides us with a closed-form expression of our safety constraints
(4.39) that deterministically guarantees the safety of our system over an arbitrary finite
horizon T , given that the system is contained in the sequence of ellipsoids Rt, t = 0, . . . , T .
Hence, these constraints are as reliable as our multi-step ahead prediction technique and,
consequently, as reliable as our statistical model.

These results can also be used to verify any reachability condition that is framed as a
polytopic constraint at a fixed time step t.

4.4 Conclusion

In this chapter, we stated formal assumptions that allow us to learn reliable models of
a dynamical system in (4.1). We then showed how these reliable models can be used to
analyze the stability of a fixed control policy. Lastly, we provided a reliable uncertainty
propagation scheme, which can be used to verify properties of the system over a finite time
horizon. We use all these properties in the following chapter to analyze safe reinforcement
learning algorithms.

86

4.4. Conclusion

Other Related Work There are several publications which are not part of this dis-
sertation, but that were written during the course of the PhD and are relevant to this
chapter.

1. In (Melchior et al., 2019), we propose a variational inference scheme in order to learn
Gaussian process models of partially observed systems.

2. In (Berkenkamp, Moriconi, et al., 2016), we investigate a continuous-time variant of
the Lyapunov stability guarantees in Section 4.2.

87

5
Safe Exploration for Model-based

Reinforcement Learning

Some of the results in this chapter have been previously published in (Berkenkamp, Mori-
coni, et al., 2016; Berkenkamp, Turchetta, et al., 2017; Koller, Berkenkamp, Turchetta,
Boedecker, et al., 2019). Partial results of the last paper were shown in (Koller, Berkenkamp,
Turchetta, and Krause, 2018).

In Chapter 4, we analyze a fixed control policy or a fixed sequence of control inputs
for safety in terms of both stability and constraint satisfaction. However, the goal of
reinforcement learning is not to analyze policies, but rather to synthesize them. That is,
we want to actively learn about our dynamics model f in order to compute better policies.

In this section, we investigate how the analysis tools from Chapter 4 can be used for safe
exploration in reinforcement learning. For safe exploration, we can only visit a particular
state if it is contained within the region of attraction of an asymptotically stable policy. This
means that for any state that we visit under our exploration policy, we must always have
a backup policy that stabilizes the system starting form this state. Moreover, we require
that state and input constraints (2.22) and (2.23) must hold throughout the exploration
process. Note that this is a constraint both on the backup policy and on the exploration
policy.

We first consider the problem of safely learning a backup policy in Section 5.1 under an

89

Chapter 5. Safe Exploration for Model-based Reinforcement Learning

idealized exploration scheme. Next in Section 5.2, we propose a model predictive control
scheme that provides safety guarantees during the exploration process. Lastly, we introduce
an exploration scheme in Section 5.3 that has provably sublinear regret without safety
constraints and extend it to the safety-constrained setting.

5.1 Exploration by Uncertainty Sampling

As a first step towards safe reinforcement learning, we consider the problem of learning
a policy subject to safety constraints. In particular, we want to safely learn about the
dynamics function f from measurements and adapt the policy for performance, without
encountering system failures. Specifically, we define safety in terms of stability as in
Section 2.4.1.1 together with the state and input constraints encoded through the sets X
and U . That means, we must learn a control policy π : Rp → Rq that, given the current
state, determines the appropriate control action that drives the system to an equilibrium
point as in Section 2.4.1.1, which we set as the origin without loss of generality (Khalil
and Grizzle, 1996).

Due to the safety constraints, we can only learn about the dynamics f(x,u) when we can
guarantee that doing so does not drive the system outside of the safe region of attraction
under the current policy. Note that the region of attraction is not known a priori, but is
implicitly defined through the system dynamics and the choice of policy, see Section 4.2.
Thus, the policy not only defines performance as in typical reinforcement learning, but
also determines safety and where we can obtain measurements.

Next to the safety constraints, we want this system to behave in a certain way, e.g., the
car driving on the road. That means we want to achieve high performance eventually as
in the general reinforcement learning setting in Section 2.5. We encode the performance
requirements of how to drive the system to the origin through a negative reward (cost)
function r(x,u) ≤ 0 that is associated with states and actions and has r(0,0) = 0. The
policy aims to maximize the cumulative, discounted reward for each starting state.

As described in Section 2.8, safe reinforcement learning is generally impossible without a
safe starting point. Thus, we assume that we have an initial policy π0 that renders the
origin of the system in (4.1) asymptotically stable within some small set of states Sx0 . For
example, this policy may be designed using the prior model h in (4.1), since most models

90

5.1. Exploration by Uncertainty Sampling

ac
tio

n
u

policy π0

state x

v(
x)

l0

u0

(a) Initial safe set (in red).

π15

state x

V(c15)

(b) Exploration, n = 15.

π30

S30

D30

σ
(x
,u

)

state x

∆v
(x
,π

(x
))

−L∆vτ

(c) Final policy, n = 30.

Figure 5.1: Example application of Algorithm 2. Due to input constraints, the system
becomes unstable for large states. We start from an initial, local policy π0 that has a small,
safe region of attraction (red lines) in Figure 5.1a. The algorithm selects safe, informative
state-action pairs within Sn (top, white shaded), which can be evaluated without leaving
the region of attraction V(cn) (red lines) of the current policy πn. As we gather more
data (blue crosses), the uncertainty in the model decreases (top, background) and we
use (5.2) to update the policy so that it lies within Fn (top, red shaded) and fulfills the
Lyapunov decrease condition. The algorithm converges to the largest safe set in Figure 5.1c.
It improves the policy without evaluating unsafe state-action pairs and thereby without
system failure.

are locally accurate but deteriorate in quality as state magnitude increases. This policy is
explicitly not safe to use throughout the state space X \ Sx0 .

Lastly, we assume that a Lipschitz-continuous Lyapunov function v(x) is given as in
Section 4.2.

5.1.1 Safe Policy Optimization

In Section 4.2, we have focused on estimating the region of attraction for a fixed policy.
We now generalize this framework in order to compare several policies. Since safety in
terms of stability is a property of states under a fixed policy, the chosen policy directly
determines which states are safe. Specifically, to form a region of attraction all states in
the discretization Xτ within a level set of the Lyapunov function need to fulfill the decrease
condition in Theorem 4, which depends on the selected policy. The set of all state-action

91

Chapter 5. Safe Exploration for Model-based Reinforcement Learning

pairs that fulfill this decrease condition is given by

Fn =
{

(x,u) ∈ Xτ × U |un(x,u)− v(x) < −L∆vτ
}
, (5.1)

see Figure 5.1c (top, red shaded). In order to estimate the region of attraction based on
this set, we need to commit to a policy. Specifically, we want to pick the policy that leads
to the largest possible region of attraction according to Theorem 4. This requires that for
each discrete state in Xτ the corresponding state-action pair under the policy must be in
the set Fn. Thus, we optimize the policy according to

πn, cn = argmax
π∈ΠL,

c∈(0, cmax)

c, such that for all x ∈ V(c) ∩ Xτ : (x, π(x)) ∈ Fn, (5.2)

where we additionally limit cn by cmax from (4.14) in order to account for state constraints,
see Lemma 5. The region of attraction that corresponds to the optimized policy πn

according to (5.2) is given by V(cn), see Figure 5.1b. It is the largest level set of the
Lyapunov function for which all state-action pairs (x, πn(x)) that correspond to discrete
states within V(cn)∩Xτ are contained in Fn. This means that these state-action pairs fulfill
the requirements of Theorem 4 and V(cn) is a region of attraction of the true system under
policy πn. The following theorem is thus a direct consequence of Theorem 4 and (5.2).

Theorem 5. Let Rπn be the true region of attraction of (4.1) under the policy πn. For
any δ ∈ (0, 1), we have with probability at least (1 − δ) that V(cn) ⊆ Rπn for all n > 0.
Moreover, for any x0 ∈ V(cn), we have for all t ≥ 0 that

xt ∈ X , π(xt) ∈ U (5.3)

Thus, when we optimize the policy subject to the constraint in (5.2), the estimated region
of attraction is always an inner approximation of the true region of attraction. However,
solving the optimization problem in (5.2) is intractable in general. We approximate the
policy update step in Section 5.1.3 to be tractable without violating the safety constraints.

5.1.2 Exploration Guarantees

So far, we have focused on learning a policy πn that satisfies the safety guarantees. Next,
we focus on actively and safely reducing the uncertainty about the transition model f in
order to improve the policy.

92

5.1. Exploration by Uncertainty Sampling

In particular, it is natural to ask how one might obtain data points in order to improve
the model of g(·) and thus efficiently increase the region of attraction. This question is
difficult to answer in general, since it depends on the properties of the statistical model.
In particular, for general statistical models it is often not clear whether the confidence
intervals contract sufficiently quickly. In the following, we exploit the assumptions in
Chapter 4 about the dynamics f and make additional assumptions about reachability
within V(cn) in order to provide exploration guarantees. These assumptions allow us to
highlight fundamental requirements for safe data acquisition and that safe exploration is
possible.

We want to exploit the stability analysis in Section 4.2 to verify the stability of a learned
policy. However, for our exploration analysis we need to ensure that safe state-actions
cannot become unsafe; that is, an initial set of safe set S0 remains safe (defined later).
To this end, we intersect the confidence intervals returned by our statistical model:
Cn(x,u) := Cn−1 ∩Qn(x,u), where the set C is initialized to C0(x,u) = (−∞, v(x)− L∆vτ)
when (x,u) ∈ S0 and C0(x,u) = R otherwise. Note that v(f(x,u)) is contained in Cn(x,u)
with the same (1 − δ) probability as in Corollary 4. We redefine the upper and lower
bounds on v(f(·)) as un(x,u) := max Cn(x,u) and ln(x,u) := min Cn(x,u).

In order to quantify the exploration properties of our algorithm, we consider a discrete
action space Uτ ⊂ U . We define exploration as the number of state-action pairs in Xτ ×Uτ
that we can safely learn about without leaving the true region of attraction. Note that,
despite this discretization, the policy takes values on the continuous domain. Moreover,
instead of using the confidence intervals directly as in (5.2), we consider an algorithm that
uses the Lipschitz constants to slowly expand the safe set, similar to the model-free setting
in Chapter 3. We use this in our analysis to quantify the ability to generalize beyond the
current safe set. In practice, nearby states are sufficiently correlated under the model to
enable generalization using (5.1).

Suppose we are given a set S0 of state-action pairs about which we can learn safely.
Specifically, this means that we have a policy such that, for any state-action pair (x,u)
in S0, if we apply action u in state x and then apply actions according to the policy,
the state converges to the origin. Such a set can be constructed using the initial safe
policy π0 as S0 = {(x, π0(x)) |x ∈ Sx0 }. Starting from this set, we want to update the
policy to expand the region of attraction according to Theorem 4. To this end, we use
the confidence intervals on v(f(·)) for states inside S0 to determine state-action pairs that

93

Chapter 5. Safe Exploration for Model-based Reinforcement Learning

fulfill the decrease condition. We thus redefine Fn for the exploration analysis to

Fn =
⋃

(x,u)∈Sn−1

{
a′ ∈ Xτ × Uτ |un(x,u)− v(x) + L∆v‖a′ − (x,u)‖2 < −L∆vτ

}
. (5.4)

This formulation is equivalent to (5.1), except that it uses the Lipschitz constant to
generalize safety. Given Fn, we can again find a region of attraction V(cn) by committing
to a policy according to (5.2). In order to expand this region of attraction effectively,
we need to decrease the posterior model uncertainty about the dynamics of the Gaussian
process by collecting measurements. However, to ensure safety in terms of stability, we
are not only restricted to states within V(cn), but also need to ensure that the state after
taking an action is safe; that is, the dynamics map the state back into the region of
attraction V(cn). We again use the Lipschitz constant in order to determine this set,

Sn =
⋃

a∈Sn−1

{
a′ ∈ V(cn) ∩ Xτ × Uτ |un(a) + LvLf‖a − a′‖2 ≤ cn}. (5.5)

The set Sn contains state-action pairs that we can safely evaluate under the current
policy πn without leaving the region of attraction, see Figure 5.1 (top, white shaded).

What remains is to define a strategy for collecting data points within Sn to effectively
decrease the model uncertainty. We specifically focus on the high-level requirements for
any exploration scheme without committing to a specific method. In practice, any (model-
based) exploration strategy that aims to decrease the model uncertainty by driving the
system to specific states may be used. Safety can be ensured by picking actions according
to πn whenever the exploration strategy reaches the boundary of the safe region V(cn);
that is, when un(x,u) > cn. This way, we can use πn as a backup policy for exploration.

The high-level goal of the exploration strategy is to shrink the confidence intervals at state-
action pairs Sn in order to expand the safe region. Specifically, the exploration strategy
should aim to visit state-action pairs in Sn at which we are the most uncertain about the
dynamics; that is, where the confidence interval is the largest:

(xn,un) = argmax
(x,u)∈Sn

un(x,u)− ln(x,u). (5.6)

As we keep collecting data points according to (5.6), we decrease the uncertainty about
the dynamics for different actions throughout the region of attraction and adapt the policy,
until eventually we have gathered enough information in order to expand it. While (5.6)
implicitly assumes that any state within V(cn) can be reached by the exploration policy,
it achieves the high-level goal of any exploration algorithm that aims to reduce model

94

5.1. Exploration by Uncertainty Sampling

uncertainty. In practice, any safe exploration scheme is limited by unreachable parts of
the state space.

We compare the active learning scheme in (5.6) to an oracle baseline that starts from the
same initial safe set S0 and knows v(f(x,u)) up to ε accuracy within the safe set. The
oracle also uses knowledge about the Lipschitz constants and the optimal policy in ΠL

at each iteration. We denote the set that this baseline manages to determine as safe
with Rε(S0) and provide a detailed definition in Appendix C.1.

Theorem 6. Under the assumptions of Theorem 4 and Corollary 3, with βn as in Corol-
lary 4, and with measurements collected according to (5.6), let n∗ be the smallest positive
integer so that

n∗

β2
n∗γn∗

≥ Cp(|R(S0)|+ 1)
L2
vε

2 , (5.7)

where C = 8/ log(1+σ−2). Let Rπ be the true region of attraction of (4.1) under a policy π.
For any ε > 0, and δ ∈ (0, 1), the following holds jointly with probability at least (1 − δ)
for all n > 0:

(i) V(cn) ⊆ Rπn,

(ii) V(cn) ⊆ X ,

(iii) f(x,u) ∈ Rπn ∀(x,u) ∈ Sn,

(iv) Rε(S0) ⊆ Sn ⊆ R0(S0).

Theorem 6 states that, when selecting data points according to (5.6), the estimated region
of attraction V(cn) is (i) contained in the true region of attraction under the current policy.
Moreover, as a consequence of Corollary 10 we have in (ii) that the resulting region of
attraction is a subset of the state constraints. In particular, this means that for any n the
policy πn never violates the state constraints when it starts in V(cn).

Next to the safety of the policy, (iii) ensures that the selected data points do not cause
the system to leave the region of attraction. This means that any exploration method
that considers the safety constraint (5.5) is able to safely learn about the system without
leaving the region of attraction. The last part of Theorem 6, (iv), states that after a finite
number of data points n∗ we achieve at least the exploration performance of the oracle
baseline, while we do not classify unsafe state-action pairs as safe. This means that the

95

Chapter 5. Safe Exploration for Model-based Reinforcement Learning

Algorithm 2 SafeLyapunovLearning
1: Input: Initial safe policy π0, Gaussian process dynamics model GP(µ(a), k(a, a′))
2: for all n = 1, . . . do
3: Compute policy πn via SGD on (5.8)
4: cn = argmaxc<cmax c, such that ∀x ∈ V(cn) ∩ Xτ : un(x, πn(x))− v(x) < −L∆vτ

5: Sn = {(x,u) ∈ V(cn)× Uτ |un(x,u) ≤ cn}
6: Select (xn,un) within Sn using (5.6) and drive system there with backup policy πn
7: Update Gaussian process with measurements f(xn,un) + εn

algorithm explores the largest region of attraction possible for a given Lyapunov function
with residual uncertain about v(f(·)) smaller than ε. Details of the comparison baseline are
given in the appendix. In practice, this means that any exploration method that manages
to reduce the maximal uncertainty about the dynamics within Sn is able to expand the
region of attraction.

An example run of repeatedly evaluating (5.6) for a one-dimensional state-space is shown
in Figure 5.1. The algorithm starts with the initial policy in Figure 5.1a, which encodes only
a small region of attraction (red lines) under the Lyapunov function (blue lines, bottom) due
to the significant model uncertainty (background top) that leads to significant uncertainty
about the decrease in the future value (bottom plot, blue shaded). Nonetheless, this small
region is sufficient to collect initial data points within S0 (blue shaded, top plot). As we
gather more and more data, the model improves and the safe region expands in Figure 5.1b.
At the same time the policy is optimized for performance, which additionally increases
the safe set. Any Lipschitz-continuous policy with state-action pairs in Fn (red region)
can be chosen without decreasing the region of attraction. Eventually in Figure 5.1c, the
uncertainty about the model has decreased significantly and we find a close-to-optimal
policy. Thus, by only selecting data points within the current estimate of the region of
attraction, the algorithm can efficiently optimize the policy and expand the safe region
over time and simultaneously optimize the performance of the policy.

5.1.3 Practical Implementation and Experiments

In the previous section, we have given strong theoretical results on safety and exploration
for an idealized algorithm that can solve (5.2). In this section, we provide a practical
variant of the theoretical algorithm in the previous section. In particular, while we retain

96

5.1. Exploration by Uncertainty Sampling

safety guarantees, we sacrifice exploration guarantees to obtain a more practical algorithm.
This is summarized in Algorithm 2.

The policy optimization problem in (5.2) is intractable to solve and only considers safety,
rather than a performance metric. We propose to use an approximate policy update that
that maximizes approximate performance while providing stability guarantees. It proceeds
by optimizing the policy first and then computes the region of attraction V(cn) for the
new, fixed policy. This does not impact safety, since data is still only collected inside the
region of attraction. Moreover, should the optimization fail and the region of attraction
decrease, one can always revert to the previous policy, which is guaranteed to be safe.

In our experiments, we use approximate dynamic programming (Powell, 2007) to capture
the performance of the policy. Given a policy πθ with parameters θ, we compute an estimate
of the value function Jπθ(·) for the mean dynamics µn based on the reward r(x,u) ≤ 0. In
principle, one could also optimize the expected performance over the epistemic uncertainty
by using the reparameterization trick, see Section 2.3. At each state, Jπθ(x) is the sum of
γ-discounted rewards encountered when following the policy πθ. The goal is to adapt the
parameters of the policy for maximum performance as measured by Jπθ , while ensuring that
the safety constraint on the worst-case decrease on the Lyapunov function in Theorem 4
is not violated. A Lagrangian formulation to this constrained optimization problem is

πn = argmax
πθ∈ΠL

∫
x∈X

r(x, πθ(x)) + γJπθ(µn−1(x, πθ(x))− λ
(
un(x, πθ(x))− v(x) + L∆vτ

)
,

(5.8)
where the first term measures long-term performance and λ ≥ 0 is a Lagrange multiplier
for the safety constraint from Theorem 4. In our experiments, we use the negative value
function as a Lyapunov function candidate, v = −J with r(·, ·) ≤ 0, and set λ = 1. In
this case, (5.8) corresponds to an high-probability lower bound on the performance given
the uncertainty in the dynamics. This is similar to worst-case performance formulations
found in robust MDPs (Tamar et al., 2014; Wiesemann et al., 2012), which consider worst-
case value functions given parametric uncertainty in MDP transition model. Moreover,
since L∆v depends on the Lipschitz constant of the policy, this simultaneously serves as
a regularizer on the parameters θ. Note that, in practice, one could also pose an outer
optimization problem to optimize λ.

To verify safety, we use the Gaussian process confidence intervals ln and un directly, as
in (5.1). We also use the confidence intervals to compute Sn for the active learning scheme,
see Algorithm 2, Line 5. In practice, we do not need to compute the entire set Sn to

97

Chapter 5. Safe Exploration for Model-based Reinforcement Learning

−1.0 −0.5 0.0 0.5 1.0
angle [rad]

−5

0

5

an
gu

la
rv

el
oc

ity
[r

ad
/s

]

unsafe region

V(c0)

V(c50)

(a) Estimated safe set.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
time [s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

an
gl

e
[r

ad
]

π0

π50

safely optimized policy
initial policy

(b) State trajectory (lower is better).

Figure 5.2: Optimization results for an inverted pendulum. Figure 5.2a shows the initial
safe set (yellow) under the policy π0, while the green region represents the estimated region
of attraction under the optimized neural network policy. It is contained within the true
region of attraction (white). Figure 5.2b shows the improved performance of the safely
learned policy over the policy for the prior model.

solve (5.2), but can use a global optimization method or even a random sampling scheme
within V(cn) to find suitable state-actions.

Moreover, measurements for actions that are far away from the current policy are unlikely
to expand V(cn), since we optimize (5.8) via gradient descent and the policy therefore
only changes locally, see Figure 5.1c. Thus, we can achieve better data and computational
efficiency by restricting the exploratory actions u with (x,u) ∈ Sn to be close to πn, u ∈
[πn(x)− ū, πn(x) + ū] for some constant ū.

Computing the region of attraction by verifying the stability condition on a discretized
domain suffers from the curse of dimensionality. However, it is not necessary to update
policies in real time. In particular, since any policy that is returned by the algorithm is
provably safe within some level set, any of these policies can be used safely for an arbitrary
number of time steps. To scale this method to higher-dimensional system, one would have
to consider an adaptive discretization for the verification as in (Bobiti and Lazar, 2016).

Experiments A Python implementation of Algorithm 2 and the experiments based
on TensorFlow (Abadi et al., 2016) and GPflow (Matthews et al., 2017) is available
at https://github.com/befelix/safe_learning.

We verify our approach on an inverted pendulum benchmark problem. The true, continuous-
time dynamics are given by ml2ψ̈ = gml sin(ψ) − λψ̇ + u, where ψ is the angle, m the

98

https://github.com/befelix/safe_learning

5.1. Exploration by Uncertainty Sampling

mass, g the gravitational constant, and u the torque applied to the pendulum. The control
torque is limited, so that the pendulum necessarily falls down beyond a certain angle. We
use a Gaussian process model for the discrete-time dynamics, where the mean dynamics
are given by a linearized and discretized model of the true dynamics that considers a wrong,
lower mass and neglects friction. As a result, the optimal policy for the mean dynamics
does not perform well and has a small region of attraction as it underactuates the system.
We use a combination of linear and Matérn kernels in order to capture the model errors
that result from parameter and integration errors.

For the policy, we use a neural network with two hidden layers and 32 neurons with
ReLU activations each. We compute a conservative estimate of the Lipschitz constant as
in (Szegedy et al., 2014). We use standard approximate dynamic programming with a
quadratic, normalized reward r(x,u) = −xTQx − uTRu, where Q and R are positive-
definite, to compute the value function Jπθ . Specifically, we use a piecewise-linear triangu-
lation of the state-space as to approximate Jπθ , see (Davies, 1996). In practice, one may
use other function approximators. We optimize the policy via stochastic gradient descent
on (5.8), where we sample a finite subset of X and replace the integral in (5.8) with a sum.

The theoretical confidence intervals for the Gaussian process model are conservative. To
enable more data-efficient learning, we fix βn = 2. This corresponds to a marginal high-
probability decrease condition per-state, rather than jointly over the state space. Moreover,
we use local Lipschitz constants of the Lyapunov function rather than the global one. While
this does not affect guarantees, it greatly speeds up exploration.

For the initial policy, we use approximate dynamic programming to compute the optimal
policy for the prior mean dynamics. This policy is unstable for large deviations from the
initial state and has poor performance, as shown in Figure 5.2b. Under this initial, subop-
timal policy, the system is stable within a small region of the state-space in Figure 5.2a.
Starting from this initial safe set, the algorithm proceeds to collect safe data points and
improve the policy. As the uncertainty about the dynamics decreases, the policy improves
and the estimated region of attraction increases. The region of attraction after 50 data
points is shown in Figure 5.2a. The resulting set V(cn) is contained within the true safe
region of the optimized policy πn. At the same time, the control performance improves
drastically relative to the initial policy, as can be seen in Figure 5.2b. Overall, the approach
enables safe learning about dynamic systems, as all data points collected during learning
are safely collected under the current policy.

99

Chapter 5. Safe Exploration for Model-based Reinforcement Learning

5.2 Safe Exploration with Model Predictive Control

In Section 5.1, we provided safety and exploration guarantees for an idealized exploration
scheme that can safely drive the system to any desired state and must return to the safe
set in one step. In this section, we introduce a model predictive control scheme that can
be used as a safe exploration scheme to drive the system to the desired states over multiple
steps.

We take the safe return policy πn from the previous section as a starting point. For
generality, we explicitly assume that we are given a safe controller that renders some part
of the state space, Xsafe ⊆ X forward invariant and thus safe.

Assumption 8. We are given a controller πsafe(·) and a polytopic safe region

Xsafe := {x ∈ Rp |Hsx ≤ hs} ⊆ X , (5.9)

where Hs ∈ Rms×p and hs ∈ Rms so that Xsafe forms the intersection of ms ∈ N individual
half-spaces. We denote with xt+1 = fπsafe = f(xt, πsafe(xt)) the closed-loop system under
πsafe and assume for any t′ ∈ N that

xt′ ∈ Xsafe ⇒ fπsafe(xt) ∈ X , ∀t ≥ t′. (5.10)

For example, any inner approximation to V(cn) together with πsafe = πn from the previous
section fulfill these requirements. Note that Assumption 8 is weaker than assuming that
Xsafe is positive invariant, since it only requires the state constraints not to be violated.
We can use the results from the finite-time trajectory analysis in Section 4.3 directly to
define a safe exploration scheme given any objective function J(·):

max
u0,...,uT−1

J(u0, . . . ,uT−1) (5.11a)

s.t. Rt+1 = m̃(Rt,ut), t = 0, . . . , T − 1, (5.11b)

Rt ⊂ X , t = 1, . . . , T − 1, (5.11c)

ut(Rt) ⊂ U , t = 0, . . . , T − 1, (5.11d)

RT ⊂ Xsafe, (5.11e)

where R0 := {xt} is the current state of the system and the intermediate state and control
constraints are defined in (4.40)and (4.41), respectively. Since the terminal set Xsafe is a

100

5.2. Safe Exploration with Model Predictive Control

Algorithm 3 Safe Exploration with model predictive control
Inputs: Safe policy πsafe,

dynamics model h,
statistical model (µ0,Σ0).

1: Π0 ← {πsafe, . . . , πsafe} with |Π0| = T

2: for t = 0, 1, . . . do
3: feasible, Π′ ← solve model predictive control problem (5.11)
4: if feasible then
5: Πt ← Π′

6: else
7: Πt ← (Πt−1,1:T−1, πsafe)

8: xt+1 ← apply ut = [Πt]0(xt) to the system (2.2)
9: Update statistical model with transition (xt,ut,xt+1).

polytope according to Assumption 8, the constraint RT ⊂ Xsafe has has the same form as
the state constraints in (4.40) and can be formulated the same way. For now, we assume
an arbitrary objective function J and discuss how to choose it to solve a reinforcement
learning task in Sections 5.2.1 and 5.3.

Due to the terminal constraint RT ⊂ Xsafe, a solution to (5.11) provides a sequence of
feedback controllers u0, . . . ,uT that steers the system back to the safe set Xsafe. However,
since the dynamics are learned online we cannot show that the model predictive control
problem is recursively feasible so that a solution exists for all t and n. In particular,
Corollary 4 only ensures that the the true dynamics are contained in the confidence
intervals, not that the confidence intervals are strictly decreasing. As a consequence, a
model update based on measurements might mean that Rt contains new states that render
the problem infeasible. Moreover, we would have to carefully deal with the nonlinearity
and non-convexity of our model predictive control problem, as e.g. Simon et al. (2013), and
the fact that our terminal set is not necessarily robust control positive invariant, which is
a pre-requisite in many robust model predictive control approaches (Rawlings and Mayne,
2009).

We employ a control scheme similar to standard robust model predictive control to guar-
antee recursively that, at any time step t, there exists a sequence of control inputs (con-
trol laws) that steer the system back to Xsafe. In particular, given a feasible solution
Πt = (u0

t , . . . ,uT−1
t) to (5.11) at time t, we apply the first control input u0

t . In case

101

Chapter 5. Safe Exploration for Model-based Reinforcement Learning

we do not find a feasible solution to (5.11) at the next time step, we shift the previ-
ous solution in a receding horizon fashion and append πsafe to the sequence to obtain
Πt+1 = (u1

t , . . . ,uT−1
t , πsafe). We repeat this process until a new feasible solution exists

that replaces the previous input sequence. This procedure is summarized in Algorithm 3
and provide safety guarantees in the following theorem.

Theorem 7. Under the assumptions in Corollary 6, let the controller defined as in Algo-
rithm 3, x0 ∈ Xsafe. The following hold jointly with probability at least (1− δ) for all t ≥ 0
and n ≥ 0

(i) xt ∈ X , ut ∈ U

(ii) After applying the sequence of control inputs/laws in Πt we have xt+T ∈ Xsafe.

Proof. From Corollary 6, the ellipsoidal outer approximations hold uniformly with proba-
bility at least (1− δ). As a consequence, any feasible solution to (5.11) satisfies (ii) and
the constraints over the next T steps. We prove the result by induction.

If (5.11) is infeasible, (i) and (ii) follow from the properties of the backup controller πsafe

in Assumption 8. Otherwise, the controller returned from (5.11) satisfies (i) and (ii) as a
consequence of Corollary 6 and the terminal set constraint that leads to xt+T ∈ Xsafe.

Induction step: Let the previous controller Πt satisfy (i) and (ii). At time step t + 1, if
(5.11) is infeasible then Πt leads to a state xt+T ∈ Xsafe, from which the backup-controller
satisfies (i) and (ii) by Assumption 8. If (5.11) is feasible, then the return path satisfies
(i) and (ii) by Corollary 6.

Theorem 7 ensures that the control algorithm in Corollary 6 satisfies both the state and
input constraints for all time steps and has access to a safe return strategy back to the
safe set Xsafe at all times.

5.2.1 Safety and Performance

So far we have considered only safety. However, in practice ensuring safety over long
time-horizons can be difficult, as the size of ellipsoids tends to increase as the prediction
horizon increases. At the same time, reinforcement learning often requires planning over
longer time horizons in order to achieve the best performance. To avoid these issues, we

102

5.2. Safe Exploration with Model Predictive Control

Figure 5.3: Illustration of the model predictive control problem in (5.12) for r = 2. As in
Algorithm 3, we plan a safety trajectory based on outer approximations R of the states
over T steps. To improve performance, we plan a performance trajectory over a different
time horizon of H steps, but only enforce that the first r ≥ 1 control inputs coincide in
order to guarantee safety.

propose to optimize performance over a different time horizon and control inputs H. In
particular, we extend the safety-constrained model predictive control problem in (5.11)
with additional control inputs uperf

0 , . . . ,uperf
H−1 that are used to optimize performance. Note

that the corresponding objective J(uperf
0 , . . . ,uperf

H−1) does not have to use the learned model
from Corollary 4 or the uncertainty propagation, but instead can define its own performance
criteria. As such, without further constraints this setting incorporates any unsafe model
predictive control scheme.

In order to guarantee safety in this setting as in Theorem 7, we must ensure that the first
o control inputs correspond to the ones in the safety-constrained setting, with 1 ≤ o < H.
That is, we apply the best possible actions that maximize the performance criterion J ,
subject to the constraint that after r time steps a feasible, safe trajectory to Xsafe must
exist.

Intuitively, since we apply only the first control input to the system before replanning,
even for o = 1 the recursive safety properties of Theorem 7 hold. This is illustrated in
Figure 5.3. The performance criterion J and the corresponding trajectory (gray line) can
be arbitrary. However, simultaneously planning a safety trajectory based on the ellipsoids
Rt that coincides with the performance trajectory for the first o steps, we can recursively
guarantee safety as in Theorem 7. The corresponding safety-constrained model predictive

103

Chapter 5. Safe Exploration for Model-based Reinforcement Learning

control problem is given by

maxu0,...,uT−1
uperf

0 ,...,uperf
H−1

J(uperf
0 , . . . ,uperf

H−1) (5.12a)

s.t. (5.11b)–(5.11e) (5.12b)

ut = uperf
t , t = 0, . . . , o− 1 (5.12c)

For example, this formulation can extend existing exploration schemes that are based on
Gaussian processes, e.g. (Boedecker et al., 2014; Xie et al., 2016; Kamthe and Deisenroth,
2018), to the safety-constrained setting.

5.2.2 Practical Considerations

Algorithm 3 theoretically guarantees that the system remains safe, while actively optimizing
for performance via the model predictive control problem (5.12). This problem can be
solved by commonly used, nonlinear programming solvers, such as the Interior Point
OPTimizer (Ipopt) by Wächter and Biegler (2006). We consider possible design choices
that could improve the performance in a practical application.

Optimizing over affine feedback policies In practice, the affine feedback control
structure introduced in Section 4.3.2.3 improves performance significantly. However, opti-
mizing over mbKt in (4.34) seems to be challenging, both in terms of numerical stability
and computational complexity. Hence, we pre-specify the feedback terms in all of our
experiments and only optimize over the feed-forward terms.

Lipschitz constants and eigenvalue computations In our multi-step ahead pre-
dictions (4.30), we need to solve a generalized eigenvalue problem for every step in the
planning horizon. We use the inverse power iteration, an iterative method that asymptoti-
cally converges to the largest generalized eigenvalue of a pair of matrices (Golub and Loan,
2012). We run the algorithm for a fixed number of p2 iterations to solve these intermediate
eigenvalue problems. In practice, this seems to result in sufficiently accurate estimations.

Eigenvalue problem Due to the generalized eigenvalue problem, the uncertainty propa-
gation (4.30) cannot be solved in closed-form. However, we can still obtain exact derivative

104

5.2. Safe Exploration with Model Predictive Control

information by means of algorithmic differentiation, that is provided in many state-of-the-
art optimization software libraries (Andersson, 2013).

5.2.3 Experiments

In this section, we evaluate the proposed model predictive control scheme in Algorithm 3
to safely learn about the dynamics of an inverted pendulum system. We provide the
code to run all experiments detailed in this section in the following Github repository:
https://github.com/befelix/safe-exploration.

The continuous-time dynamics of the pendulum are given by

ml2θ̈ = gml sin(θ)− νθ̇ + u, (5.13)

where m = 0.15 kg and l = 0.5 m are the mass and length of the pendulum, respectively,
ν = 0.1 Nms/rad is a friction parameter, and g = 9.81 m/s2 is the gravitational constant.
The state of the system x = (θ, θ̇) consists of the angle θ and angular velocity θ̇ of the
pendulum. The origin with θ = 0 corresponds to the pendulum standing upright. The
system is underactuated with control constraints U = {u ∈ R | |u| ≤ 1}. Due to these
limits, the pendulum becomes unstable and falls down beyond a certain angle independently
of the control policy.

For the prior model h we use the linearized and discretized dynamics that neglect friction
and with a pendulum mass that is lower than the one in true system. The safety con-
troller πsafe is a discrete-time, infinite horizon linear quadratic regulator (Kwakernaak and
Sivan, 1972) of the true system f linearized and discretized around the origin with cost
matrices Q = diag([1, 2]), R = 20. The corresponding safety region XSafe is given by a
conservative polytopic inner-approximation of the true region of attraction of πsafe. We do
not impose state constraints, i.e. X = R2. However the terminal set constraint (5.11e) of
the model predictive control problem (5.11) acts as a stability constraint and prevents the
pendulum from falling.

To model the dynamical system, we use a Gaussian process with a mixture of linear
and Matérn kernels for both systems. Since the theoretical scaling parameter βn for
the confidence intervals in Corollary 4 can be conservative and we choose a fixed value
of βn = 2 instead, as in Section 5.1. To start our experiment, we initially control the
system with the safety controller πsafe to gather n = 25 initial data points. Moreover, to
increase computational efficiency, we limit the number of training points used to update

105

https://github.com/befelix/safe-exploration

Chapter 5. Safe Exploration for Model-based Reinforcement Learning

−1.0 −0.5 0.0 0.5 1.0

Angular velocity θ̇ [rad/s]

−1.0

−0.5

0.0

0.5

1.0

A
ng

le
θ

[r
ad

]

(a) T = 1.

−1.0 −0.5 0.0 0.5 1.0

Angular velocity θ̇ [rad/s]

(b) T = 4.

−1.0 −0.5 0.0 0.5 1.0

Angular velocity θ̇ [rad/s]

0

100

200

300

It
er

at
io

n
n

(c) T = 5.

Figure 5.4: Visualization of the samples acquired in the static exploration setting for
T ∈ {1, 4, 5}. The algorithm plans informative paths to the safe set Xsafe (red polytope in
the center). The baseline sample set for T = 1 (left) is dense around origin of the system.
For T = 4 (center) we get the optimal trade-off between cautiousness due to a long horizon
and limited length of the return trajectory due to a short horizon. The exploration for
T = 5 (right) is too cautious, since the propagated uncertainty at the final state is too
large.

the Gaussian process to 150 and use the maximum variance selection procedure (Jain
et al., 2018) to sub-select the most informative observations whenever more samples are
available. More sophisticated, provably near-optimal selection procedures could be used
instead (Krause, A. Singh, et al., 2008).

Since we aim to learn about the model error g, we quantify exploration performance
through the mutual information between the observed state transitions and the Gaussian
process prior on the unknown model-error g, which can be computed in closed-form, see
(2.31).

Static Exploration For a first experiment, we assume that the system is static, so that
we can reset the system to an arbitrary state xn ∈ R2 in every iteration. In the static case
and without terminal set constraints, a provably close-to-optimal exploration strategy is
to, at each iteration n, select state-action pair an+1 with the largest predictive standard
deviation (Srinivas et al., 2012)

an+1 = arg max
z∈X×U

‖σn(a)‖2, (5.14)

106

5.2. Safe Exploration with Model Predictive Control

0 25 50 75 100 125 150 175 200
Iteration n

20

40

60

80

100

120

M
ut

ua
li

nf
or

m
at

io
n

T = 1 T = 2 T = 3 T = 4 T = 5

Figure 5.5: Mutual information I(yAn , g) after n = 1, . . . , 200 iterations of static explo-
ration with horizon lengths T ∈ {1, . . . , 5}. Exploration settings with shorter horizon
gather more informative samples at the beginning, but the short horizon limits the amount
of information in the long term. In contrast, longer horizon lengths result in less informative
samples at the beginning, due to uncertainties being propagated over long horizons. How-
ever, after having gathered some knowledge they quickly outperform the smaller horizon
settings.

where σn(·) is the predictive standard deviation (4.7) at the nth iteration. Inspired by
this, at each iteration we collect samples by solving the model predictive control problem
(5.11) with objective function Jn = ‖σn(x0,u0)‖2, where we additionally optimize over the
initial state x0 ∈ X . Hence, we visit states where the Gaussian process model is uncertain
about the dynamics, but only allow for state-action pairs (x0,u0) that are part of a feasible
return trajectory to the safe set XSafe.

Since optimizing over the initial state is highly non-convex, we solve the problem iteratively
with 25 random initializations to obtain a good approximation of the global minimizer.
After every iteration, we update the Gaussian process model with the collected observations.

We apply this procedure for varying horizon lengths. The resulting sample sets are visu-
alized for varying horizon lengths T ∈ {1, . . . , 5} with 300 iterations in Figure 5.4, while
Figure 5.5 shows how the mutual information of the sample sets for different values of T .
For short time horizons (T = 1), the algorithm can only slowly explore, since it can only
move one step outside of the safe set, see Figure 5.4a. This is also reflected in the mutual
information gained, which levels off quickly. For a horizon length of T = 4 in Figure 5.4b,
the algorithm is able to explore a larger part of the state-space, which means that more
information is gained. For larger horizons in Figure 5.4c, the predictive uncertainty of the

107

Chapter 5. Safe Exploration for Model-based Reinforcement Learning

final state is too large to explore effectively, which slows down exploration initially, when
we do not have much information about our system. Note that this is only true over a a
finite number of time steps. If the algorithms were to operator for more than 300 itera-
tions, eventually the longest time horizon would perform best. However, in practice the
algorithm can probably benefit from adaptively choosing the horizon during operation, e.g.
by employing a variable horizon model predictive control approach (A. Richards and How,
2006), or by increasing the horizon when the mutual information saturates for the current
horizon. That way, we can initially plan short horizons and only predict longer horizons
once the model is confident enough to do so without leading to large over-approximations.

Dynamic Exploration In the previous experiment we considered a system that can be
placed at any desired state. Next, we evaluate the algorithm when the system has to be
operated continuously, without resetting.

We consider two settings. In the first, we solve the model predictive control problem (5.11)
with Jn given by (5.14), similar to the previous experiments. In the second setting,
we additionally plan a performance trajectory as proposed in Section 5.2.1. We define
the objective-function J(·) = ∑T

t=0 trace(S1/2
t) − ∑T

t=1(mt − pt)TQperf(mt − pt), which
maximizes the sum of predictive confidence intervals along the trajectory m1, . . . ,mH ,
while penalizing deviation from the safety trajectory. We choose r = 1 in the problem
(5.12), i.e. the first action of the safety trajectory and performance trajectory are the same.
We start at x0 ∈ Xsafe, and apply Algorithm 3 over 200 iterations, where the Gaussian
process model is updated after every iteration.

We evaluate both settings for varying T ∈ {1, . . . , 5} and fixed T = 5 in terms of their
mutual information in Figure 5.6. We observe a similar behavior as in the static exploration
experiments and get the best exploration performance for T = 4, with a slight degradation
of performance for T = 5 after 200 iterations. By comparing the exploration performance
between iteration 50 and 200, we can see that influence of longer return trajectories on the
exploration performance only comes into play after a certain number of iterations. This
can be seen by comparing the similar performance of T = 3 and T = 4 after 50 iterations
with the significantly improved performance for T = 4 after 200 iterations. The setting
T = 3 during the same period only sees modest performance improvements. We can see
that, except for T = 1, the performance trajectory decomposition setting consistently
outperforms the standard setting. Planning a performance trajectory (orange) provides
the algorithm with an additional degree of freedom, which leads to drastically improved

108

5.3. Task-driven Exploration

1 2 3 4 5
Prediction horizon (T = H)

0

25

50

75

100

125

150

M
ut

ua
li

nf
or

m
at

io
n

Standard (n = 50)
Standard (n = 200)

Performance (n = 50)
Performance (n = 200)

Figure 5.6: Comparison of the information gathered from the system after 50 (dark colors)
and 200 (light colors) iterations for the standard setting (blue) and the setting where we
plan an additional performance trajectory (orange).

exploration performance.

5.3 Task-driven Exploration

So far, in Section 5.1 we showed that safe system identification can effectively reduce
the uncertainty about the transition dynamics and to improve the policy, while in Sec-
tion 5.2 we introduced an algorithm that can be used to gather data safely. While a
pure exploration objective naturally allows us to solve a given control task by learning
the dynamics everywhere, it is data-inefficient. Instead, we want to safely learn about the
system dynamics only when it is required for the control task.

In this section, we discuss how to effectively and safely explore in order to solve a task.
We start by introducing two toy examples that illustrate the challenges faced by safe
exploration schemes that do not rely on system identification. Next, as a first step, we
introduce an optimistic exploration scheme that achieves efficient exploration without safety
constraints. Lastly, we discuss how this exploration scheme can be used to effectively and
safely explore.

109

Chapter 5. Safe Exploration for Model-based Reinforcement Learning

Figure 5.7: Challenge for safe exploration with a discrete set of policies Π = {π1, π2, π3}.
Consider a safe exploration method that aims to learn about the optimal policy. While the
policy π1 is actually unsafe, this is unknown and an optimistic exploration scheme would
want to learn about it. In this case, a safe exploration scheme would instead select the
‘similar’ safe policy π0 in order to learn about the safety of π1. However, if we can never
gain sufficient information to determine that π1 is safe from data generated by π0 or π2,
then this exploration process never terminates.

5.3.1 Challenges for Safe Exploration

In Section 5.1, we showed that learning about the system model throughout the parameter
space can yield exploration guarantees. In this section, we introduce two canonical examples
that illustrate the challenges in safe exploration when we do not identify the system
everywhere, but instead focus on learning for a specific task. For simplicity, we consider a
discrete set of policies.

5.3.1.1 Unlearnable, yet Desirable Decisions

As a first scenario, we consider using a goal-directed exploration scheme that aims to
maximize reward for the safe reinforcement learning problem in Figure 5.7. There, we
have an episodic control problem with three possible control policies. The first one, π1 is
the optimal policy without safety constraints and yields the highest return. While it is
unsafe on the true system, this is not known under the current model; that is, the policy
π1 could be considered as potentially safe given the uncertainty in our model. The other
two policies π0 and π2 are safe and this is known under the model. Since π1 is unsafe, π2

is the optimal safe policy with a reward of one.

The problem structure is such that we cannot safely learn about π1. That is, we cannot
gain sufficient information about the safety of π1 by evaluating π2 or π0. Moreover, the
trajectories induced by π0 provide some information about the safety of π1. This problem

110

5.3. Task-driven Exploration

is challenging for safe exploration, since π1 seems desirable for any safe reinforcement
learning algorithm as it achieves the highest reward and could potentially be safe. Since
the goal is to solve the task, the learning algorithm cannot ignore π1. In particular, the
algorithm might be tempted to evaluate π0 for all time steps, since we can always gain
a small amount of information about the safety of π1. Due to the aleatoric noise this
information never drops to zero, but diminishes quickly.

Thus, in order to not get stuck evaluating the suboptimal policy π0, any safe learning
algorithm must know when to stop attempting to learn about state-actions that are not
safely learnable. It is not easy to quantify whether it is possible to safely learn about
something in continuous state-action spaces. Moreover, a policy might be safe, but just
marginally above the safety threshold. To determine that it is safe, we would have to
learn the dynamics up to arbitrary precision, which is generally not possible, or requires
exponentially many data points, in the noisy setting.

Remark 3. The same problem is faced by algorithms that modify the actions suggested
by an unsafe reinforcement learning algorithm and select the ‘closest’ safe action. In our
example, the reinforcement learning algorithm is likely to suggest π1 since it is high reward,
while π0 is the closest safe action. Since the reinforcement learning algorithm is not aware
of the safety constraints, it keeps suggesting π1 indefinitely.

5.3.1.2 Safe and Informative, yet Undesirable Decisions

For the second example, consider a reinforcement learning algorithm that optimizes per-
formance subject to worst-case safety constraints. For example, one might use (5.12) with
an objective that maximizes expected or optimistic performance. These kind of algorithms
avoid the problem in the previous section. For example, restricted to only actions that are
safe in the worst-case, π2 in Figure 5.7 is the optimal action.

However, this strategy can fail to find optimal solutions due to a lack of exploration.
Consider the example in Figure 5.8. As before, we have three discrete policies that
correspond to trajectories. In this example, all trajectories are safe. Moreover, except for
the safe, optimal policy π2, all policies are known to be safe given the uncertainty about
the transitions probability. In contrast to the previous example, we can learn about the
safety of π2 by evaluating π0 once. The optimal safe exploration strategy would be to
evaluate π0 in order to learn that π2 is safe and evaluate π2 for all future iterations.

111

Chapter 5. Safe Exploration for Model-based Reinforcement Learning

Figure 5.8: Example for safe exploration with a discrete set of policies Π = {π1, π2, π3}.
Consider a method that optimizes performance subject to safety constraints as in Sec-
tion 5.2.1. In this example, we can learn about the safety of the optimal, safe action π2

by evaluating π0. Since π2 is not known to be safe, the joint optimization criterion would
select the highest-reward policy that fulfills the safety constraints, π1. However, since we
cannot learn about the safety of π2 by evaluating π1, this repeats infinitely and we never
converge to the optimal safe parameters. The optimal strategy would be to evaluate π0

once in order to learn about the safety of π2, then evaluate π2 for all other iterations.

The challenge in this problem is that we have to evaluate π0 to learn about the safety of π2,
but that this comes at the cost of a large negative reward. If the safe exploration scheme is
restricted to optimizing performance subject to the worst-case safety constraint, it cannot
select π2. Moreover, it is clear that π1 performs significantly better than π0. Thus, the
optimal policy subject to the worst-case safety constraint is to evaluate π1. Since this does
not provide information about the safety of π2, this repeats indefinitely.

This highlights the increased difficulty of safe exploration relative to standard exploration.
We cannot focus only on learning about the trajectories with high reward that are known
to be safe, but sometimes have to evaluate trajectories with high high-regret (low reward),
but which allow us to learn about the safety of trajectories with high reward.

As a consequence of this example, it is clear that naively extending unsafe exploration
schemes with worst-case safety constraints does not retain the exploration guarantees.

5.3.2 Exploration Without Safety Constraints

Given the challenges of safe exploration in the previous section, we first discuss how
to efficiently explore without safety constraints. We discuss how to extend this to safe
exploration in Section 5.3.3.

112

5.3. Task-driven Exploration

5.3.2.1 Problem Definition

We start by defining the unsafe control objective. The true, stochastic system dynamics
are given by (4.1). From Assumption 2, we know that the distribution of the noise ωt
is σ-sub-Gaussian. We consider an episodic setting over a finite time horizon T , so that
the system is reset to a known state x0 every T time steps. Formally, the performance of
specific parameters θ ∈ D is specified through the expected reward collected under the
corresponding Lipschitz-continuous policy πθ ∈ Π as in Section 2.3,

J(θ) =Eω0:T−1

[
T∑
t=0

r(xt,ut)
∣∣∣∣∣x0

]
(5.15a)

s.t. xt+1 = f(xt,ut) + ωt (5.15b)

ut = πθ(xt). (5.15c)

Given the definition of the performance of parameter θ according to J(θ) in (5.15), we
aim to find the optimal parameters that maximize performance,

θ∗ = argmax
θ∈D

J(θ). (5.16)

If the dynamics f are known, (5.16) is a standard stochastic optimal control problem over
a finite time horizon. As discussed in Section 2.5, we do not know the dynamics. As
in Chapter 4, we assume that the model error has bounded RKHS norm so that we can
construct confidence intervals on the one-step prediction error according to Corollary 4.
Moreover, we require the Lipschitz properties in Assumptions 3 and 4.

We consider an algorithm that iteratively selects parameters θn at each iteration/episode
n and evaluates the performance of the corresponding policy πθn on the real system. That
is, at each iteration n, we observe one realization of a trajectory τn = {xt,n}Tt=0 that starts
at x0 and evolves over time according to a realization of ωt,n and the selected policy. We
use the resulting transition data in order to improve our model and select new parameters
θn+1 for the next iteration.

To analyze the performance of our exploration strategy (5.22), we must define a quality
criterion. A natural notion of regret in this setting, which is also used by Chowdhury and
A. Gopalan (2019), is the difference in performance on the true system between θ∗ in (5.16)
and θn in expectation over the aleatoric uncertainty caused by the transition noise ω,

RN =
N∑
n=0
|J(θ∗)− J(θn)| (5.17)

113

Chapter 5. Safe Exploration for Model-based Reinforcement Learning

We want to select a sequence of parameters θn that ensure that the cumulative regret is
sublinear, which implies convergence to close-to-optimal parameters.

5.3.2.2 Expected Performance

In practice, one of the most commonly used exploration strategies is to select θn in
order to maximize the expected performance over the aleatoric uncertainty and epistemic
uncertainty induced by the Gaussian process model.

θexp
n = argmax

θ∈D
Eη0:T−1∼N (0,I),ω0:T−1

[
T∑
t=0

r(x̃t,n, ũt,n)
∣∣∣∣∣x0

]
(5.18a)

s.t. x̃t+1,n = h(x̃t,n, ũt,n) + µn−1(x̃t,n, ũt,n) + Σ1/2
n−1(x̃t,n, ũt,n)ηt + ωt, (5.18b)

x̃0,n = x0, (5.18c)

ũt = πθ(x̃t,n). (5.18d)

That is, conditioned on the previous state x̃t, the next state x̃t is distributed according
to the Normal distribution N (µn−1(x̃t, ũt),Σn−1(xt, ũt)) together with additive noise ωt.
This methodology lies at the core of commonly used probabilistic model-based exploration
algorithms, which employ different approximations for the intractable expectation in (5.18)
for T > 1 and different optimization methods to solve the resulting optimal control problem.
For example, Deisenroth and Carl E. Rasmussen (2011) and Kamthe and Deisenroth
(2018) use moment matching to estimate a distribution over trajectories and solve the
control problem with gradient descent on the parameters of a parametric policy and model
predictive control, respectively. Ostafew et al. (2016) use an unscented Kalman filter and
Chua et al. (2018) use sampling with the re-parametrization trick to propagate uncertainty.
While these methods have different empirical performance due to the different assumptions
employed in order to solve (5.18), they use the same exploration strategy in order to acquire
data. In the following, we provide a simple example that illustrates that the expected
performance is not a general exploration scheme for reinforcement learning.

Consider a system without aleatoric uncertainty, i.e., the deterministic system in (2.2).
In this case, the only uncertainty originates from the transition model. For simplicity,
we consider a one-dimensional system, p = 1, with a linear (concave) reward function
r(x,u) = x, a constant feedback policy πθ(x) = θ, and a time horizon of one step, T = 1.
This is the simplest possible scenario and reduces the optimal control problem in (5.18) to
the bandit problem,

max
θ∈D

f(x0,θ). (5.19)

114

5.3. Task-driven Exploration

Inputs θ

J(
θ)

(a) βn = 0.

Inputs θ

J(
θ)

(b) βn = 2.

Figure 5.9: Comparison of the GP-UCB algorithm in (2.34) with two different constants
for βn. The expected performance objective in (5.20) is equivalent setting to β = 0 in
Figure 5.9a. The algorithm gets stuck and repeatedly evaluates inputs (orange crosses) at
a local optimum of the true objective function (black dashed). This is due to the mean
function (blue line) achieving higher values than the prior expected performance of zero.
In contrast, an optimistic algorithm with β = 2 in Figure 5.9b determines close-to-optimal
parameters after few evaluations.

The corresponding exploration strategy in terms of expected performance in (5.18) can be
written as

argmax
θ∈D

Ex1∼N (µn(θ),σ2
n(θ))[x1] = argmax

θ∈D
µn(θ), (5.20)

where we have omitted the dependence on x0 from the Gaussian process transition model
since it is fixed for all iterations. The second term in (5.20) shows that the expected
performance objective optimizes the mean of the Gaussian process transition model. This
may seem natural, since the linear reward function encourages states that are as large as
possible. However, when we view (5.19) as a Bayesian optimization problem, it becomes
clear that (5.20) is equivalent to the GP-UCB strategy in (2.34) with βn = 0. It is
well-known in the literature that this kind of greedy exploration gets stuck in local optima
(Srinivas et al., 2012).

This is illustrated in Figure 5.9. If we use (5.20) and set β = 0 in the GP-UCB algorithm,
we obtain optimization behaviors as in Figure 5.9a. The first evaluation that achieves
performance higher than the expected prior performance (in our case, zero), is evaluated
repeatedly (orange crosses). However, this can correspond to a local optimum of the true,
unknown objective function (black dashed). In contrast, if we use an optimistic algorithm

115

Chapter 5. Safe Exploration for Model-based Reinforcement Learning

and set β = 2, GP-UCB evaluates parameters with close-to-optimal performance.

As a consequence of this example, it is clear that we cannot expect the expected performance
to yield regret guarantees for exploration. Note that, since T = 1, this result is independent
of the uncertainty propagation scheme used. This means that expected performance cannot
be used as a general exploration scheme without additional assumptions. For example,
(Deisenroth, Fox, et al., 2014) discuss in Section 6.1 how to choose specific reward functions
that tend to encourage high-variance transitions and thus exploration. However, it is
unclear how such an approach can be analyzed theoretically and we would prefer to be
able to select general cost functions.

In the following, we propose an exploration scheme that does not require specific reward
functions in order to encourage exploration.

5.3.2.3 Optimistic Performance

Rather than optimizing for the ‘greedy’ expected performance as in the previous section,
we instead consider an optimistic strategy similar to GP-UCB in the Bandit setting. This
class of algorithms constructs an optimistic estimate of the performance J(θ) and use it
to select optimistic policy parameters θn.

Optimistic policy exploration algorithms in our setting were recently analyzed theoretically
by Chowdhury and A. Gopalan (2019). However, they analyze an algorithm that is not
implementable. In particular, their algorithm optimizes performance with respect ao all
transition models that are compatible with the confidence intervals in Corollary 4 and
encode Lipschitz-continuous value functions. This is intractable for the general system
(4.1) and they do not propose a specific algorithm to do so. Moreover, their analysis
requires that the state space is a compact subset of Rp, which is not the case under the
sub-Gaussian additive noise in (4.1).

Instead, we extend a practical strategy that was heuristically suggested by Moldovan,
Levine, et al. (2015) for deterministic systems. They propose to construct an optimistic
performance estimate by selecting optimistic dynamics within the one-step confidence
intervals at every time step. We extend this idea to the stochastic system in (4.1) and

116

5.3. Task-driven Exploration

Figure 5.10: Illustrative comparison of the true state trajectory xt under the policy πθ

and the optimistic trajectory x̃t from (5.22). After one step, x1 is contained within the
confidence intervals (grey bars). The optimistic dynamics are chosen within this confidence
interval to maximize performance. Since the optimistic dynamics are constructed iteratively
based on the previous state x̃t, beyond one step the true dynamics are not contained in
the confidence intervals.

construct the optimistic performance estimate

J̃n(θ) = Eω0:T−1,n

[
max

η0:T−1,ηt∈[−1,1]p

T∑
t=0

r(x̃t,n, ũt,n)
∣∣∣∣∣x0

]
(5.21a)

s.t. x̃t+1,n = h(x̃t,n, ũt,n) + µn−1(x̃t,n, ũt,n)

+ βn−1Σ1/2
n−1(x̃t,n, ũt,n)ηt + ωt,n,

(5.21b)

x̃0,n = x0, (5.21c)

ũt = πθ(x̃t,n), (5.21d)

where Σ1/2
n (x,u) = diag(σn(x,u)) is the diagonal covariance matrix that contains the

bound on the model errors. Unlike the true performance J(θ) in (5.15), the optimistic
performance estimate J̃n(θ) in (5.21) is constructed using the Gaussian process model based
on all data available up to iteration n. The additional optimization variables ηt ∈ [−1, 1]p

allow the optimization problem to pick optimistic dynamics within the confidence intervals.
In particular, it follows directly from Corollary 4 that, with probability at least (1 − δ),
for each sequence of ω0:T−1, there exists a sequence of η0:T−1 with ηt ∈ [−1, 1]p such that
g(x̃t, ũt) = µn−1(x̃t, ũt) + βn−1Σ1/2

n−1(x̃t, ũt)ηt. As a result, we have J̃n(θ) ≥ J(θ∗) for all
θ ∈ D; that is, J̃n is an optimistic estimate of the performance.

Unlike the uncertainty propagation scheme in Section 4.3 and methods like PILCO by
Deisenroth and Carl E. Rasmussen (2011), the optimistic performance estimate J̃ in

117

Chapter 5. Safe Exploration for Model-based Reinforcement Learning

(5.22) does not explicitly propagate uncertainty over the T time steps. Instead, it uses
the pointwise uncertainty estimates from the Gaussian process model to recursively plan
an optimistic trajectory. This can be thought of as an implicit uncertainty propagation
scheme and is illustrated in Figure 5.10. The two trajectories start at the same state x0. As
expected from Corollary 4, after one step the true state x1 is contained within the confidence
intervals (blue shaded), while x̃1 is optimistically chosen within the confidence intervals to
maximize performance. However, the prediction for x̃2 uses the Gaussian process model
evaluated at x̃1, so that the true state x2 is not contained in the confidence intervals. While
not having to construct explicit confidence intervals is a significant advantage over existing
methods, this implicit construction renders the analysis significantly more challenging.

Lastly, the maximization over ηt inside the expectation in (5.21) might seem daunting.
However, we show in Section 5.3.2.4 that this maximization can be equivalently replaced
by an outer maximization over Lipschitz-continuous functions, which leads to practical
algorithms. In the noise free case, (5.21) is a standard deterministic optimal control
problem. For now, we assume that solving (5.21) is tractable and analyze an optimistic
exploration strategy.

Exploration strategy Given the optimistic estimate of the performance in (5.21), we
consider an exploration strategy that, at each iteration n, selects the parameters

θn = argmax
θ∈D

J̃n(θ) (5.22)

and evaluates them in experiments. That is, at each iteration n we select parameters
θn that maximize the optimistic performance estimate J̃n(θ). This performance estimate
plans an optimistic trajectory x̃t,n based on the Gaussian process model with data from
the previous n− 1 iterations. We then evaluate the performance of the policy πθn on the
real system and observe a trajectory xt,n of the real system over T time steps. At the
end of each episode, we update the Gaussian process model with the observed data. This
procedure is summarized in Algorithm 4.

To bound the cumulative regret, we bound the deviation of the optimistic trajectory x̃t
from the true trajectory xt. The posterior standard deviation ‖σ(x̃t, ũt)‖ at states of the
optimistic trajectory can be significantly larger than that at the true states, xt. This is
especially true since we may never observe state transitions from the planned optimistic
x̃, but only from the true states x. Thus, the generalization properties of our statistical
model determine how far the two state distributions diverge. If the posterior variance does

118

5.3. Task-driven Exploration

Algorithm 4 Optimistic Model-based Policy Search
Inputs: Gaussian process transition model,

reward function r(·, ·),
horizon T ,
Initial state x0

1: for n = 1, 2, . . . do
2: θn ← argmaxθ∈D J̃n(θ)
3: Reset the system to x0,n = x0

4: for t = 1, . . . , T do
5: xt+1,n = f(xt−1,n, πθn(xt−1,n)) + ωt−1,n

6: Update Gaussian process model with T observed state transitions at iteration n.

not increase too quickly as we deviate from xt, then we can still bound the deviations
between x̃ and x. To this end, we require that the posterior standard deviation is Lipschitz
continuous. We make the following assumption.

Assumption 9. The kernel metric (2.33) is Lipschitz continuous.

This assumption is not trivially fulfilled by Assumption 4, since the square root function
has unbounded derivatives at zero. However, for many commonly used kernels, e.g.,
the linear and squared exponential kernels, the kernel metric is Lipschitz continuous.
This property immediately implies Lipschitz continuity of the Gaussian process posterior
standard deviation.

Corollary 7. Under Assumption 9, the Gaussian process posterior standard deviation
σn(·) is Lσ-Lipschitz continuous with respect to the 2-norm for all n ≥ 0.

Proof. It is trivial to show that the posterior Gaussian process variance is Lipschitz con-
tinuous as a function of the number of data points under Assumption 4, see, for example,
(Lederer et al., 2019). We show in Lemma 50 that the posterior variance is in fact Lipschitz
continuous with constant one with respect to the kernel metric in (2.33). The result then
follows from Assumption 9.

We use this additional assumption to bound the regret of (5.22) in the following theorem.

Theorem 8. Under the assumption of Corollaries 4 and 7 and Assumptions 4, 5 and 7, let
βn = B+ 4σ

√
I(yAn ; g) + 1 + ln(2/δ) and bn = LT−1

f T
(
Bg +Bh +

√
2σp+ 4σ

e log 2Tπ2n2

3δ

)
.

119

Chapter 5. Safe Exploration for Model-based Reinforcement Learning

At each iteration, select parameters according to (5.22), then the following holds with
probability at least (1− δ) for all n ≥ 1

Rn ≤ Õ
(√

nT 5pLTf L
T
σβ

T
n γpnT (B(x0, bn)× U)

)
, (5.23)

where B(x0, bn) = {x ∈ Rp | ‖x − x0‖2 ≤ bn} and γpnT (B(x0, bn) × U) is the information
capacity after (pnT) observations within the domain B(x0, bn)× U .

We provide a proof of Theorem 8 in Appendix D. The theorem ensures that, if we eval-
uate optimistic parameters according to (5.22), we eventually achieve performance J(θn)
arbitrarily close to the optimal performance of J(θ∗) if βTn γ grows at a rate smaller than
√
n. As one would expect, the regret bound in (D.91) depends on constant factors like

the prediction horizon T , the Lipschitz constant of the closed-loop dynamics Lf , and the
dimensionality of the state space p.

In contrast to the bound by Chowdhury and A. Gopalan (2019) for an algorithm that is
not implementable, the regret bound in Theorem 8 additionally depends on the Lipschitz
constant Lσ and an additional factor of βT−1

n . This is the cost of potentially allowing
‘discontinuous’ optimistic trajectories by not explicitly enforcing a continuity constraint.
However, the bound remains sublinear for commonly used kernels. Moreover, we show in
Appendix D.4 that we obtain the same bound as Chowdhury and A. Gopalan (2019) if we
assume that we can optimize over all dynamics functions that are compatible with Corol-
lary 4 and Lf -Lipschitz continuous. Empirically, we often assume calibrated confidence
intervals for a constant βn, in which case we match their bound up to constants.

In contrast to Chowdhury and A. Gopalan (2019), we do not assume that the state space
is compact. Instead, we use the model properties together with a high-probability bound
on the noise norm to bound the domain. As a consequence, the bound on the mutual
information, the information capacity γ(B(x0, bn)×U), is computed over a norm-ball with
an increasing radius bn. We show in the following that this is still a sublinear function for
commonly used kernels and compact sets U .

Information capacity For the bound in Theorem 8 to be meaningful, we must show
that the information capacity (largest mutual information) over the domain B(x0, bn) ×
U is sublinear. For constant bn, Srinivas et al. (2012) bound the information capacity
by bounding the tail of the eigenspectrum of the empirical kernel matrix over a tight
discretization. By increasing the domain, we increase both the size of the discretization

120

5.3. Task-driven Exploration

and, potentially, the bound on the eigenspectrum. In Appendix D.3, we analyze this
dependence and obtain the following results.

Lemma 7. For the squared exponential kernel we have

γn(B(x0, bn)) = O
(
bdn(log(n))d+1

)
= Õ

(
T log(n2) log(n)d+1

)
(5.24)

That is, as we increase the radius of the norm ball over iterations, the mutual information
only grows at a rate logarithmic in n. For parametric kernels, the bound is even independent
of the size of the domain.

Lemma 8 (Srinivas et al. (2012)). For the linear kernel k(a, a′) = aTa′ with a ∈ Rd we
have

γn(B(x0, bn)) = O(d log(n)) (5.25)

As a consequence, the regret bound is in fact sublinear for these kernels. Lastly, we note
that we are using a composite kernel based on the kernel matrix in Section 3.2. The
information capacity of these composite kernels can be bounded using the methodology
by Krause and Ong (2011).

5.3.2.4 Practical Implementation

In practice, (5.21) is difficult to solve due to the expectation over an optimization prob-
lem. However, we show in Appendix D.6 that we can exploit the boundedness of σ over
any compact domain and the Lipschitz assumptions to obtain a practical algorithm. In
particular, let Ξ be the class of functions that are bounded in [−1, 1]p with finite Lipschitz
constant. Then (5.21) is equivalent to

J̃n(θ) = max
η(·)∈Ξ

Eω0:T−1,n

[
T∑
t=0

r(x̃t,n, ũt,n)
∣∣∣∣∣x0

]
(5.26a)

s.t. x̃t+1,n = h(x̃t,n, ũt,n) + µn−1(x̃t,n, ũt,n)

+ βn−1Σ1/2
n−1(x̃t,n, ũt,n)η(x̃t, ũt) + ωt,n

(5.26b)

x̃0,n = x0, (5.26c)

ũt = πθ(x̃t,n), (5.26d)

That is, we can optimize jointly over the expected performance and a Lipschitz continuous,
bounded function η(·). Effectively, η(·) parametrizes the optimistic transition functions
that we optimize. In practice, this can be implemented by, for example, specifying the
class of functions Ξ through a neural network with a tanh nonlinearity on the last layer.

121

Chapter 5. Safe Exploration for Model-based Reinforcement Learning

5.3.3 Safe Exploration

So far we have only considered input constraints, U , that were enforced through the
definition of the policy class in Assumption 6. In this section, we discuss how these results
can be used for safe exploration with state constraints.

We can extend both the control problem (5.15) and the optimistic performance estimate in
(5.21) with additional state (chance-)constraints. However, the regret bounds only imply
that the performance converges. This does not imply safety, since constraint satisfaction
of the optimistic trajectory planned by (5.22) does not imply constraint satisfaction of the
true system (4.1). Thus, while eventually x̃t,n converges arbitrarily close to xt,n, the true
trajectory induced by the parameters θn may violate the safety constraints.

Instead of optimistic constraints, one could instead use (5.12) with worst-case safety
constraints over the epistemic uncertainty together with the optimistic performance ob-
jective. However, by enforcing worst-case constraints we can no longer guarantee that
J̃n(θn) > J(θ∗), which is required for our safety guarantees. As a consequence, our ex-
ploration analysis, and Theorem 9 in particular, does not hold in the safety-constrained
setting. Moreover, the examples in Section 5.3.1 illustrate that such an algorithm can get
stuck in local optima.

Thus enforcing ‘optimistic’ safety constraints on x̃t yields the desired convergence guaran-
tees but no safety guarantees, while worst-case safety constraints that consider the epistemic
uncertainty generally do not converge to the global optimum. As a middle-ground, we now
consider an algorithm that combines both approaches. In particular, rather than extending
the optimal control problem in Section 2.3 with state constraints X , we instead compare
against a slightly more conservative baseline with tightened constraints

Xε = {x ∈ X | min
x′∈Rp\X

‖x− x′‖2 ≥ εx}, (5.27)

so that the optimal trajectories cannot lie on the boundary of the set X , but can at most
be εx-close. We consider a problem with state chance-constraints that must hold with

122

5.3. Task-driven Exploration

probability at least (1− δx) over the aleatoric uncertainty induced by the transition noise,

θs,∗ = argmax
θ∈D

Eω0:T−1

[
T∑
t=0

r(xt,ut)
∣∣∣∣∣x0

]
(5.28a)

s.t. xt+1 = f(xt,ut) + ωt, (5.28b)

ut = πθ(xt), (5.28c)

P(xt ∈ Xε ∀t ∈ 1, . . . , T) ≥ 1− δx. (5.28d)

Note that the (1−δx) probability is only over the aleatoric uncertainty, since (5.28) assumes
a known transition model, so that there is no epistemic uncertainty.

We consider an exploration algorithm that is analogous to the unsafe setting, but addition-
ally consider the chance-constraints in (5.28):

θsn = argmax
θ∈D

max
η(·)∈Ξ

Eω0:T−1,n

[
T∑
t=0

r(x̃t,n, ũt,n)
∣∣∣∣∣x0

]
(5.29a)

s.t. x̃t+1,n = h(x̃t,n, ũt,n) + µn−1(x̃t,n, ũt,n)

+ βn−1Σ1/2
n−1(x̃t,n, ũt,n)η(x̃t, ũt) + ωt,n

(5.29b)

x̃0,n = x0, (5.29c)

ũt = πθ(x̃t,n), (5.29d)

P(x̃t,n ∈ Xε ∀t ∈ 1, . . . , T) ≥ 1− δx. (5.29e)

It is important to note that the parameters θsn do not impose safe trajectories xt in general,
since the chance constraints are only enforced over the optimistic trajectory x̃t,n. However,
if we were to evaluate the parameters θsn we retain exploration guarantees relative to (5.28):

Lemma 9. Under the assumption of Theorem 8. At each iteration, select parameters
according to (5.29), then the following holds with probability at least (1− δ) for all n ≥ 1

N∑
n=0

J(θs,∗)− J(θsn) ≤ Õ
(√

NT 5pLTf L
T
σβ

T
n γpnT (B(x0, bn)× U)

)
. (5.30)

Proof. The proof follows analogous to that of Theorem 8. In particular, since both the
reference (5.28) and the exploration strategy (5.29) are subject to the same constraints,
we retain that (5.29) is an optimistic performance estimate.

That is, we obtain the same regret bounds as in Theorem 8. Since we employ tightened
state-constraints Xε to ensure safety, we additionally ensure that once the model uncertainty
decreases sufficiently, (5.29) eventually proposes safe parameters.

123

Chapter 5. Safe Exploration for Model-based Reinforcement Learning

Lemma 10. Under the assumptions of Lemma 9 and with L̄f = 1 + Lf + 2βn−1Lσ, if

T−1∑
t=0
‖σn−1(x̃t,n)‖2 ≤

εx

2βn−1L̄
T−1
f

(5.31)

holds at iteration n, then, with probability at least (1− δ), we have that

P(xt,n ∈ X ∀t ∈ 1, . . . , T) ≥ 1− δx. (5.32)

Proof. This is a direct consequence of Lemma 35 in the appendix.

That is, if the optimization problem (5.29) plans an optimistic trajectory through states
with sufficiently small uncertainty as in (5.31), with probability at least (1− δ) over the
epistemic uncertainty, the resulting trajectory satisfies the state constraints on the true
system with probability at least (1 − δx) over the aleatoric uncertainty. Note that one
could employ a union bound over the two sources of uncertainty in order to obtain a single
probability over both sources of uncertainty. Moreover, here we use a (1− δx) guarantee
per iteration, rather than over all iterations. This is not a limitation of the proof strategy,
since one could us a bound as in Lemma 4 to obtain bounds for every step. However, this
would mean that exploration gets more and more conservative over the course of iterations
and we would have to adapt the optimal parameters in (5.28) to consider safety over many
iterations.

This means that, after learning about the system so that the uncertainty is sufficiently
small, the parameters θsn are safe on the real system. Thus, as the uncertainty about the
system reduces, (5.29) eventually stops proposing unsafe parameters. Moreover, according
to Lemma 9 we know that if we repeatedly evaluate θsn, then we eventually converge to close-
to-optimal parameters. What remains is to ensure safety throughout the learning process.
We propose Algorithm 5, which at each iteration n computes optimistic parameters θsn
according to (5.29). However, we only evaluate them if they satisfy the safety constraints
on the real system. To verify this, we can use confidence intervals on the trajectory as
in Section 4.3. If the parameters are unsafe, we overrule the decision on θn and instead
aim to safely learn about the safety of the optimistic trajectory x̃t. We then evaluate
the parameters θn on the real system and update the GP model with the corresponding
observations.

This algorithm clearly satisfies the safety constraints, since only safe parameters are eval-
uated. However, for the regret bounds to be meaningful in this setting, we must bound

124

5.3. Task-driven Exploration

Algorithm 5 Safe Optimistic Model-based Policy Search
Inputs: Gaussian process transition model,

reward function r(·, ·),
horizon T ,
Initial state x0

1: for n = 1, 2, . . . do
2: θsn ← argmaxθ∈D J̃n(θ) s.t. P(x̃t,n ∈ Xε ∀t ∈ 1, . . . , T) ≥ 1− δx
3: Evaluate aleatoric and epistemic safety of θsn as in Section 4.3
4: if unsafe then
5: θsn ← compute safe trajectory to learn about safety of x̃ from θsn.

6: Reset the system to x0,n = x0

7: for t = 1, . . . , T do
8: xt+1,n = f(xt−1,n, πθsn(xt−1,n)) + ωt−1,n

9: Update Gaussian process model with the T observed state transitions.

the number of iterations where the safety filter kicks in. Unfortunately, this is generally
only possible for a scheme that eventually reduces uncertainty about the state space as
in Section 5.1. Such a scheme was proposed heuristically by Lew et al. (2019). A more
practical exploration scheme that does not require full exploration is to actively learn about
x̃, e.g., by exploring a trajectory that maximizes the mutual information gained about
this trajectory. Once the uncertainty is reduced sufficiently, Lemma 10 ensures that the
suggested parameters are safe to evaluate. Alas, it is difficult to analyze such an algorithm
in continuous spaces.

In related work by Turchetta et al. (2019) that is not part of this dissertation (see Sec-
tion 5.4), we propose a similar safe exploration scheme for discrete spaces, where it is
possible to quantify exploration and provide exploration guarantees. However, at the heart
of the analysis we exploit the fact that, in the worst case, the proposed algorithm explores
the entire space. In particular, in discrete spaces we can identify and avoid situations like
the one in Section 5.3.1.1.

While it is not clear how to transfer this analysis to continuous spaces, we would like to
point out that we expect Algorithm 5 to work well empirically; that it provides rigorous
safety guarantees; and that its exploration scheme is based on a theoretically rigorous
approach.

125

Chapter 5. Safe Exploration for Model-based Reinforcement Learning

5.4 Conclusion

In this chapter, we introduced several safe exploration schemes. We first showed how to
compute safe parametric policies and showed that an idealized exploration scheme that
can sample within the current region of attraction can lead to effective exploration. Next,
we constructed a model predictive control scheme that can be used to safely collect data.
Lastly, we proposed and analyzed an unsafe exploration scheme and provided regret bounds.
This scheme can be combined heuristically with the safe model predictive control scheme
in order to yield an effective safe policy search algorithm.

Other Related Work There are several publications which are not part of this dis-
sertation, but that were written during the course of the PhD and are relevant to this
chapter.

1. In (Turchetta et al., 2016), we provide safe exploration guarantees in discrete state
spaces.

2. In (S. M. Richards et al., 2018) we investigate how to use neural networks in order to
learn Lyapunov functions from data.

3. In (Turchetta et al., 2019), we extend (Turchetta et al., 2016) with goal-directed opti-
mistic exploration scheme.

126

6
Conclusion

In this dissertation, we derived several safe reinforcement learning algorithms both in the
model-free and the model-based setting.

We first considered a direct policy search method in Chapter 3 based on Bayesian optimiza-
tion. We extended existing work in order to obtain a practical and safe algorithm that can
be used to optimize policy parameters in an episodic setting. Moreover, we investigated
how contexts can be used in order to safely transfer knowledge between multiple tasks. We
conducted thorough experiments on a quadrotor robot and demonstrated high-performance
learning behavior.

Next, in Chapter 4, we showed how to reliably learn models of dynamical systems. Given
these reliable models, we introduced a method to analyze the underlying deterministic
transition function for stability based on Lyapunov theory. We extended these results to
construct reliable confidence intervals over trajectories, in order to verify system properties
over longer time horizons. Together, these methods provide the basic tools to analyze
uncertain systems for safety.

Lastly, we considered safe model-based reinforcement learning based on the safety analysis
tools introduced before in Chapter 5. We showed how one can learn policies that are
provably safe and introduced an idealized exploration scheme that used the analysis tools
derived perviously in order to safely collect data. Next, we constructed a model predictive
control algorithm that can be used to collect data in practice and enjoys safety guarantees

127

Chapter 6. Conclusion

throughout the learning process. In order to collect data that is relevant for the reinforce-
ment learning task, we analyzed an optimistic exploration scheme and showed that it is
provably no-regret. Lastly, we combined this optimistic objective with the worst-case safety
guarantees of model predictive control in order to obtain a practical safe reinforcement
learning algorithms.

6.1 Future Work

There are several promising directions for future work.

The safe model-free Bayesian optimization algorithm in Chapter 3 is mostly restricted
to low-dimensional problems due to the computational burden of optimizing (3.14) and
the statistical problem of defining suitable Gaussian process priors in high-dimensions. In
unsafe Bayesian optimization, there has be interesting progress on both learning better
statistical models from data and scaling up these methods to high-dimensional problems.
Investigating both these directions in the safety-constrained setting could lead to more
practical algorithms. Moreover, it would be interesting to explore other settings, for
example, multi-fidelity Bayesian optimization, in the safety constrained setting.

The safety analysis tools derived in Chapter 4 are provably reliable, but can be conser-
vative. Learning better reliable, statistical models and providing more fine-grained and
computationally less expensive analysis tools are interesting directions for future work.

In the space of safe model-based reinforcement learning large amounts of work remain
to be done. In fact, safe exploration in continuous state-action spaces is not yet fully
understood. For example, formally analyzing an algorithm similar to Algorithm 5 that
does not rely on full system identification is a significant challenge that is left for future
work. Moreover, many of the algorithms rely on solving constrained policy optimization
problems that might be difficult to solve in practice, e.g., (5.8). A better understanding
how approximate dynamic programming problems can be solved under constraints would
be an interesting future direction.

Lastly, while we have focused on guaranteeing safety with respect to statistical models
here, safety can also be ensured by providing additional external knowledge. For example,
learning in the presence of humans, who can be asked for advice infrequently, could be an
interesting direction.

128

A
Proofs for Safe Direct Policy

Optimization

In this section, we provide the proofs for Theorem 2 and Lemma 3 in Chapter 3. The
results in this section were previously published in (Berkenkamp, A. P. Schoellig, and
Krause, 2016) and (Berkenkamp, Krause, et al., 2016).

In our setting, we obtain |I| = m+ 1 measurements at every iteration step n, each with
different, independent noise. The mutual information with regards to these multiple
measurements at parameters Dn ⊂ D can be bounded with

I(yDn×I ; f ′) ≤ max
A⊂D,|A|≤n

I(yA×I ; f ′), (A.1)

≤ max
A⊂D×I,|A|≤n|I|

I(yA; f ′), (A.2)

= γ|I|n, (A.3)

where D × I is the cartesian product that means we obtain one measurement for every
function indexed by i ∈ I at each parameter in D. The first inequality bounds the mutual
information gained by Algorithm 1 by the worst-case mutual information, while the second
inequality bounds this again by the worst-case mutual information when optimizing over
the |I| measurements at each iteration step individually. Intuitively, obtaining multiple
optimal samples does not fundamentally change the properties of the information gain,
but accelerates the rate at which information can be obtained in the worst case by |I|.

129

Appendix A. Proofs for Safe Direct Policy Optimization

In the following, we assume that f ′(θ, i) has bounded RKHS norm. Lemma 1 provides
requirements for βn, which we use in the following to prove the results.

Lemma 2 (based on Chowdhury and A. Gopalan (2017)). Assume that f ′(θ, i) = [f ′(θ)]i
has RKHS norm bounded by B and that measurements are corrupted by σ-sub-Gaussian
noise. Let An = Dn × I denote the measurements obtained up to iteration n. If βn = B +
4σ
√

I(yAn ; f ′) + 1 + ln(1/δ), then the following holds for all parameters θ ∈ D, function
indices i ∈ I, and iterations n ≥ 0 jointly with probability at least 1− δ:∣∣∣ f ′(θ, i)− µn(θ, i)

∣∣∣ ≤ βnσn(θ, i) (3.5)

Proof. Directly follows from Chowdhury and A. Gopalan (2017). The only difference is that
we obtain |I| measurements at every iteration, which causes the information capacity γ to
grow at a faster rate.

Note Where needed in the following lemmas, we implicitly assume that the assumptions
of Lemma 1 hold, and that βn is defined as above.

Corollary 8. For βn as above, the following holds with probability at least 1− δ:

∀n ≥ 1, ∀i ∈ I, ∀θ ∈ A, f ′(θ, i) ∈ Cn(θ, i).

Proof. From Lemma 1 we know that the true functions are contained in Qn(θ, i) for all
iterations n with probability at least 1− δ. As a consequence, the true functions will be
contained in the intersection of these sets with the same probability.

Corollary 8 gives a choice of βn, which ensures that all the function values of f ′ are contained
within their respective confidence intervals with high probability. In the remainder of the
paper, we follow the outline of the proofs in Sui et al., 2015, but extended them to account
for multiple constraints.

We start by showing the dynamics of important sets and functions. Most importantly,
the upper confidence bounds are decreasing, lower confidence bounds increasing with the
number of iterations, since the sets Cn+1 ⊆ Cn for all iterations n.

Lemma 11. The following hold for any n ≥ 1:

(i) ∀θ ∈ A,∀i ∈ I, uin+1(θ) ≤ uin(θ),

130

(ii) ∀θ ∈ A,∀i ∈ I, lin+1(θ) ≥ lin(θ),

(iii) ∀θ ∈ A,∀i ∈ I, wn+1(θ, i) ≤ wn(θ, i),

(iv) Sn+1 ⊇ Sn ⊇ S0,

(v) S ⊆ R ⇒ Rε(S) ⊆ Rε(R),

(vi) S ⊆ R ⇒ R̄ε(S) ⊆ R̄ε(R).

Proof. (i), (ii), and (iii) follow directly from their definitions and the definition of Cn(θ).

(iv) Proof by induction. Consider the initial safe set, S0. By definition of C0 we have for
all θ ∈ S0 and i ∈ I that

li1(θ)− Ld(θ,θ) = li1(θ) ≥ li0(θ) ≥ 0.

It then follows from the definition of Sn that θ ∈ S1.

For the induction step, assume that for some n ≥ 2, Sn−1 ⊆ Sn and let θ ∈ Sn.
This means that for all i ∈ Ic, ∃zi ∈ Sn−1, l

i
n(zi)− Ld(zi,θ) ≥ 0 by the definition of

the safe set. But, since Sn−1 ⊆ Sn, this implies that zi ∈ Sn, ∀i ∈ Ic. Furthermore, by
part (ii), lin+1(z) ≥ lin(zi). Therefore, we conclude that for all i ∈ Ic, lin+1(zi)− Ld(zi,θ) ≥ 0,
which implies that θ ∈ Sn+1.

(v) Let θ ∈ Rε(SS). Then, by definition, for all i ∈ Ic, ∃zi ∈ S, ci(zi)− Ld(zi,θ) ≥ 0.
But, since S ⊆ R, it means that zi ∈ R∀i ∈ Ic, and, therefore, ci(zi)−Ld(zi,θ) ≥ 0
for all i ∈ Ic also implies that θ ∈ Rε(R).

(vi) This follows directly by repeatedly applying the result of part (v).

Using the previous results, we start by showing that, after a finite number of iterations,
the safe set has to expand if possible. As a first step, note that the set of expanders and
maximizers are contained in each other as well if the safe set does not increase:

Lemma 12. For any n1 ≥ n0 ≥ 1, if Sn1 = Sn0, then, for any n, such that n0 ≤ n < n1,
it holds that

Gn+1 ∪Mn+1 ⊆ Sn ∪ Sn.

131

Appendix A. Proofs for Safe Direct Policy Optimization

Proof. Given the assumption that Sn does not change, both Gn+1 ⊆ Sn and Mn+1 ⊆ Sn
follow directly from the definitions of Sn and Sn. In particular, for Sn, note that for
any θ ∈ Sn, ein(θ) is decreasing in n for all i ∈ Ic, since uin(θ) are decreasing in n. For Sn,
note that maxθ′∈Sn lJn(θ′) is increasing in n, while uJn(θ) is decreasing in n (see Lemma 11
(i), (ii)).

When running the SafeOpt-MC algorithm, we repeatedly choose the most uncertain
element from Sn and Sn. Since these sets are contained in each other if the safe set
does not expand, we gain more information about these sets with each sample. Since
the information gain is bounded, this allows us to bound the uncertainty in terms of the
information gain over the entire set:

Lemma 13. For any n1 ≥ n0 ≥ 1, if Sn1 = Sn0 and C1 := 8/ log(1 +σ−2), then, for any n,
such that n0 ≤ t ≤ n1, it holds for all i ∈ I that

wn(θn, i) ≤
√
C1β2

nγ|I|n
n− n0

.

Proof. Given Lemma 12, the definition of θn := argmaxθ∈Sn∪Sn(wn(θ)), and the fact that,
win(θn) ≤ 2βn max∈∈I σn−1(θn, i) = 2βn(θn, in), the proof is completely analogous to that
of Lemma 5.3 by Srinivas et al., 2012. We only highlight the main differences here, which
results from having several functions.

win(θn) ≤ 2βn max
i∈I

σn−1(θn, i), (A.4)

= 2βnσn−1(θn, ij), (A.5)

which following Srinivas et al., 2012, Lemma 5.4 leads to
n∑
j=1

w2
j (θj, ij) ≤ β2

nC1
1
2

n∑
j=1

log(1 + σ−2σ2
n−1(θn, ij)) (A.6)

≤ β2
nC1

1
2

n∑
j=1

∑
i∈I

log(1 + σ−2σ2
n−1(θn, i)) (A.7)

≤ β2
nC1 I(yAn ; f ′), (A.8)

≤ C1β
2
nγ|I|n, (A.9)

where An = {θn, in} and the last inequality follows from (A.3).

132

Corollary 9. For any n ≥ 1, if C1 is defined as above, Nn is the smallest positive integer
satisfying Nn

βn+Nnγ|I|(n+Nn)
≥ C1

ε2
, and Sn+Nn = Sn, then, for any θ ∈ Gn+Nn ∪Mn+Nn, and

for all i ∈ I it holds that

wn+Nn(θ, i) ≤ ε.

Note Where needed in the following lemmas, we assume that C1 and Nn are defined as
above.

That is, after a finite number of evaluations Nn the most uncertain element within these
sets is at most ε. Given that the reachability operator in (3.7) is defined in terms of the
same accuracy, it allows us to show that after at most Nn evaluations, the safe set has to
increase unless it is impossible to do so:

Lemma 14. For any n ≥ 1, if R̄ε(S0) \ Sn 6= ∅, then Rε(Sn) \ Sn 6= ∅.

Proof. Assume, to the contrary, that Rε(Sn) \ Sn = ∅. By definition, Rε(Sn) ⊇ Sn,
therefore Rε(Sn) = Sn. Iteratively applying Rε to both sides, we get in the limit R̄ε(Sn) =
Sn. But then, by Lemma 11 (iv) and (vi), we get

R̄ε(S0) ⊆ R̄ε(Sn) = Sn, (A.10)

which contradicts the lemma’s assumption that R̄ε(S0) \ Sn 6= ∅.

Lemma 15. For any n ≥ 1, if R̄ε(S0) \ Sn 6= ∅, then the following holds with probability
at least 1− δ:

Sn+Nn) Sn.

Proof. By Lemma 14, we get that, Rε(Sn) \ Sn 6= ∅, Equivalently, by definition, for
all i ∈ Ic

∃θ ∈ Rε(Sn) \ Sn, ∃zi ∈ Sn : ci(zi)− ε− Ld(zi,θ) ≥ 0. (A.11)

Now, assume, to the contrary, that Sn+Nn = Sn (see Lemma 11 (iv)), which implies
that θ ∈ A \ Sn+Nn and zI ∈ Sn+Nn∀i ∈ Ic. Then, we have for all i ∈ Ic

uin+Nn(zi)− Ld(zi,θ) ≥ ci(zi)− Ld(z,θ) by Lemma 1

≥ ci(zi)− ε− Ld(z,θ)

≥ 0. by (A.11)

133

Appendix A. Proofs for Safe Direct Policy Optimization

Therefore, by definition, en+Nn(zi) > 0, which implies zi ∈ Gn+Nn , ∀i ∈ Ic.

Finally, since Sn+Nn = Sn and zi ∈ Gn+Nn∀i ∈ Ic, we know that for all i ∈ I, wn+Nn(θ′, i) ≤
ε. (Corollary 9). Hence, for all i ∈ Ic,

lin+Nn(zi)− Ld(zi,θ) ≥ ci(zi)− w(zi, i)− Ld(θ,xi) by Lemma 1

≥ ci(z)− ε− Ld(θ,xi) by Corollary 9

≥ 0. by (A.11)

This means we get θ ∈ Sn+Nn , which is a contradiction.

Intuitively, repeatedly applying the previous result leads to full safe exploration within a
finite domain A. In particular, it follows that if Sn+Nn = Sn, then the safely reachable
set has been fully explored to the desired accuracy. From this it follows, that the pes-
simistic estimate in (3.16) is also ε-close to the optimum value within the safely reachable
set, R̄ε(S0):

Lemma 16. For any n ≥ 1, if Sn+Nn = Sn, then the following holds with probability at
least 1− δ:

J(θn+Nn) ≥ max
θ∈R̄ε(S0)

J(θ)− ε.

Proof. Let θ∗ := argmaxθ∈Sn+Nn
J(θ). Note that θ∗ ∈Mn+Nn , since

uJn+Nn(θ∗) ≥ J(θ∗) by Lemma 1

≥ J(θ) by definition of θ∗

≥ lJn+Nn(θ) by Lemma 1

≥ max
θ∈Sn+Nn

lJn+Nn(θ). by definition of θ

We will first show that J(θn+Nn) ≥ J(θ∗)− ε. Assume, to the contrary, that

J(θn+Nn) < J(θ∗)− ε. (A.12)

134

Then, we have

lJn+Nn(θ∗) ≤ lJn+Nn(θ) by definition of θ

≤ J(θ) by Lemma 1

< J(θ∗)− ε by (A.12)

≤ uJn+Nn(θ∗)− ε by Lemma 1

≤ lJn+Nn(θ∗), by Corollary 9 and θ∗ ∈Mn+Nn

which is a contradiction.

Finally, since Sn+Nn = Sn, Lemma 15 implies that R̄ε(S0) ⊆ Sn = Sn+Nn . Therefore,

max
θ∈R̄ε(S0)

J(θ)− ε ≤ max
θ∈Sn+Nn

J(θ)− ε R̄ε(S0) ⊆ Sn+Nn

= J(θ∗)− ε by definition of θ∗

≤ J(θn+Nn). proven above

Corollary 10. For any n ≥ 1, if Sn+Nn = Sn, then the following holds with probability at
least 1− δ:

∀n′ ≥ 0, J(θn+Nn+n′) ≥ max
θ∈R̄ε(S0)

J(θ)− ε.

Proof. This is a direct consequence of the proof of the preceding lemma, combined with
the facts that both Sn+Nn+n′ and lJn+Nn+n′(θn+Nn+n′) are increasing in n′ (by Lemma 11
(iv) and (ii) respectively), which imply that maxθ∈Sn+Nn+n′ l

J
n+Nn+n′(θ) can only increase

in n′.

Moreover, since we know the true function is contained within the confidence intervals, we
cannot go beyond the safe set if we knew the function perfectly everywhere, R̄0:

Lemma 17. For any n ≥ 0, the following holds with probability at least 1− δ:

Sn ⊆ R̄0(S0).

Proof. Proof by induction. For the base case, n = 0, we have by definition that S0 ⊆
R̄0(S0).

135

Appendix A. Proofs for Safe Direct Policy Optimization

For the induction step, assume that for some n ≥ 1, Sn−1 ⊆ R̄0(S0). Let θ ∈ Sn, which,
by definition, means that for all i ∈ Ic ∃zi ∈ Sn−1, such that

lin(zi)− Ld(zi,θ) ≥ 0

⇒ ci(zi)− Ld(zi,θ) ≥ 0. by Lemma 1

Then, by definition of R̄0 and the fact that zi ∈ R̄0(S0) for all i ∈ Ic, it follows that θ ∈
R̄0(S0).

The previous results is enough to show that we eventually explore the full safe set by
repeatedly applying Lemma 15:

Lemma 18. Let n∗ be the smallest integer, such that n∗ ≥ |R̄0(S0)|Nn∗. Then, there
exists n0 ≤ n∗, such that Sn0+Nn0

= Sn0.

Proof. Assume, to the contrary, that for any n ≤ n∗, Sn (Sn+Nn . (By Lemma 11 (iv), we
know that Sn ⊆ Sn+Nn .) Since Nn is increasing in n, we have

S0 (Sn0 ⊆ SNn∗ (SNn∗+NNn∗
⊆ S2Nn∗ (· · · ,

which implies that, for any 0 ≤ k ≤ |R̄0(S0)|, it holds that |SkNn∗ | > k. In particular,
for k∗ := |R̄0(S0)|, we get

|Sk∗T | > |R̄0(S0)|

which contradicts Sk∗T ⊆ R̄0(S0) by Lemma 17.

Corollary 11. Let n∗ be the smallest integer, such that n∗

β2
n∗γ|I|n∗

≥ C1|R̄0(S0)|
ε2

. Then,

there exists n0 ≤ n∗, such that Sn0+Nn0
= Sn0.

Proof. This is a direct consequence of combining Lemma 18 and Corollary 9.

Since we showed that we completely explore the safe set and that we remain safe throughout
the exploration procedure, we are ready to state the main results:

Lemma 19. If f ′ is L-Lipschitz continuous, then, for any n ≥ 0, the following holds with
probability at least 1− δ for all i ∈ Ic:

∀θ ∈ Sn, ci(θ) ≥ 0.

136

Proof. We will prove this by induction. For the base case n = 0, by definition, for
any θ ∈ S0 and i ∈ Ic, ci(θ) ≥ 0.

For the induction step, assume that for some n ≥ 1, for any θ ∈ Sn−1 and for all i ∈
Ic, ci(θ) ≥ 0. Then, for any θ ∈ Sn, by definition, for all i ∈ Ic, ∃zi ∈ Sn−1,

0 ≤ lin(zi)− Ld(zi,θ)

≤ ci(zi)− Ld(zi,θ) by Lemma 1

≤ ci(θ). by L-Lipschitz-continuity

Theorem 2. Under the assumptions of Lemma 2, also assume that S0 6= ∅ and ci(θ) ≥ 0
for all θ ∈ S0 and i ∈ Ic. Choose βn as in Lemma 2, define θ̂n as in (3.16), and let n∗(ε, δ)
be the smallest positive integer satisfying

n∗

β2
n∗γ|I|n∗

≥ C1(|R̄0(S0)|+ 1)
ε2

, (3.17)

where C1 = 8/ log(1 + σ−2). For any ε > 0 and δ ∈ (0, 1), when running Algorithm 1 the
following inequalities jointly hold with probability at least 1− δ:

1. Safety: ∀n ≥ 1,∀i ∈ Ic : ci(θn) ≥ 0

2. Optimality: ∀n ≥ n∗, J(θ̂n) ≥ J∗ε − ε

Proof. The first part of the theorem is a direct consequence of Lemma 19. The second
part follows from combining Corollary 10 and Corollary 11.

137

B
Proofs for Model Analysis

In this chapter, we provide the proofs for the theoretical claims in Chapter 4. Some of the
results in this chapter have been previously published in (Berkenkamp, Moriconi, et al.,
2016; Berkenkamp, Turchetta, et al., 2017; Koller, Berkenkamp, Turchetta, Boedecker, et
al., 2019). Partial results of the last paper were shown in (Koller, Berkenkamp, Turchetta,
and Krause, 2018).

B.1 Noise Bound

We start by bounding the norm of the noise vector ωt over all time steps t.

We know that the ωt are i.i.d. sub-Gaussian vectors. We exploit the basic properties of
sub-Gaussian random variables and refer to Vershynin (2012, Chapter 5) for a concise
review.

Lemma 20. Vershynin (2010, Corollary 5.17) Let X1, . . . , Xp be independent centered
sub-exponential random variables, and let 2σ = maxi ‖Xi‖φ1 be the largest, sub-exponential
norm. Then, for every ε ≥ 0, we have

P
{∣∣∣∣∣

N∑
i=1

Xi

∣∣∣∣∣ ≥ εp

}
≤ 2exp

[
−eN

2 min
(
ε2

4σ2 ,
ε

2σ

)]
(B.1)

139

Appendix B. Proofs for Model Analysis

This allows us to bound the 2-norm of the noise vectors in (4.1).

Lemma 21. Let ω = (ω1, . . . , ωp) be a vector with i.i.d. elements [ω]i = ωi that are
σ-sub-Gaussian. Then, with probability at least 1− δ, we have that

‖ω‖2
2 ≤ 2σp+ 4σ

e log 2
δ

(B.2)

Proof. Since the ωi are σ-sub-Gaussian, we have the ω2
i are 2σ-sub-exponential Vershynin,

2010, Lemma 5.14. Thus we have

‖ω‖2
2 =

p∑
i=1

ω2
i ,

where the ω2
i are i.i.d. 2σ-sub-exponential. Following Lemma 20, we have

P
{
‖ω‖2

2 ≥ εp
}
≤ 2exp

[
−ep

2 min
(
ε2

4σ2 ,
ε

2σ

)]
(B.3)

Now for ε ≥ 2σ we have ε2/(4σ2) ≥ ε/(2σ). Thus

P
{
‖ω‖2

2 ≥ (2σ + ε)p
}
≤ 2exp

[
−ep

2
(2σ + ε)

2σ

]
≤ 2exp

[−ep
2

ε

2σ

]
(B.4)

We want to upper bound the right hand side by δ. so

2 exp
[−epε

4σ

]
≤ δ, (B.5)

−epε
4σ ≤ log(δ/2), (B.6)
epε
4σ ≥ log(2/δ), (B.7)

ε ≥ 4σ
ep log(2/δ). (B.8)

the result follows by plugging the bound for ε into (B.4),

(2σ + ε)p = (2σ + 4σ
ep log(2/δ))p (B.9)

= 2σp+ 4σ
e log 2

δ
(B.10)

140

B.2. Lyapunov Stability

As the last step, we apply the union bound to obtain confidence intervals over multiple
steps.

Lemma 4. Let ω0,ω1, . . . be i.i.d. random vectors with ωt ∈ Rp such that each entry of
the vector is i.i.d. σ-sub-Gaussian. Then, with probability at least (1− δ),

‖ωt‖2
2 ≤ 2σp+ 4σ

e log (t+ 1)2π2

3δ (4.11)

holds jointly for all t ≥ 0.

Proof. At each time step t, we apply a probability budget of δ/πt to the bound in Lemma 21,
where πt ≥ 0 and ∑

t≥0 π
−1
t = 1. In particular, we use πt = (t+1)2π2

6 as in Srinivas et al.,
2012, Lemma 5.1, so that we apply monotonically decreasing probability thresholds as t
increases. We obtain the result by applying a union bound over t, since ∑t≥0 δ/πt = δ.

B.2 Lyapunov Stability

In this section, we prove the results for Theorem 4. In the following we write f(a) = f(x,u)
to be concise.

Lemma 22. Using Corollary 3 and Lemma 2, let Xκ be a discretization of X such that
‖x− [x]κ‖2 ≤ κ for all x ∈ X . Then, for all x ∈ X , we have with probability at least 1− δ
for all n ≥ 0 that∣∣∣v(µn([a]κ))−v([x]κ)−

(
v(f(a))−v(x)

)∣∣∣ ≤ Lvβn‖σn([a]κ)‖2+(LvLf (Lπ+1)+Lv)κ, (B.11)

where a = (x, π(x)) and [a]κ = ([x]κ, π([x]κ)).

Proof. Let a = (x, π(x)), [a]κ = ([x]κ, π([x]κ)). Then we have that

∣∣∣v(µn([a]κ))− v([x]κ)−
(
v(f(a))− v(x)

)∣∣∣,
=
∣∣∣v(µn([a]κ))− v([x]κ)− v(f(a)) + v(x)

∣∣∣,
=
∣∣∣v(µn([a]κ))− v(f([a]κ)) + v(f([a]κ))− v(f(a)) + v(x)− v([x]κ)

∣∣∣,
≤
∣∣∣v(µn([a]κ))− v(f([a]κ))

∣∣∣+ ∣∣∣v(f([a]κ))− v(f(a))
∣∣∣+ ∣∣∣v(x)− v([x]κ)

∣∣∣,
≤ Lv‖µn([a]κ)− f([a]κ)‖2 + Lv‖f([a]κ)− f(a)‖2 + Lv‖x− [x]κ‖2,

≤ Lvβn‖σn([a]κ)‖2 + LvLf‖[a]κ − a‖2 + Lv‖x− [x]κ‖2,

141

Appendix B. Proofs for Model Analysis

where the last three inequalities follow from Corollaries 3 and 5. The result holds with
probability at least 1 − δ. By definition of the discretization and the policy class Π in
Assumption 5, we have on each grid cell that

‖a − [a]κ‖2 ≤ ‖x− [x]κ‖2 + ‖π(x)− π([x]κ)‖2,

≤ κ+ Lπ‖x− [x]κ‖2,

≤ (Lπ + 1)κ,

where the equality in the first step follows from the definition of the norm. Plugging this
into the previous bound yields∣∣∣v(µn([a]κ))− v([x]κ)−

(
v(f(a))− v(x)

)∣∣∣ ≤ Lvβn‖σn([a]κ)‖2 + (LvLf (1 + Lπ) + Lv)κ,

which completes the proof.

Lemma 23. v(f(x,u)) ∈ Qn holds for all x ∈ X , u ∈ U , and n > 0 with probability at
least (1− δ).

Proof. The proof is analogous to Lemma 22 and follows from Corollaries 3 and 5.

Corollary 12. v(f(x,u)) ∈ Cn holds for all x ∈ X , u ∈ U , and n > 0 with probability at
least (1− δ).

Proof. Direct consequence of the fact that Lemma 23 holds jointly for all n > 0 with
probability at least 1− δ.

Lemma 22 show that the decrease on the Lyapunov function on the discrete grid Xκ is
close to that on the continuous domain X . Given these confidence intervals, we can now
establish the region of attraction using Corollary 1:

Theorem 4. Under Corollaries 3 and 4 with L∆v := LvLf (Lπ + 1) + Lv, let Xκ be a
discretization of X such that ‖x− [x]κ‖2 ≤ κ for all x ∈ X . If, for all x ∈ V(c) ∩ Xκ with
c > 0, u = π(x), and for all n ≥ 0 it holds that

un(x,u) < v(x)− L∆vκ, (4.13)

then v(f(x, π(x))) < v(x) holds for all x ∈ V(c) with probability at least (1− δ) and V(c)
is a positive invariant region of attraction for (2.2) under the policy π.

142

B.2. Lyapunov Stability

Proof. Using Lemma 22 it holds that v(f(x, π(x)) − v(x) < 0 for all continuous states
x ∈ V(c) with probability at least 1 − δ, since all discrete states xκ ∈ V(c) ∩ X fulfill
the condition (4.13). Thus we can use Corollary 1 to conclude that V(c) is a region of
attraction for (2.2).

143

C
Proofs for Safe Exploration

In this chapter, we prove the safe exploration results in Chapter 5. Some of the results
in this chapter have been previously published in (Berkenkamp, Moriconi, et al., 2016;
Berkenkamp, Turchetta, et al., 2017; Koller, Berkenkamp, Turchetta, Boedecker, et al.,
2019). Partial results of the last paper were shown in (Koller, Berkenkamp, Turchetta,
and Krause, 2018).

We start by restating the stability result from Theorem 4 in terms of the set Fn from (5.4).

Theorem 5. Let Rπn be the true region of attraction of (4.1) under the policy πn. For
any δ ∈ (0, 1), we have with probability at least (1 − δ) that V(cn) ⊆ Rπn for all n > 0.
Moreover, for any x0 ∈ V(cn), we have for all t ≥ 0 that

xt ∈ X , π(xt) ∈ U (5.3)

Proof. Following the definition of Fn in (5.1), it is clear from the constraint in the optimiza-
tion problem (5.2) that for all x ∈ Fn it holds that (x, πn(x)) ∈ Fn or, equivalently that
un(x, π(x))− v(x) < −L∆vκ, see (5.1). The result V(cn) ⊆ Rπn then follows from Theo-
rem 4. Since c < cmax by definition in (5.2), the state constraints follow from Lemma 5.
The input constraints are satisfied by assumption in Assumption 6.

Note that the initialization of the confidence intervals Q0 ensures that the decrease condi-
tion is always fulfilled for the initial policy.

145

Appendix C. Proofs for Safe Exploration

C.1 Safe Exploration

Remark 4. In the following we assume that Fn and Sn are defined as in (5.4) and (5.5).

Baseline As a baseline, we consider a class of algorithms that know about the Lipschitz
continuity properties of v, f , and π. In addition, we can learn about v(f(x,u)) up to some
arbitrary statistical accuracy ε by visiting state x and obtaining a measurement for the next
state after applying action u, but face the safety restrictions defined in Section 5.1. Suppose
we are given a set S of state-action pairs about which we can learn safely. Specifically, this
means that we have a policy such that, for any state-action pair (x,u) in S, if we apply
action u in state x and then apply actions according to the policy, the state converges
to the origin. Such a set can be constructed using the initial policy π0 from Section 5.1
as S0 = {(x, π0(x)) |x ∈ Sx0 }.

The goal of the algorithm is to expand this set of states that we can learn about safely.
Thus, we need to estimate the region of attraction by certifying that state-action pairs
achieve the −L∆vκ decrease condition in Theorem 4 by learning about state-action pairs
in S. We can then generalize the gained knowledge to unseen states by exploiting the
Lipschitz continuity,

Rdec(S) = S0∪
{
a ∈ Xκ × Uκ | ∃(x,u) ∈ S : v(f(x,u))−v(x)+ε+L∆v‖a−(x,u)‖2<−L∆vκ

}
,

(C.1)

where we use that we can learn v(f(x,u)) up to ε accuracy within S. We specifically
include S0 in this set, to allow for initial policies that are safe, but does not meet the
strict decrease requirements of Theorem 4. Given that all states in Rdec(S) fulfill the
requirements of Theorem 4, we can estimate the corresponding region of attraction by
committing to a control policy π ∈ ΠL and estimating the largest safe level set of the
Lyapunov function. With D = Rdec(S), the operator

Rlev(F) = V
(

argmax c, such that ∃π ∈ ΠL : ∀x ∈ V(c) ∩ Xκ, (x, π(x)) ∈ F
)

(C.2)

encodes this operation. It optimizes over safe policies π ∈ ΠL to determine the largest level
set, such that all state-action pairs (x, π(x)) at discrete states x in the level set V(c) ∩ Xκ
fulfill the decrease condition of Theorem 4. As a result, Rlev(Rdec(S)) is an estimate of
the largest region of attraction given the ε-accurate knowledge about state-action pairs
in S. Based on this increased region of attraction, there are more states that we can safely

146

C.1. Safe Exploration

learn about. Specifically, we again use the Lipschitz constant and statistical accuracy ε to
determine all states that map back into the region of attraction,

Rε(S) = S∪
{
a′ ∈ Rlev

κ (Rdec(S))× Uκ | ∃a ∈ S : v(f(a))+ε+LvLf‖a−a′‖2 ≤ max
x∈Rlev(Rdec(S))

v(x)
}
,

(C.3)

where Rlev
κ (F) = Rlev(F) ∩ Xκ. Thus, Rε(S) ⊇ S contains state-action pairs that we can

visit to learn about the system. Repeatedly applying this operator leads the largest set
of state-action pairs that any safe algorithm with the same knowledge and restricted to
policies in ΠL could hope to reach. Specifically, let R0

ε (S) = S and Ri+1
ε (S) = Rε(Ri

ε(S)).
Then Rε(S) = limi→∞R

i
ε(S) is the set of all state-action pars on the discrete grid that any

algorithm could hope to classify as safe without leaving this safe set. Moreover, Rlev(Rε(S))
is the largest corresponding region of attraction that any algorithm can classify as safe for
the given Lyapunov function.

Proofs In the following we implicitly assume that the assumptions of Corollary 4 hold
and that βn is defined as specified within Corollary 4. Moreover, for ease of notation we
assume that Sx0 is a level set of the Lyapunov function v(·).

Lemma 24. V(cn) = Rlev(Fn) and cn = maxx∈Rlev(Fn) v(x)

Proof. Directly by definition, compare (5.2) and (C.2).

Remark 5. Lemma 24 allows us to write the proofs entirely in terms of operators, rather
than having to deal with explicit policies. In the following and in Algorithm 6 we re-
place V(cn) and cn according to Lemma 24. This moves the definitions closer to the
baseline and makes for an easier comparison.

We roughly follow the proof strategy in (Sui et al., 2015), but deal with the additional
complexity of having safe sets that are defined in a more difficult way (indirectly through
the policy). This is non-trivial and the safe sets are carefully designed in order to ensure
that the algorithm works for general nonlinear systems.

We start by listing some fundamental properties of the sets that we defined below.

Lemma 25. It holds for all n ≥ 1 that

(i) ∀a ∈ Xκ × Uκ, un+1(a) ≤ un(a)

147

Appendix C. Proofs for Safe Exploration

Algorithm 6 Theoretical algorithm
1: Input: Initial safe policy S0, dynamics model GP(µ(a), k(a, a′))
2: for all n = 1, . . . do
3: Fn = ⋃

(x,u)∈Sn−1

{
a′ ∈ Xκ × Uκ |un(x,u)− v(x) + L∆v‖a′ − (x,u)‖2 < −L∆vκ

}
,

4: πn, cn = argmaxπ∈ΠL,c∈R>0 c, such that for all x ∈ V(c) ∩ Xκ : (x, π(x)) ∈ Fn
5:

6: Sn = ⋃
a∈Sn−1

{
a′ ∈ V(cn) ∩ Xκ × Uκ |un(a) + LvLf‖a − a′‖2 ≤ cn}

7: = ⋃
a∈Sn−1

{
a′ ∈ Rlev

κ (Fn)× Uκ |un(a) + LvLf‖a − a′‖2 ≤ maxx∈Rlev(Fn) v(x)}
8: (xn,un) = argmax(x,u)∈Sn un(x,u)− ln(x,u)
9: Sn = {a ∈ V(cn)× Uκ |un(a) ≤ cn}

10: Update GP with measurements f(xn,un) + εn

(ii) ∀a ∈ Xκ × Uκ, ln+1(a) ≥ ln(a)

(iii) S ⊆ R =⇒ Rlev(S) ⊆ Rlev(R)

(iv) S ⊆ R =⇒ Rdec(S) ⊆ Rdec(R)

(v) S ⊆ R =⇒ Rε(S) ⊆ Rε(R)

(vi) S ⊆ R =⇒ Rε(S) ⊆ Rε(R)

(vii) Sn ⊇ Sn−1 =⇒ Fn+1 ⊇ Fn

(viii) F1 ⊇ S0

(ix) Sn ⊇ Sn−1

(x) Fn ⊇ Fn−1

Proof. (i) and (ii) follow directly form the definition of Cn.

(iii) Let π ∈ ΠL be a policy such that for some c > 0 it holds for all x ∈ V(c) ∩ Xκ that
(x, π(x)) ∈ S. Then we have that (x, π(x)) ∈ R, since S ⊆ R. Thus it follows that
with

cs = argmax c s.t. ∃π ∈ ΠL : ∀x ∈ V(c) ∩ Xκ, (x, π(x)) ∈ S (C.4)

and
cr = argmax c s.t. ∃π ∈ ΠL : ∀x ∈ V(c) ∩ Xκ, (x, π(x)) ∈ R (C.5)

we have that cr ≥ cs. This implies V(cr) ⊇ V(cs). The result follows.

148

C.1. Safe Exploration

(iv) Let a ∈ Rdec(S). Then there exists (x,u) ∈ S such that v(f(x,u)) − v(x) + ε +
L∆v‖a − (x,u)‖2 < −L∆vκ. Since S ⊆ R we have that (x,u) ∈ R as well and thus
a ∈ Rdec(R).

(v) S ⊆ R =⇒ Rlev(Rdec(S)) ⊆ Rlev(Rdec(R)) due to (iii) and (iv). Since a′ ∈
Rε(S), there must exist an a ∈ S such that v(f(a)) + ε + LvLf‖a − a′‖2 ≤
maxx∈Rlev(Rdec(S)) v(x). Since S ⊆ R it follows that a ∈ R. Moreover,

max
x∈Rlev(Rdec(S))

v(x) ≤ max
x∈Rlev(Rdec(R))

v(x) (C.6)

follows from Rlev(Rdec(S)) ⊆ Rlev(Rdec(R)), so that we conclude that a′ ∈ Rε(R).

(vi) This follows directly by repeatedly applying the result of (v).

(vii) Let a′ ∈ Fn. Then ∃(x,u) ∈ Sn−1 : un(x,u) − v(x) + L∆v‖a′ − (x,u)‖2 < −L∆vκ.
Since Sn ⊇ Sn−1 it follows that (x,u) ∈ Sn as well. Moreover, we have

un+1(x,u)− v(x) + L∆v‖a′ − (x,u)‖2

≤ un(x,u)− v(x) + L∆v‖a′ − (x,u)‖2 < −L∆vκ

since un+1 is non-increasing, see (i). Thus a′ ∈ Fn+1.

(viii) By definition of C0 we have for all (x,u) ∈ S0 that u0(x,u) < v(x)−L∆vκ. Now we
have that

u1(x,u)− v(x) + L∆v‖(x,u)− (x,u)‖2,

= u1(x,u)− v(x),

≤ u0(x,u)− v(x), by Lemma 25 (i)

< − L∆vκ,

which implies that (x,u) ∈ F1.

(ix) Proof by induction. We consider the base case, a ∈ S0, which implies that a ∈ F1

by (viii). Moreover, since Sx0 is a level set of the Lyapunov function v by assumption,
we have that Rlev(S0) = Sx0 . The previous statements together with (iii) imply that
a ∈ Rlev

κ (F1)× Uκ, since F1 ⊇ S0 by (viii). Now, we have that

u1(a) + LvLf‖a − a‖2 = u1(a)
(i)
≤ u0(a).

149

Appendix C. Proofs for Safe Exploration

Moreover, by definition of C0, we have for all (x,u) ∈ S0 that

u0(x,u) < v(x)− L∆vκ < v(x). (C.7)

As a consequence,

u0(x,u) ≤ max
(x,u)∈S0

v(x), (C.8)

= max
x∈Rlev(S0)

v(x), (C.9)

≤ max
x∈Rlev(F1)

v(x), (C.10)

where the last inequality follows from (iii) and (viii). Thus we have a ∈ S1.

For the induction step, assume that for n ≥ 2 we have a′ ∈ Sn with Sn ⊇ Sn−1.
Now since a′ ∈ Sn we must have that a′ ∈ Rlev

κ (Fn) × Uκ. This implies that
a′ ∈ Rlev

κ (Dn+1)× Uκ, due to Lemma 25 (iii) and (vii) together with the induction
assumption of Sn ⊇ Sn−1. Moreover, there must exist a a ∈ Sn−1 ⊆ Sn such that

un+1(a) + LvLf‖a − a′‖2, ≤ un(a) + LvLf‖a − a′‖2, (C.11)

≤ max
x∈Rlev(Fn)

v(x), (C.12)

≤ max
x∈Rlev(Fn+1)

v(x), (C.13)

which in turn implies a ∈ Sn+1. The last inequality follows from Lemma 25 (iii)
and (vii) together with the induction assumption that Sn ⊇ Sn−1.

(x) This is a direct consequence of (vii), (viii), and (ix).

Given these set properties, we first consider what happens if the safe set Sn does not
expand after collecting data points. We use these results later to conclude that the safe
set must either expand or that the maximum level set is reached. We denote by

an = (xn,un) (C.14)

the data point the is sampled according to (5.6).

150

C.1. Safe Exploration

Lemma 26. For any n1 ≥ n0 ≥ 1, if Sn1 = Sn0, then for any n such that n0 ≤ n < n1, it
holds that

2βnσn(an) ≤
√
C1qβ2

nγn
n− n0

, (C.15)

where C1 = 8/ log(1 + σ−2).

Proof. We modify the results for q = 1 by (Srinivas et al., 2012) to this lemma, but use
the different definition for βn from Chowdhury and A. Gopalan, 2017. Even though the
goal of (Srinivas et al., 2012, Lemma 5.4) is different from ours, we can still apply their
reasoning to bound the amplitude of the confidence interval of the dynamics. In particular,
in (Srinivas et al., 2012, Lemma 5.4), we have rn = 2βnσn−1(an) with an = (xn,un)
according to Corollary 4. Then

r2
n = 4β2

nσ
2
n−1(an), (C.16)

= 4β2
n

(q∑
i=1

σn−1(an, i)
)2

, (C.17)

≤ 4β2
nq

q∑
i=1

σ2
n−1(an, i) (Jensen’s inequality), (C.18)

≤ 4β2
nqσ

2C2

q∑
i=1

log(1 + σ−2σ2
n−1(an, i)), (C.19)

where C2 = σ−2/ log(1 +σ−2). The result then follows analogously to (Srinivas et al., 2012,
Lemma 5.4) by noting that

n∑
j=1

r2
j ≤ C1β

2
nqγn ∀n ≥ 1 (C.20)

according to the definition of γn in this paper and using the Cauchy-Schwartz inequality.

The previous result allows us to bound the width of the confidence intervals:

Corollary 13. For any n1 ≥ n0 ≥ 1, if Sn1 = Sn0, then for any n such that n0 ≤ n < n1,
it holds that

un(an)− ln(an) ≤ Lv

√
C1qβ2

nγn
n− n0

, (C.21)

where C1 = 8/ log(1 + σ−2).

Proof. Direct consequence of Lemma 26 together with the definition of C and Q.

151

Appendix C. Proofs for Safe Exploration

Corollary 14. For any n ≥ 1 with C1 as defined in Lemma 26, let Nn be the smallest
integer satisfying Nn

β2
n+Nnγn+Nn ≥

C1L2
vq

ε2
and Sn+Nn = SNn, then, for any a ∈ Sn+Nn it holds

that
un(a)− ln(a) ≤ ε. (C.22)

Proof. The result trivially follows from substituting Nn in the bound in Corollary 13.

Lemma 27. For any n ≥ 1, if Rε(S0) \ Sn 6= ∅, then Rε(Sn) \ Sn 6= ∅.

Proof. As in (Sui et al., 2015, Lemma 6). Assume, to the contrary, that Rε(Sn) \ Sn = ∅.
By definition Rε(Sn) ⊇ Sn, therefore Rε(Sn) = Sn. Iteratively applying Rε to both sides,
we get in the limit Rε(Sn) = Sn. But then, by Lemma 25,(vi) and (ix), we get

Rε(S0) ⊆ Rε(Sn) = Sn, (C.23)

which contradicts the assumption that Rε(S0) \ Sn 6= ∅.

Lemma 28. For any n ≥ 1, if Rε(S0) \ Sn 6= ∅, then the following holds with probability
at least 1− δ:

Sn+Nn ⊃ Sn. (C.24)

Proof. By Lemma 27, we have that Rε(Sn) \ Sn 6= ∅. By definition, this means that there
exist a ∈ Rε(Sn) \ Sn and a′ ∈ Sn such that

v(f(a′)) + ε+ LvLf‖a − a′‖2 ≤ max
x∈Rlev(Rdec(Sn))

v(x) (C.25)

Now we assume, to the contrary, that Sn+Nn = Sn (the safe set cannot decrease due
to Lemma 25 (ix)). This implies that a ∈ Xκ × Uκ \ Sn+Nn and a′ ∈ Sn+Nn = Sn+Nn−1.
Due to Corollary 13, it follows that

un+Nn(a′) + LvLf‖a − a′‖2 (C.26)

≤ v(f(a′)) + ε+ LvLf‖a − a′‖2 (C.27)

≤ max
x∈Rlev(Rdec(Sn))

v(x) by (C.25) (C.28)

= max
x∈Rlev(Rdec(Sn+Nn))

v(x) by (iii), (iv) and (ix) (C.29)

152

C.1. Safe Exploration

Thus, to conclude that a ∈ Sn+Nn according to (5.5), we need to show that Rlev(Fn+Nn) ⊇
Rlev(Rdec(Sn)). To this end, we use Lemma 25 (iii) and show that Fn+Nn ⊇ Rdec(Sn+Nn).
Consider (x,u) ∈ Rdec(Sn+Nn), we know that there exists a (x′,u′) ∈ Sn+Nn = Sn+Nn−1

such that

−L∆vκ > v(f(x′,u′))− v(x′) + ε+ L∆v‖(x,u)− (x′,u′)‖2, (C.30)

≥ un+Nn(x′,u′)− v(x′) + L∆v‖(x,u)− (x′,u′)‖2, (C.31)

where the second inequality follows from Corollary 13. This implies that (x,u) ∈ Fn
and thus Fn+Nn ⊇ Rdec(Sn+Nn). This, in turn, implies that a ∈ Sn+Nn , which is a
contradiction.

Lemma 29. For any n ≥ 0, the following holds with probability at least 1− δ:

Sn ⊆ R0(S0). (C.32)

Proof. Proof by induction. For the base case, n = 0, we have S0 ⊆ R0(S0) by definition.

For the induction step, assume that for some n ≥ 1, Sn−1 ⊆ R0(S0). Let a ∈ Sn. Then,
by definition, ∃a′ ∈ Sn−1 such that

un(a′) + LvLf‖a − a′‖2 ≤ max
x∈Rlev(Fn)

v(x), (C.33)

which, by Corollary 12, implies that

v(f(a′)) + LvLf‖a − a′‖2 ≤ max
x∈Rlev(Fn)

v(x) (C.34)

Now since a′ ∈ R0(S0) by the induction hypothesis, in order to conclude that a ∈ R0(S0)
we need to show that Rlev(Fn) ⊆ Rlev(Rdec(R(S0))) .

Let (x,u) ∈ Fn, then there exist (x′, a′) ∈ Sn−1 such that

un−1(x′,u′)− v(x′) + L∆v‖(x,u)− (x′,u′)‖2 < −L∆vκ, (C.35)

which, by Corollary 12, implies that

v(f(x′,u′))− v(x′) + L∆v‖(x,u)− (x′,u′)‖2 < −L∆vκ, (C.36)

which means that (x,u) ∈ Rdec(R0(S0)) since Sn−1 ⊆ R0(S0) and therefore (x′,u′) ∈
R0(S0) holds by the induction hypothesis. We use (iii) to conclude that Rlev(Fn) ⊆
Rlev(Rdec(R(S0))), which concludes the proof.

153

Appendix C. Proofs for Safe Exploration

Lemma 30. Let n∗ be the smallest integer, such that n∗ ≥ |R0(S0)|Nn∗. Then, there exists
n0 ≤ n∗ such that Sn0+Nn0

= Sn0 holds with probability 1− δ.

Proof. By contradiction. Assume, to the contrary, that for all n ≤ n∗, Sn ⊂ Sn+Nn .
From Lemma 25 (ix) we know that Sn ⊆ Sn+Nn . Since Nn is increasing in n, we have that
Nn ≤ Nn∗ . Thus, we must have

S0 ⊂ SNn∗ ⊂ S2Nn∗ · · · , (C.37)

so that for any 0 ≤ j ≤ |R0(S0)|, it holds that |SjTn∗ | > j. In particular, for j = |R0(S0)|,
we get

|SjNn∗ | > |R0(S0)|, (C.38)

which contradicts SjNn∗ ⊆ R0(S0) from Lemma 29.

Corollary 15. Let n∗ be the smallest integer such that

n∗

βn∗γn∗
≥ C1L

2
vq|R0(S0)|
ε2

, (C.39)

then there exists a n0 ≤ n∗ such that Sn0+Nn0
= Sn0.

Proof. A direct consequence of Lemma 30 and Corollary 14.

C.2 Safety and Policy Adaptation

In the following, we denote the true region of attraction of (4.1) under a policy π by Rπ.

Lemma 31. Rlev(Fn) ⊆ Rπn for all n ≥ 0.

Proof. By definition, we have for all (x,u) ∈ Fn that the exists (x′,u′) ∈ Sn−1 such that

−L∆vκ ≥ un(x′,u′)− v(x′) + L∆v‖(x,u)− (x′,u′)‖2,

≥ v(f(x′,u′))− v(x′) + L∆v‖(x,u)− (x′,u′)‖2,

≥ v(f(x,u))− v(x),

where the first inequality follows from Corollary 12 and the second one by Lipschitz
continuity, see Lemma 22.

By definition of Rlev in (C.2), it follows that for all x ∈ Rlev(Fn) ∩ Xκ we have that
(x, πn(x)) ∈ Fn. Moreover, Rlev(Fn) is a level set of the Lyapunov function by definition.
Thus the result follows from Theorem 4.

154

C.2. Safety and Policy Adaptation

Lemma 32. f(x,u) ∈ Rπn ∀(x,u) ∈ Sn.

Proof. This holds for S0 by definition. For n ≥ 1, by definition, we have for all a ∈ Sn
there exists an a′ ∈ Sn−1 such that

max
x∈Rlev(Fn)

v(x) ≥ un(a′) + LvLf‖a − a′‖2

≥ v(f(a′)) + LvLf‖a − a′‖2

≥ v(f(a))

where the first inequality follows from Corollary 12 and the second one by Lipschitz
continuity, see Lemma 22. Since Rlev(Fn) ⊆ Rπn by Lemma 31, we have that f(a) ∈
Rπn .

Theorem 6. Under the assumptions of Theorem 4 and Corollary 3, with βn as in Corol-
lary 4, and with measurements collected according to (5.6), let n∗ be the smallest positive
integer so that

n∗

β2
n∗γn∗

≥ Cp(|R(S0)|+ 1)
L2
vε

2 , (5.7)

where C = 8/ log(1+σ−2). Let Rπ be the true region of attraction of (4.1) under a policy π.
For any ε > 0, and δ ∈ (0, 1), the following holds jointly with probability at least (1 − δ)
for all n > 0:

(i) V(cn) ⊆ Rπn,

(ii) V(cn) ⊆ X ,

(iii) f(x,u) ∈ Rπn ∀(x,u) ∈ Sn,

(iv) Rε(S0) ⊆ Sn ⊆ R0(S0).

Proof. See Lemmas 31 and 32 for (i) and (iii), respectively. Part (iv) is a direct consequence
of Corollary 15 and Lemma 29.

155

D
Proofs for Exploration Regret

Bound

Some of the results in this chapter have been previously published in (Berkenkamp, Mori-
coni, et al., 2016; Berkenkamp, Turchetta, et al., 2017; Koller, Berkenkamp, Turchetta,
Boedecker, et al., 2019). Partial results of the last paper were shown in (Koller, Berkenkamp,
Turchetta, and Krause, 2018).

In the following, we implicitly denote with xt and x̃t the states visited under the true
and optimistic dynamics under the policy parameterized by θ, whenever it is clear from
context. Moreover, we drop the argument πθ(·) and write σn(x) = σn(x, πθ(x)) for ease
of notation. Moreover, we drop the subscript n from xt,n whenever it is clear that we refer
to the nth episode. Lastly, when no norm is specified, ‖ · ‖ = ‖ · ‖2 refers to the two-norm.

Lemma 33. Under the assumptions of Corollary 4, with probability at least (1 − δ) we
have for all n ≥ 0 that the regret rn is bounded by

rn = J(θ∗)− J(θn) ≤ J̃n(θn)− J(θn) (D.1)

Proof. By Corollary 4, we know that the true dynamics under θ∗ are contained within the
feasible region of (5.21).

As a consequence, we have J̃n(θ) ≥ J(θ) for all θ ∈ D and n ≥ 1. Now since θ∗ is in the
feasible region of (5.22), we must have that J̃n(θn) ≥ J(θ∗). The result follows.

157

Appendix D. Proofs for Exploration Regret Bound

Thus, to bound the instantaneous regret rn, we must bound the difference between J̃(θn)
and J(θn). We can use the Lipschitz continuity properties to obtain

Lemma 34. Under Assumptions 5 and 7, then

|J(θn)− J̃n(θn)| ≤ Lr(1 + Lπ)
T∑
t=0

Eω=ω̃[‖xt,n − x̃t,n‖2] (D.2)

Proof.

|J(θn)− J̃n(θn)| =
∣∣∣∣∣Eω

[
T∑
t=0

r(xt, πθn(xt))
]
− Eω̃

[
T∑
t=0

r(x̃t, πθn(x̃t))
]∣∣∣∣∣ (D.3)

=
∣∣∣∣∣Eω=ω̃

[
T∑
t=0

r(xt, πθn(xt))− r(x̃t, πθn(x̃t))
]∣∣∣∣∣ (D.4)

≤ Lr(1 + Lπ)
T∑
t=0

Eω=ω̃[‖xt − x̃t‖] (D.5)

Lemma 35. Under the assumptions of Corollaries 4 and 7, let L̄f = 1 + Lf + 2βn−1Lσ.
Then, for any sequence of ηt ∈ [−1, 1]p, any sequence of ωt with ω̃t = ωt, θ ∈ D, and
1 ≤ t ≤ T we have that

‖xt,n − x̃t,n‖ ≤ 2βn−1L̄
T−1
f

t−1∑
i=0
‖σn−1(xi,n)‖ (D.6)

Proof. We start by showing that, for any t ≥ 1 we have

‖xt,n − x̃t,n‖ ≤ 2βn−1

t−1∑
i=0

(Lf + 2βn−1Lσ)t−1−i‖σn−1(xi,n)‖ (D.7)

by induction. For the base case we have x̃0 = x0. Consequently, at n we have

‖x1,n − x̃1,n‖ = ‖h(x0) + g(x0) + ω0 − h(x0)− µn−1(x0)− βn−1Σn−1(x0)η0 − ω̃0‖ (D.8)

≤ ‖g(x0)− µn−1(x0)‖+ βn−1‖Σn−1(x0)η0‖ (D.9)

≤ βn−1‖σn−1(x0)‖+ βn−1‖σn−1(x0)‖ (D.10)

= 2βn−1‖σn−1(x0)‖ (D.11)

158

For the induction step assume that (D.7) holds at time step t. Subsequently we have at
iteration n that

‖xt+1,n − x̃t+1,n‖ = ‖h(xt) + g(xt) + ωt − h(x̃t)− µn−1(x̃t)− βn−1Σn−1(x̃t)ηt − ω̃t‖

= ‖h(xt) + g(xt)− h(x̃t)− µn−1(x̃t)− βn−1Σn−1(x̃t)ηt + g(x̃t)− g(x̃t)‖

= ‖g(x̃t)− µn−1(x̃t)− βn−1Σn−1(x̃t)ηt + h(xt) + g(xt)− h(x̃t)− g(x̃t)‖

= ‖g(x̃t)− µn−1(x̃t)‖+ ‖βn−1Σn−1(x̃t)ηt‖+ ‖h(xt) + g(xt)− h(x̃t)− g(x̃t)‖

≤ βn−1‖σn−1(x̃t)‖+ βn−1‖σn−1(x̃t)‖+ Lf‖xt − x̃t‖

= 2βn−1‖σn−1(x̃t)‖+ Lf‖xt − x̃t‖

= 2βn−1‖σn−1(xt) + σn−1(x̃t)− σn−1(xt)‖+ Lf‖xt − x̃t‖

≤ 2βn−1 (‖σn−1(xt)‖+ Lσ‖xt − x̃t‖) + Lf‖xt − x̃t‖

= 2βn−1‖σn−1(xt)‖+ (Lf + 2βn−1Lσ)‖xt − x̃t‖

≤ 2βn−1‖σn−1(x̃t)‖+ (Lf + 2βn−1Lσ)2βn−1

t−1∑
i=0

(Lf + 2βn−1Lσ)t−1−i‖σn−1(xi)‖

= 2βn−1

(t+1)−1∑
i=0

(Lf + 2βn−1Lσ)(t+1)−1−i‖σn−1(xi)‖

Thus (D.7) holds. Now since t ≤ T we have

‖xt,n − x̃t,n‖ ≤ 2βn−1

t−1∑
i=0

(Lf + 2βn−1Lσ)t−1−i‖σn−1(xi,n)‖ (D.12)

≤ 2βn−1

t−1∑
i=0

(1 + Lf + 2βn−1Lσ)t−1−i‖σn−1(xi,n)‖ (D.13)

≤ 2βn−1(1 + Lf + 2βn−1Lσ)︸ ︷︷ ︸
:=L̄f

T−1
t−1∑
i=0
‖σn−1(xi,n)‖ (D.14)

(D.15)

Corollary 16. For any sequence of ηt ∈ [−1, 1], θ ∈ D, and t ≥ 1, n ≥ 1 we have that

Eω=ω̃[‖xt,n − x̃t,n‖] ≤ 2βn−1L̄
T−1
f Eω

[
t−1∑
i=0
‖σn−1(xi,n)‖

]
(D.16)

Proof. This is a direct consequence of Lemma 49.

159

Appendix D. Proofs for Exploration Regret Bound

As a direct consequence of these lemmas we can bound the regret in terms of the GP
variance in expectation over the states visited under the true dynamics.

Lemma 36. Under the assumption of Corollary 4 and Assumptions 5 and 7, let LJ =
2Lr(1 + Lπ)βn−1L̄

T−1
f . Then, with probability at least (1− δ) it holds for all n ≥ 0 that

r2
n ≤ L2

JT
3Eω

[
T−1∑
t=0

p∑
i=1

σn−1(xt,n, πθ(xt,n), i)2
]

(D.17)

Proof.

rn ≤ |J(θn)− J̃(θn)| (D.18)

≤ Lr(1 + Lπ)
T∑
t=0

Eω=ω̃[‖xt,n − x̃t,n‖2] (D.19)

≤ 2Lr(1 + Lπ)βn−1L̄
T−1
f

T∑
t=0

Eω
[
t−1∑
i=0
‖σn−1(xi,n)‖2

]
(D.20)

≤ 2Lr(1 + Lπ)βn−1L̄
T−1
f TEω

[
T−1∑
i=0
‖σn−1(xi,n)‖2

]
(D.21)

where the third inequality follows from Corollary 16. Now, let LJ = 2Lr(1 +Lπ)βn−1L̄
T−1
f ,

so that

rn ≤ LJTEω
[
T−1∑
i=0
‖σn−1(xi,n)‖2

]
(D.22)

r2
n ≤ L2

JT
2
(
Eω
[
T−1∑
i=0
‖σn−1(xi,n)‖2

])2

(D.23)

≤ L2
JT

2Eω

(T−1∑
i=0
‖σn−1(xi,n)‖2

)2 (D.24)

≤ L2
JT

3Eω
[
T−1∑
i=0
‖σn−1(xi,n)‖2

2

]
(D.25)

≤ L2
JT

3Eω

T−1∑
i=0

p∑
j=1

σn−1(xi,n, j)2

 (D.26)

To obtain regret bounds, we must bound the expectation in Lemma 36 by the sublinear
information capacity, as in the proofs for GP-UCB in (Srinivas et al., 2012).

Lemma 37 (Srinivas et al. (2012)). s2 ≤ s2
max

log(1+s2
max) log(1 + s2) for all s ∈ [0, s2

max]

160

Lemma 38. Let maxa∈A k(a, a) ≤ kmax. Then

σ2
n(a) ≤ kmax

log(1 + σ−2kmax) log(1 + σ−2σ2
n(a)) (D.27)

Proof.

σ2
n(a) ≤ σ2(σ−2σ2

n(a)) (D.28)

Now σ−2σ2
n(a) ≤ σ−2k(a, a) ≤ σ−2kmax. Thus, we can use Lemma 37 to obtain

σ2
n(a) ≤ σ2 σ−2kmax

log(1 + σ−2kmax) log(1 + σ−2σ2
n(a)) (D.29)

= kmax

log(1 + σ−2kmax) log(1 + σ−2σ2
n(a)) (D.30)

Lemma 39. Let An = {xt,i}T−1,n
t=0,i=0 × Ip denote the states visited up to iteration n and

yAn the corresponding observations. Then

1
2

N∑
n=1

T−1∑
t=0

p∑
j=1

log(1 + σ−2σ2
n−1(xt,n, j)) ≤ Tp I(yAN ; fAN) (D.31)

Proof.

1
2

N∑
n=1

T−1∑
t=0

p∑
j=1

log(1 + σ−2σ2
n−1(xt,n, j)) (D.32)

=
T−1∑
t=0

p∑
j=1

1
2

N∑
n=1

log(1 + σ−2σ2
n−1(xt,n, j)) (D.33)

≤
T−1∑
t=0

p∑
j=1

I(yAN ; fAN) (D.34)

= Tp I(yAN ; fAN) (D.35)

Where the second to last step follows from Srinivas et al., 2012, Lemma 2 together with
log(1 + x) ≥ 0 for x ≥ 0 and the properties of the mutual information. In particular, the
inner sum conditions on (n − 1)Tp measurements, but sums only over the one element
(xt,n, j). The mutual information in Srinivas et al., 2012, Lemma 2 instead sums over
every element that we condition on in the next step. By adding the missing non-negative
terms together with the fact that the mutual information is independent of the order of
the observations we obtain the result.

161

Appendix D. Proofs for Exploration Regret Bound

We can use this in conjunction with Lemma 36 to obtain

Lemma 40. Under the assumption of Corollary 4 and Assumptions 5 and 7, let maxx∈Rp k(x,x) ≤
kmax. Then, with probability at least (1− δ) it holds for all n ≥ 0 that

R2
n ≤

kmaxNL
2
JT

4p

log(1 + σ−2kmax)Eω[I(yAn ; fAn)] (D.36)

Proof.

R2
n ≤ N

N∑
n=1

r2
n Jensen’s (D.37)

≤ N
N∑
n=1

L2
JT

3Eω
[
T−1∑
t=0

p∑
i=1

σn−1(xt,n,ut,n, i)2
]

Lemma 36

(D.38)

≤ kmaxNL
2
JT

3

log(1 + σ−2kmax)Eω
[
N∑
n=1

T−1∑
t=0

p∑
i=1

log(1 + σ−2σn−1(xt,n,ut,n, i)2
]

Lemma 38 (D.39)

≤ kmaxNL
2
JT

4p

log(1 + σ−2kmax)Eω[I(yAn ; fAn)] Lemma 39

(D.40)

Where Eω[I(yAn ; fAn)] is the expected mutual information obtained by visiting state/action
pairs in An, in expectation over the transition noise of all rounds.

To obtain an instance-independent bound, we must bound the mutual information by the
worst-case mutual information as in (Srinivas et al., 2012). One subtle problem is that
the domain over which we obtain measurements is unbounded due to the sub-Gaussian
transition noise, which can have unbounded support. In the following, we first provide
a high-probability bound on the domain over all iterations and then bound the mutual
information.

D.1 Bounding the Domain Under Aleatoric Uncer-
tainty

We exploit the σ-sub-Gaussian property of the transition noise and build on Lemmas 20
and 21 to obtain a bound over the domain. We start by applying a union bound on
Lemma 21 over the time horizon T .

162

D.1. Bounding the Domain Under Aleatoric Uncertainty

Lemma 41. Let ω0, . . . ,ωT−1 be vectors with ωi ∈ Rp such that each entry of the vector
is i.i.d. σ-sub-Gaussian. Then, with probability at least (1− δ),

T−1∑
t=0
‖ωi‖2 ≤ T

√
2σp+ 4σ

e log 2T
δ

(D.41)

Proof. Now using Lemma 21 with probability threshold δ/T and applying the union bound
we, get that ‖ωi‖2

2 ≤ 2σp+ 4σ
e log 2T

δ
holds for all 0 ≤ i ≤ T − 1 with probability at least

1− δ.

Now, first using Jensen’s inequality and then plugging in the bound for ‖ωi‖2
2, we obtain

T∑
t=1
‖ωt‖2 =

T−1∑
i=0

√
‖ωt‖2

2 (D.42)

≤
√
T

√√√√T−1∑
t=0
‖ωt‖2

2 (D.43)

≤
√
T

√√√√T−1∑
t=0

(
2σp+ 4σ

e log 2T
δ

)
(D.44)

= T

√
2σp+ 4σ

e log 2T
δ

(D.45)

Lastly, we use a union bound over all iterations similar to Srinivas et al., 2012, Lemma
5.1.

Lemma 42. Let ωt,n be the random vectors as in Lemma 41 at iteration n. Then, with
probability (1− δ) we have for all n ≥ 1 that

T∑
t=1
‖ωt,n‖2 ≤ T

√
2σp+ 4σ

e log Tπ
2n2

3δ (D.46)

Proof. At each iteration n, we apply a probability budget of δ/ρn to the bound in Lemma 41,
where ρn ≥ 0 and ∑

n≥1 ρ
−1
n = 1. In particular, we use ρn = n2π2

6 as in Srinivas et al.,
2012, Lemma 5.1, so that we apply monotonically decreasing probability thresholds as n
increases. We obtain the result by applying a union bound over n, since ∑n≥1 δ/ρn = δ.

Now that we can bound the noise over all iterations, we can bound the domain over which
the system acts with a compact set.

163

Appendix D. Proofs for Exploration Regret Bound

Lemma 43. Let f be Lf -Lipschitz continuous with respect to the norm ‖ · ‖. Then we
have for all t ≥ 1 that

‖xt − x0‖ ≤
t−1∑
i=0

Lif‖f(x0)− x0‖+
t−1∑
i=0

Lt−1−i
f ‖ωi‖ (D.47)

≤ (1 + Lf)t−1
(
t‖f(x0)− x0‖+

t−1∑
i=0
‖ωi‖

)
(D.48)

Proof. We first proof (D.47) by induction. For the base case we have

‖x1 − x0‖ = ‖f(x0) + ω0 − x0‖ (D.49)

≤ ‖f(x0)− x0‖+ ‖ω0‖, (D.50)

= L0
f‖f(x0)− x0‖+ L0

f‖ω0‖. (D.51)

For the induction step, assume that the assumption holds for some t. Then,

‖xt+1 − x0‖ = ‖f(xt) + ωt − x0‖ (D.52)

= ‖f(xt)− f(x0) + f(x0)− x0 + ωt‖ (D.53)

≤ ‖f(xt)− f(x0)‖+ ‖f(x0)− x0‖+ ‖ωt‖ (D.54)

≤ Lf‖xt − x0‖+ ‖f(x0)− x0‖+ ‖ωt‖ (D.55)

≤ Lf

(
t−1∑
i=0

Lif‖f(x0)− x0‖+
t−1∑
i=0

Lt−1−i
f ‖ωi‖

)
(D.56)

+ ‖f(x0)− x0‖+ ‖ωt‖ (D.57)

=
(t−1)+1∑
i=1

Lif‖f(x0)− x0‖+ ‖f(x0)− x0‖

+
t−1∑
i=0

L
(t+1)−1−i
f ‖ωi‖+ ‖ωt‖ (D.58)

=
(t−1)+1∑
i=0

Lif‖f(x0)− x0‖+
(t+1)−1∑
i=0

L
(t+1)−1−i
f ‖ωi‖ (D.59)

Which concludes the proof. For (D.48), note that Lif ≤ (1 + Lf)t for all i ≤ t. Thus we
have

t−1∑
i=0

Lif‖f(x0)− x0‖+
t−1∑
i=0

Lt−1−i
f ‖ωi‖ (D.60)

≤ Lt−1
f

t−1∑
i=0

(
‖f(x0)− x0‖+ ‖ωi‖

)
(D.61)

= Lt−1
f

(
t‖f(x0)− x0‖+

t−1∑
i=0
‖ωi‖

)
(D.62)

164

D.1. Bounding the Domain Under Aleatoric Uncertainty

Lemma 44. Let bn = LT−1
f T

(
Bg +Bh +

√
2σp+ 4σ

e log Tπ2n2

3δ

)
. Then, with probability at

least (1− δ), we have for all iterations n ≥ 1 and corresponding time steps 0 ≤ t ≤ T that

xt,n ∈ B(x0, bn), (D.63)

where B(x0, bn) = {x ∈ Rp | ‖x− x0‖2 ≤ bn} is a norm-ball centered around x0 with radius
bn.

Proof. From Lemma 43, we have for all n ≥ 1, 0 ≤ t ≤ T that

‖xt,n − x0‖2 ≤ (1 + Lf)t−1
(
t‖f(x0)− x0‖2 +

t−1∑
i=0
‖ωi‖2

)
(D.64)

Now by Assumption 3 and Combined with Lemma 42, we obtain

‖xt,n − x0‖2 ≤ (1 + Lf)t−1

t‖f(x0)− x0‖2 + t

√
2σp+ 4σ

e log tπ
2n2

3δ

 (D.65)

≤ (1 + Lf)T−1T

‖f(x0)− x0‖2 +
√

2σp+ 4σ
e log Tπ

2n2

3δ

 (D.66)

:= bn (D.67)

Lastly, we have ‖f(x0)−x0‖2 ≤ Bh +Bg since ‖g‖∞ ≤ Bg by Assumption 4 and ‖h(x0)−
x0‖2 ≤ Bh by Assumption 3.

The domain bound holds with a (1 − δ) probability that is different from the one in
Corollary 4. We now apply a union bound for them to hold jointly.

Lemma 45. Under the assumptions of Corollary 4. Let βn = B+4σ
√

I(yAn ; g) + 1 + ln(2/δ)

and bn = LT−1
f T

(
Bg +Bh +

√
2σp+ 4σ

e log 2Tπ2n2

3δ

)
. Then the following hold jointly with

probability at least (1− δ) for all n ≥ 1 and 0 ≤ t < T

i) ‖f(x,u)− h(x,u)− µn(x,u)‖2 ≤ βn‖σn(x,u)‖2 for all x ∈ Rp and u ∈ Rq

ii) xt,n ∈ B(x0, bn)

Proof. This follows directly from applying a union bound over Lemma 44 and Corollary 5
with a probability budget of δ/2 for each.

165

Appendix D. Proofs for Exploration Regret Bound

D.2 Regret Bound

In Lemma 39 we assumed that the kernel is bounded over Rp. This is a restrictive
assumption for modeling dynamic systems. For example, it does not even hold for linear
kernels. However, we can exploit the Lipschitz continuity of the kernel to bound it over
any compact domain.

Lemma 46. Let k be a Lk-Lipschitz continuous kernel function with respect to the 2-norm
with that k(x0,x0) ≤ 1 for some x0 ∈ Rp. Then, for all x ∈ B(x0, bn) with any radius bn,

k(x,x) ≤ 1 +
√

2Lkbn (D.68)

Proof. This follows directly from the Lipschitz continuity of the kernel function. In partic-
ular, for all x ∈ B(x0, bn), we have

k(x,x) ≤ k(x0,x0) + |k(x,x)− k(x0,x0)| (D.69)

≤ 1 + |k(x,x)− k(x0,x0)| (D.70)

≤ 1 + Lk‖(x,x)− (x0,x0)‖2 (D.71)

≤ 1 +
√

2Lk‖x− x0‖2 (D.72)

≤ 1 +
√

2Lkbn (D.73)

We are now ready to bound the expected mutual information

Lemma 47. Under the assumptions of Lemma 45 and Assumption 4, we have with proba-
bility at least (1− δ) that

Eω[I(yAn ; gAn)] ≤ γqnT (B(x0, bn)× U) (D.74)

Proof. By the properties of the expectation together with Lemma 45 and that |An| ≤ Tpn

we have

Eω[I(yAn ; gAn)] ≤ max
A⊆B(bn,x0)×U×Ip,|A|≤Tpn

I(yA; g) := γqnT (B(x0, bn)× U). (D.75)

166

D.3. Bounding the Mutual Information

Theorem 8. Under the assumption of Corollaries 4 and 7 and Assumptions 4, 5 and 7, let
βn = B+ 4σ

√
I(yAn ; g) + 1 + ln(2/δ) and bn = LT−1

f T
(
Bg +Bh +

√
2σp+ 4σ

e log 2Tπ2n2

3δ

)
.

At each iteration, select parameters according to (5.22), then the following holds with
probability at least (1− δ) for all n ≥ 1

Rn ≤ Õ
(√

nT 5pLTf L
T
σβ

T
n γpnT (B(x0, bn)× U)

)
, (5.23)

where B(x0, bn) = {x ∈ Rp | ‖x − x0‖2 ≤ bn} and γpnT (B(x0, bn) × U) is the information
capacity after (pnT) observations within the domain B(x0, bn)× U .

Proof.

Proof. From Lemma 45 we know that with probability (1 − δ) the confidence intervals
hold and all states are in B(x0, bn). From Lemmas 40 and 47 we have

R2
n ≤

kmaxNL
2
JT

4p

log(1 + σ−2kmax)γqnT (B(x0, bn)× U) (D.76)

where LJ = 2Lr(1 + Lπ)βn−1L̄
T−1
f and kmax = 1 +

√
2Lkbn by Lemma 46. Plugging in we

get
R2
n ≤ Õ

(
NT 4pβnL̄

T
f bnγqnT (B(x0, bn)× U)

)
(D.77)

Since bn = O
(
T
√

log(Tn2/δ))
)

= Õ(T) by Lemma 44 the result follows.

D.3 Bounding the Mutual Information

Lemma 48 (Srinivas et al. (2012)). For the linear kernel k(a, a′) = aTa′ with a ∈ Rd we
have

γn(B(x0, bn)) = O(d log(n)) (D.78)

Lemma 7. For the squared exponential kernel we have

γn(B(x0, bn)) = O
(
bdn(log(n))d+1

)
= Õ

(
T log(n2) log(n)d+1

)
(5.24)

Proof. The proof is the same as in (Srinivas et al., 2012). In their notation, we have
nT = O

(
bdn log(bdn)

)
while analyzing the terms in the eigenvalue bound leads to Bk(T ∗) ∼ bdn.

Thus the proof follows exactly along the same lines, which leads to the result.

167

Appendix D. Proofs for Exploration Regret Bound

D.4 Bound With Lipschitz Constraint

Now, we show that if we assume that the optimistic dynamics are Lipschitz, which implies
the Lipschitz continuity of the value function that is assumed by Chowdhury and A.
Gopalan (2019), we obtain the same regret bounds.

Let

M =
{
f ′ | ‖µ(x,u)− f ′(x,u)‖ ≤ β‖σ(x,u)‖ ∀x,u ∈ Rp × Rq,

‖f ′(x,u)− f ′(x′,u′)‖ ≤ Lf‖(x,u)− (x′,u′)‖ ∀(x,u), (x′,u′) ∈ Rp × Rq,
}

be the set of all Lipschitz continuous dynamics that are compatible with the uncertainty
representation in Corollary 4. The following optimistic performance objective optimizes
over this set,

J̃n(θ) = max
f ′∈M

T∑
t=0

r(x̃t,n, ũt,n) (D.79a)

s.t. x̃t+1,n = f ′(x̃t,n, ũt,n) + ωt,n (D.79b)

x̃0,n = x0, (D.79c)

ũt = πθ(x̃t,n), (D.79d)

Note that this is not tractable in the noisy case. However, in the deterministic case we
can construct the following algorithm that optimized over Lipschitz-continuous dynamics.

J̃n(θ) = max
η0:T−1,ηt∈[−1,1]p

T∑
t=0

r(x̃t,n, ũt,n) (D.80a)

s.t. x̃t+1,n = h(x̃t,n, ũt,n) + µn−1(x̃t,n, ũt,n)

+ βn−1Σ1/2
n−1(x̃t,n, ũt,n)ηt + ωt,n

(D.80b)

x̃0,n = x0, (D.80c)

ũt = πθ(x̃t,n), (D.80d)

‖x̃t+1,n − x̃t′+1,n‖ ≤ Lf‖x̃t,n − x̃t′,n‖ ∀t, t′ ∈ {0, . . . , T − 1} (D.80e)

Note that the Lipschitz constraint imposes T (T − 1)/2 = O(T 2) additional constraints.
The constraint ‖x̃t+1,n − x̃t′+1,n‖ ≤ Lf‖x̃t,n − x̃t′,n‖ is equivalent to ‖f̃(x̃t,n)− f̃(x̃t′,n)‖ ≤
Lf‖x̃t,n − x̃t′,n‖ where, with abuse of notation, f̃(x) = µ(x) + Σ(x)η represents the
optimistic dynamics.

168

D.4. Bound With Lipschitz Constraint

For this (intractable) algorithm we have the following results that lead to improved regret
bounds that match those in (Chowdhury and A. Gopalan, 2019) up to constant factors.

Lemma 49. Under the assumptions of Corollary 4, let L̄f = Lf . Then, for any sequence
of ηt ∈ [−1, 1]p, any sequence of ωt with ω̃t = ωt, θ ∈ D, and t ≥ 1 we have that

‖xt,n − x̃t,n‖ ≤ 2βn−1L̄
T−1
f

t−1∑
i=0
‖σn−1(xi,n)‖ (D.81)

Proof. Let
f̃(x̃t,n) = h(x̃t) + µn−1(x̃t) + βn−1Σn−1(x̃t)ηt. (D.82)

Then by design we have ‖f̃(x)− f̃(x′)‖ ≤ Lf‖x− x′‖.

We start by showing that, for any t ≥ 1, we have

‖xt,n − x̃t,n‖ ≤ 2βn−1

t−1∑
i=0

Lt−1−i
f ‖σn−1(xi,n)‖ (D.83)

by induction.

For the base case we have x̃0 = x0. Consequently, at n we have

‖x1,n − x̃1,n‖ = ‖f(x0) + ω0 − f̃(x0)− ω̃0‖ (D.84)

= ‖f(x0)− f̃(x0)‖ (D.85)

= ‖h(x0) + g(x0)− h(x0)− µn−1(x0)− βn−1Σn−1(x0)η0‖ (D.86)

≤ ‖g(x0)− µn−1(x0)‖+ βn−1‖σn−1(x0)η0‖ (D.87)

≤ βn−1‖σn−1(x0)‖+ βn−1‖σn−1(x0)‖ (D.88)

= 2βn−1‖σn−1(x0)‖ (D.89)

For the induction step assume that (D.83) holds at time step t. Subsequently we have at

169

Appendix D. Proofs for Exploration Regret Bound

iteration n that

‖xt+1,n − x̃t+1,n‖ = ‖f(xt)− f̃(x̃t)‖

= ‖f(xt)− f̃(xt) + f̃(xt)− f̃(x̃t)‖

= ‖f(xt)− f̃(xt)‖+ ‖f̃(xt)− f̃(x̃t)‖

≤ 2βn−1‖σn−1(xt)‖+ Lf‖xt − x̃t‖

≤ 2βn−1‖σn−1(xt)‖+ Lf2βn−1

t−1∑
i=0

Lt−1−i
f ‖σn−1(xi,n)‖

= 2βn−1‖σn−1(xt)‖+ 2βn−1

t−1∑
i=0

Lt−1−i+1
f ‖σn−1(xi,n)‖

= 2βn−1

(t+1)−1∑
i=0

L
(t+1)−1−i+1
f ‖σn−1(xi,n)‖

= 2βn−1

(t+1)−1∑
i=0

L
(t+1)−i
f ‖σn−1(xi,n)‖

Thus (D.83) holds. Now since t ≤ T we have

‖xt+1,n − x̃t+1,n‖ ≤ 2βn−1

t−1∑
i=0

Lt−1−i
f ‖σn−1(xi,n)‖ ≤ 2βn−1L

T−1
f

t−1∑
i=0
‖σn−1(xi,n)‖ (D.90)

Theorem 9. Under the assumption of Corollary 4 and Assumptions 4, 5 and 7, let
βn = B+ 4σ

√
I(yAn ; g) + 1 + ln(2/δ) and bn = LT−1

f T
(
Bg +Bh +

√
2σp+ 4σ

e log 2Tπ2n2

3δ

)
.

At each iteration, select parameters according to (5.22), then the following holds with
probability at least (1− δ) for all n ≥ 1

Rn ≤ Õ
(√

nT 5pLTf βnγqnT (B(x0, bn)× U)
)

(D.91)

Proof. Since the true dynamics are Lf -Lipschitz continuous, Lemma 34 holds with the ad-
ditional constraint (D.80e) since no unrealistic dynamics are eliminated. As a consequence,
this follows directly from the proof Theorem 9 by plugging in L̄f = Lf into the proof from
(D.83).

170

D.5. Lipschitz Continuity of the Gaussian Process Variance

D.5 Lipschitz Continuity of the Gaussian Process Vari-
ance

Lemma 50. Let the kernel function k(·, ·) be Lk-Lipschitz continuous. Then the corre-
sponding Gaussian process variance is Lσ-Lipschitz continuous with Lipschitz constant
independent of the number of data points.

Proof. It follows from (Kirschner and Krause, 2018, Appendix D) that we can write the
Gaussian process posterior variance in terms of the weighted norm of the corresponding
feature vector in the RKHS,

σn(a) = ‖k(a, ·)‖V−1
n
, (D.92)

where Vn = σ2M∗M + I and M is a linear operator that corresponds to the infinite-
dimensional feature vectors of the data points in An so that MM∗ = KAn . Now we have
that the minimum eigenvalue of Vn is larger or equal than one, so that the maximum
eigenvalue of V−1

n is less or equal than one. Thus,

|σ2
n(a)− σ2

n(a′)| =
∣∣∣‖k(a, ·)‖2

V−1
n
− ‖k(a′, ·)‖2

V−1
n

∣∣∣ (D.93)

≤ ‖k(a, ·)− k(a′, ·)‖2
V−1
n
, (D.94)

≤ ‖k(a, ·)− k(a′, ·)‖2
k, (D.95)

= 〈k(a, ·)− k(a′, ·), k(a, ·)− k(a′, ·)〉k, (D.96)

= k(a, a)− k(a, a′)− k(a′, a) + k(a′, a′), (D.97)

= k(a, a) + k(a′, a′)− 2k(a, a′), (D.98)

where < ·, · >k is the RKHS norm as in Section 2.6.2. Since the kernel is Lipschitz
continuous according to Assumption 4, the result follows. Note that this means that
the GP standard deviation is Lipschitz continuous with respect to the kernel metric in
(2.33).

D.6 Practical Implementation

We now show that (5.21) is equivalent to Section 5.3.2.4.

171

Appendix D. Proofs for Exploration Regret Bound

Lemma 51. Under the assumptions of Theorem 8, with Assumption 4, and with σ > 0,
we have with probability at least (1− δ) that there exists a Lipschitz-continuous function
with ‖η(·)‖∞ = 1 such that f(x)− µn(x) = βnΣn(x)η(x) for all x ∈ Rp.

Proof. By contradiction. Let η(·) be a function that is not Lipschitz continuous such that
f(x) − µ(x) = βΣ(x)η(x). Moreover, let Lµ denote the Lipschitz constant of the mean
function, which exists according to (Lederer et al., 2019). Now, due to Assumption 4 we
know that σn(x) is bounded element-wise by some constant over any compact domain, so
that ‖Σn(x)‖ ≤ cσ for all x ∈ Rp. Now with σ > 0 we have σn(x) > 0 elementwise for all
x ∈ Rp. As a consequence, Σ−1(x) is Lσ−-Lipschitz continuous and its norm is bounded
from below by some constant cσ−. Thus, we have

‖η(x)− η(x′)‖2 = ‖Σ−1(x)Σ(x)η(x)−Σ−1(x)Σ(x)η(x)‖2

≤ ‖Σ(x)η(x)−Σ(x)η(x)‖2cσ− + ‖Σ−1(x)−Σ−1(x′)‖2 max
x∈Rp
‖Σ(x)η(x)‖2

≤ ‖Σ(x)η(x)−Σ(x)η(x)‖2cσ− + Lσ−‖x− x′‖2 max
x∈Rp
‖Σ(x)‖2‖η(x)‖2

= 1
β
‖f(x)− µ(x)− (f(x′)− µ(x′))‖2cσ− + Lσ−‖x− x′‖2 max

x∈Rp
‖Σ(x)‖2‖η(x)‖2

≤ 1
β

(Lf + Lµ)‖x− x′‖2cσ− + Lσ−‖x− x′‖2 max
x∈Rp
‖Σ(x)‖2‖η(x)‖2

≤ 1
β

(Lf + Lµ)‖x− x′‖2cσ− + Lσ−‖x− x′‖2cσp

Since βn ≥ 0 we have that η(x) is Lipschitz continuous, which is a contradiction.

Thus, it is sufficient to optimize over Lipschitz continuous functions in order for the two
formulations to be equivalent. Note that the Lipschitz constant increases as the predictive
variance decreases.

172

Bibliography

Abadi, Mart́ın, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian
Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mane, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viegas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng (14, 2016). “TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Distributed Systems”. In: arXiv: 1603.04467 [cs] (cit. on p. 98).

Abbasi-Yadkori, Yasin (2012). “Online learning of linearly parameterized control problems”.
PhD Thesis (cit. on p. 27).

Abbasi-Yadkori, Yasin and Csaba Szepesvári (2011). “Regret bounds for the adaptive
control of linear quadratic systems”. In: Proceedings of the 24th Annual Conference on
Learning Theory, pp. 1–26 (cit. on p. 33).

Abdelrahman, Hany, Felix Berkenkamp, and Andreas Krause (2016). “Bayesian optimiza-
tion for maximum power point tracking in photovoltaic power plants”. In: 2016 European
Control Conference (ECC), pp. 2078–2083 (cit. on p. 70).

Achiam, Joshua, David Held, Aviv Tamar, and Pieter Abbeel (2017). “Constrained policy
optimization”. In: Proc. of the International Conference on Machine Learning (ICML).
arXiv: 1705.10528 (cit. on p. 36).

Afanas’ev, V. N., V. B. Kolmanovskii, and V. R. Nosov (1996). “Stability of Stochastic
Systems”. In: Mathematical Theory of Control Systems Design. Ed. by V. N. Afanas’ev,
V. B. Kolmanovskii, and V. R. Nosov. Mathematics and Its Applications. Dordrecht:
Springer Netherlands, pp. 73–103 (cit. on p. 19).

173

https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1705.10528

BIBLIOGRAPHY

Akametalu, Anayo K., Shromona Ghosh, Jaime F. Fisac, and Claire J. Tomlin (3, 2018). “A
Minimum Discounted Reward Hamilton-Jacobi Formulation for Computing Reachable
Sets”. In: arXiv: 1809.00706 [cs, math] (cit. on p. 20).

Alshiekh, Mohammed, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum,
and Ufuk Topcu (2018). “Safe reinforcement learning via shielding”. In: Thirty-Second
AAAI Conference on Artificial Intelligence (cit. on p. 40).

Altman, Eitan (30, 1999). Constrained Markov Decision Processes. CRC Press. 260 pp.
(cit. on p. 19).

Álvarez, Mauricio A., Lorenzo Rosasco, and Neil D. Lawrence (2012). “Kernels for Vector-
Valued Functions: A Review”. In: Foundations and Trends in Machine Learning 4.3,
pp. 195–266 (cit. on p. 45).

Ames, Aaron D., Samuel Coogan, Magnus Egerstedt, Gennaro Notomista, Koushil Sreenath,
and Paulo Tabuada (2019). “Control Barrier Functions: Theory and Applications”. In:
arXiv preprint arXiv:1903.11199 (cit. on p. 18).

Amodei, Dario, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan
Mané (21, 2016). “Concrete problems in AI safety”. In: arXiv: 1606.06565 [cs] (cit. on
p. 1).

Andersson, Joel (2013). “A general-purpose software framework for dynamic optimiza-
tion”. PhD Thesis. Arenberg Doctoral School, KU Leuven, Department of Electrical
Engineering (cit. on p. 105).

Asselborn, L., D. Groß, and O. Stursberg (1, 2013). “Control of Uncertain Nonlinear
Systems using Ellipsoidal Reachability Calculus”. In: IFAC Proceedings Volumes. 9th
IFAC Symposium on Nonlinear Control Systems 46.23, pp. 50–55 (cit. on p. 79).

Aswani, Anil, Humberto Gonzalez, S. Shankar Sastry, and Claire Tomlin (2013). “Provably
safe and robust learning-based model predictive control”. In: Automatica 49.5, pp. 1216–
1226 (cit. on p. 40).

Atkeson, C. G. and J. C. Santamaria (1997). “A comparison of direct and model-based
reinforcement learning”. In: Proceedings of International Conference on Robotics and Au-
tomation. Proceedings of International Conference on Robotics and Automation. Vol. 4,
3557–3564 vol.4 (cit. on p. 21).

Auer, Peter (2002). “Using Confidence Bounds for Exploitation-Exploration Trade-offs”.
In: Journal of Machine Learning Research 3 (Nov), pp. 397–422 (cit. on p. 31).

174

https://arxiv.org/abs/1809.00706
https://arxiv.org/abs/1606.06565

BIBLIOGRAPHY

Bäuerle, Nicole and Jonathan Ott (1, 2011). “Markov Decision Processes with Average-
Value-at-Risk criteria”. In: Mathematical Methods of Operations Research 74.3, pp. 361–
379 (cit. on p. 19).

Bechtle, Sarah, Akshara Rai, Yixin Lin, Ludovic Righetti, and Franziska Meier (14, 2019).
“Curious iLQR: Resolving Uncertainty in Model-based RL”. In: arXiv: 1904.06786 [cs]
(cit. on p. 34).

Bemporad, Alberto and Manfred Morari (1999). “Robust model predictive control: A
survey”. In: Robustness in identification and control. Ed. by A. Garulli and A. Tesi.
Lecture Notes in Control and Information Sciences. Springer London, pp. 207–226 (cit.
on p. 39).

Bennett, S. (1996). “A brief history of automatic control”. In: IEEE Control Systems
Magazine 16.3, pp. 17–25 (cit. on p. 5).

Berkenkamp, Felix, Andreas Krause, and Angela P. Schoellig (2016). “Bayesian optimiza-
tion with safety constraints: safe and automatic parameter tuning in robotics”. In:
arXiv:1602.04450 [cs.RO] (cit. on pp. 4, 43, 129).

Berkenkamp, Felix, Riccardo Moriconi, Angela P. Schoellig, and Andreas Krause (2016).
“Safe learning of regions of attraction in nonlinear systems with Gaussian processes”. In:
Proc. of the Conference on Decision and Control (CDC), pp. 4661–4666 (cit. on pp. 4,
71, 77, 87, 89, 139, 145, 157).

Berkenkamp, Felix and Angela P. Schoellig (2015). “Safe and robust learning control with
Gaussian processes”. In: Proc. of the European Control Conference (ECC), pp. 2501–
2506 (cit. on p. 40).

Berkenkamp, Felix, Angela P. Schoellig, and Andreas Krause (2016). “Safe controller opti-
mization for quadrotors with Gaussian processes”. In: Proc. of the IEEE International
Conference on Robotics and Automation (ICRA), pp. 493–496 (cit. on pp. 3, 43, 56, 57,
129).

Berkenkamp, Felix, Angela P. Schoellig, and Andreas Krause (2019). “No-Regret Bayesian
optimization with unknown hyperparameters”. In: Journal of Machine Learning Research
(JMLR) 20.50, pp. 1–24 (cit. on pp. 4, 69).

Berkenkamp, Felix, Matteo Turchetta, Angela P. Schoellig, and Andreas Krause (2017).
“Safe model-based reinforcement learning with stability guarantees”. In: Proc. of Neural
Information Processing Systems (NeurIPS), pp. 908–918 (cit. on pp. 4, 71, 89, 139, 145,
157).

175

https://arxiv.org/abs/1904.06786

BIBLIOGRAPHY

Bertsekas, Dimitri P., Dimitri P. Bertsekas, Dimitri P. Bertsekas, and Dimitri P. Bertsekas
(1995). Dynamic programming and optimal control. Vol. 1. 2. Athena scientific Belmont,
MA (cit. on p. 5).

Bıyık, Erdem, Jonathan Margoliash, Shahrouz Ryan Alimo, and Dorsa Sadigh (1, 2019).
“Efficient and Safe Exploration in Deterministic Markov Decision Processes with Un-
known Transition Models”. In: arXiv: 1904.01068 [cs] (cit. on p. 39).

Blei, David M., Alp Kucukelbir, and Jon D. McAuliffe (2017). “Variational inference: A
review for statisticians”. In: Journal of the American Statistical Association 112.518,
pp. 859–877 (cit. on p. 23).

Bobiti, Ruxandra and Mircea Lazar (2016). “A sampling approach to finding Lyapunov
functions for nonlinear discrete-time systems”. In: Proc. of the European Control Con-
ference (ECC). 2016 European Control Conference (ECC), pp. 561–566 (cit. on p. 98).

Boedecker, Joschka, Jost Tobias Springenberg, Jan Wulfing, and Martin Riedmiller (2014).
“Approximate real-time optimal control based on sparse Gaussian process models”. In:
2014 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning
(ADPRL). 2014 IEEE Symposium on Adaptive Dynamic Programming and Reinforce-
ment Learning (ADPRL). Orlando, FL, USA: IEEE, pp. 1–8 (cit. on p. 104).

Bof, Nicoletta, Ruggero Carli, and Luca Schenato (14, 2018). “Lyapunov Theory for
Discrete Time Systems”. In: arXiv: 1809.05289 [math] (cit. on pp. 15, 16).

Boggs, Paul T. and Jon W. Tolle (1995). “Sequential quadratic programming”. In: Acta
numerica 4, pp. 1–51 (cit. on p. 13).

Borrelli, Francesco, Alberto Bemporad, and Manfred Morari (2017). Predictive control for
linear and hybrid systems. Cambridge University Press (cit. on p. 13).

Brafman, Ronen I. and Moshe Tennenholtz (2003). “R-max - a General Polynomial Time Al-
gorithm for Near-optimal Reinforcement Learning”. In: J. Mach. Learn. Res. 3, pp. 213–
231 (cit. on p. 33).

Breiman, Leo and Adele Cutler (1, 1993). “A deterministic algorithm for global optimiza-
tion”. In: Mathematical Programming 58.1, pp. 179–199 (cit. on p. 82).

Bull, Adam D. (2011). “Convergence rates of efficient global optimization algorithms”. In:
Journal of Machine Learning Research 12 (Oct), pp. 2879–2904 (cit. on pp. 30, 60).

Calandra, Roberto, Nakul Gopalan, André Seyfarth, Jan Peters, and Marc Peter Deisenroth
(2014). “Bayesian gait optimization for bipedal locomotion”. In: Learning and Intelligent
Optimization. Springer, pp. 274–290 (cit. on pp. 30, 43).

176

https://arxiv.org/abs/1904.01068
https://arxiv.org/abs/1809.05289

BIBLIOGRAPHY

Calandra, Roberto, André Seyfarth, Jan Peters, and Marc Peter Deisenroth (2014). “An
experimental comparison of Bayesian optimization for bipedal locomotion”. In: 2014
IEEE International Conference on Robotics and Automation (ICRA), pp. 1951–1958
(cit. on p. 30).

Cao, Gang, Edmund M.-K. Lai, and Fakhrul Alam (1, 2017). “Gaussian Process Model
Predictive Control of an Unmanned Quadrotor”. In: Journal of Intelligent & Robotic
Systems 88.1, pp. 147–162 (cit. on p. 34).

Chatzilygeroudis, K., R. Rama, R. Kaushik, D. Goepp, V. Vassiliades, and J. Mouret (2017).
“Black-box data-efficient policy search for robotics”. In: 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 51–58 (cit. on p. 34).

Chen, S., K. Saulnier, N. Atanasov, D. D. Lee, V. Kumar, G. J. Pappas, and M. Morari
(2018). “Approximating Explicit Model Predictive Control Using Constrained Neural
Networks”. In: 2018 Annual American Control Conference (ACC). 2018 Annual Ameri-
can Control Conference (ACC), pp. 1520–1527 (cit. on p. 13).

Chentanez, Nuttapong, Andrew G. Barto, and Satinder P. Singh (2005). “Intrinsically mo-
tivated reinforcement learning”. In: Advances in neural information processing systems,
pp. 1281–1288 (cit. on p. 32).

Chow, Yinlam, Ofir Nachum, Aleksandra Faust, Edgar Duenez-Guzman, and Mohammad
Ghavamzadeh (28, 2019). “Lyapunov-based Safe Policy Optimization for Continuous
Control”. In: arXiv: 1901.10031 [cs, stat] (cit. on p. 36).

Chowdhury, Sayak Ray and Aditya Gopalan (2017). “On kernelized multi-armed bandits”.
In: Proceedings of the 34th International Conference on Machine Learning. Vol. 70.
Proceedings of Machine Learning Research. PMLR, pp. 844–853 (cit. on pp. 27, 31, 47,
130, 151).

Chowdhury, Sayak Ray and Aditya Gopalan (2019). “Online Learning in Kernelized Markov
Decision Processes”. In: The 22nd International Conference on Artificial Intelligence
and Statistics. The 22nd International Conference on Artificial Intelligence and Statistics,
pp. 3197–3205 (cit. on pp. 34, 113, 116, 120, 168, 169).

Christmann, Andreas and Ingo Steinwart (2008). Support Vector Machines. Information
Science and Statistics. New York, NY: Springer (cit. on pp. 27, 73).

Chua, Kurtland, Roberto Calandra, Rowan McAllister, and Sergey Levine (2018). “Deep
Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models”. In:
Advances in Neural Information Processing Systems 31. Ed. by S. Bengio, H. Wallach,

177

https://arxiv.org/abs/1901.10031

BIBLIOGRAPHY

H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett. Curran Associates, Inc.,
pp. 4754–4765 (cit. on pp. 34, 114).

Cohen, Andrew, Lei Yu, and Robert Wright (22, 2018). “Diverse Exploration for Fast and
Safe Policy Improvement”. In: arXiv: 1802.08331 [cs] (cit. on p. 37).

Dalal, Gal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru,
and Yuval Tassa (26, 2018). “Safe Exploration in Continuous Action Spaces”. In: arXiv:
1801.08757 [cs] (cit. on p. 41).

Davidor, Yuval (1991). Genetic algorithms and robotics: a heuristic strategy for optimiza-
tion. World Scientific. 192 pp. (cit. on p. 21).

Davies, Scott (1996). “Multidimensional triangulation and interpolation for reinforcement
learning”. In: Proc. of the Conference on Neural Information Processing Systems (NIPS),
pp. 1005–1011 (cit. on p. 99).

Dayan, Peter (1, 1992). “The convergence of TD(λ) for general λ”. In: Machine Learning
8.3, pp. 341–362 (cit. on p. 11).

Dean, Sarah, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu (2018). “Regret
Bounds for Robust Adaptive Control of the Linear Quadratic Regulator”. In: Advances in
Neural Information Processing Systems 31. Ed. by S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett. Curran Associates, Inc., pp. 4188–4197
(cit. on p. 33).

Dean, Sarah, Stephen Tu, Nikolai Matni, and Benjamin Recht (26, 2018). “Safely Learning
to Control the Constrained Linear Quadratic Regulator”. In: arXiv: 1809.10121 [cs,
math, stat] (cit. on p. 41).

Deisenroth, Marc, Dieter Fox, and Carl Rasmussen (2014). “Gaussian processes for data-
efficient learning in robotics and control”. In: Transactions on Pattern Analysis and
Machine Intelligence 37.2, pp. 1–1 (cit. on p. 116).

Deisenroth, Marc and Carl E. Rasmussen (2011). “PILCO: A model-based and data-
efficient approach to policy search”. In: Proc. of the International Conference on Machine
Learning (ICML), pp. 465–472 (cit. on pp. 34, 114, 117).

Deisenroth, Marc, Carl Rasmussen, and Jan Peters (2009). “Gaussian process dynamic
programming”. In: Neurocomputing 72.7-9, pp. 1508–1524 (cit. on p. 33).

Der Kiureghian, Armen and Ove Ditlevsen (2009). “Aleatory or epistemic? Does it matter?”
In: Structural Safety 31.2, pp. 105–112 (cit. on p. 22).

178

https://arxiv.org/abs/1802.08331
https://arxiv.org/abs/1801.08757
https://arxiv.org/abs/1809.10121
https://arxiv.org/abs/1809.10121

BIBLIOGRAPHY

Ding, J., J. H. Gillula, H. Huang, M. P. Vitus, W. Zhang, and C. J. Tomlin (2011). “Hybrid
Systems in Robotics”. In: IEEE Robotics Automation Magazine 18.3, pp. 33–43 (cit. on
p. 20).

Duffie, Darrell and Jun Pan (1997). “An overview of value at risk”. In: Journal of derivatives
4.3, pp. 7–49 (cit. on p. 19).

Duivenvoorden, Rikky R.P.R., Felix Berkenkamp, Nicolas Carion, Andreas Krause, and
Angela P. Schoellig (2017). “Constrained Bayesian optimization with particle swarms for
adaptive controller tuning”. In: Proc. of the IFAC (International Federation of Automatic
Control) World Congress, pp. 12306–12313 (cit. on p. 70).

Engel, Yaakov, Shie Mannor, and Ron Meir (2005). “Reinforcement learning with Gaussian
processes”. In: Proceedings of the 22nd international conference on Machine learning.
ACM, pp. 201–208 (cit. on p. 33).

Even-Dar, Eyal and Yishay Mansour (2002). “Convergence of optimistic and incremental
Q-learning”. In: Advances in neural information processing systems, pp. 1499–1506 (cit.
on p. 33).

Faradonbeh, Mohamad Kazem Shirani, Ambuj Tewari, and George Michailidis (2017).
“Finite time analysis of optimal adaptive policies for linear-quadratic systems”. In: arXiv
preprint arXiv:1711.07230 (cit. on p. 33).

Filippova, Tatiana F. (1, 2017). “Ellipsoidal Estimates of Reachable Sets for Control Sys-
tems with Nonlinear Terms **The research was supported by Russian Science Foundation
(RSF Project No.16-11-10146)”. In: IFAC-PapersOnLine. 20th IFAC World Congress
50.1, pp. 15355–15360 (cit. on p. 79).

Fisac, J. F., A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula, and C. J. Tomlin
(2018). “A General Safety Framework for Learning-Based Control in Uncertain Robotic
Systems”. In: IEEE Transactions on Automatic Control, pp. 1–1 (cit. on p. 40).

Gal, Yarin (2016). “Uncertainty in deep learning”. PhD Thesis. PhD thesis, University of
Cambridge (cit. on pp. 22, 28).

Gal, Yarin, Rowan McAllister, and Carl Edward Rasmussen (2016). “Improving PILCO
with Bayesian neural network dynamics models”. In: Data-Efficient Machine Learning
workshop, ICML. Vol. 4 (cit. on p. 34).

Garcia, J. and F. Fernandez (2012). “Safe exploration of state and action spaces in rein-
forcement learning”. In: Journal of Artificial Intelligence Research, pp. 515–564 (cit. on
p. 40).

179

BIBLIOGRAPHY

Garćıa, Javier and Fernando Fernández (2015). “A comprehensive survey on safe reinforce-
ment learning”. In: Journal of Machine Learning Research (JMLR) 16, pp. 1437–1480
(cit. on pp. 2, 36).

Gelbart, Michael A., Jasper Snoek, and Ryan P. Adams (2014). “Bayesian optimization
with unknown constraints”. In: Proc. of the Conference on Uncertainty in Artificial
Intelligence (UAI), pp. 250–259 (cit. on p. 37).

Ghosh, S., F. Berkenkamp, G. Ranade, S. Qadeer, and A. Kapoor (2018). “Verifying
Controllers Against Adversarial Examples with Bayesian Optimization”. In: 2018 IEEE
International Conference on Robotics and Automation (ICRA). 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 7306–7313 (cit. on p. 69).

Giesl, Peter and Sigurdur Hafstein (2015). “Review on computational methods for Lya-
punov functions”. In: Discrete and Continuous Dynamical Systems, Series B 20.8,
pp. 2291–2337 (cit. on p. 17).

Girard, Agathe, Carl Edward Rasmussen, J. Quinonero-Candela, R. Murray-Smith, J.
Quinonero-Candela, O. Winther, J. Quinonero-Candela, A. Girard, J. Larsen, and C.
Rasmussen (2002). “Multiple-step ahead prediction for non linear dynamic systems–a
gaussian process treatment with propagation of the uncertainty”. In: Proc. of Neural
Information Processing Systems (NIPS). Vol. 15, pp. 529–536 (cit. on p. 34).

Golub, Gene H. and Charles F. Van Loan (27, 2012). Matrix Computations. JHU Press.
738 pp. (cit. on p. 104).

Gopalan, Aditya and Shie Mannor (2015). “Thompson sampling for learning parameterized
Markov decision processes”. In: Conference on Learning Theory, pp. 861–898 (cit. on
p. 33).

Guo, Chuan, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger (17, 2017). “On Calibra-
tion of Modern Neural Networks”. In: International Conference on Machine Learning.
International Conference on Machine Learning, pp. 1321–1330 (cit. on p. 28).

Hans, Alexander, Daniel Schneegaß, Anton Maximilian Schäfer, and Steffen Udluft (2008).
“Safe exploration for reinforcement learning.” In: Proc. of the European Symposium
on Artificial Neural Networks (ESANN). European Symposium on Artificial Neural
Networks (ESANN), pp. 143–148 (cit. on p. 40).

Hessem, D. H. van and O. H. Bosgra (2002). “Closed-loop stochastic dynamic process
optimization under input and state constraints”. In: Proceedings of the 2002 American
Control Conference (IEEE Cat. No.CH37301). Proceedings of the 2002 American Control
Conference (IEEE Cat. No.CH37301). Vol. 3, 2023–2028 vol.3 (cit. on p. 86).

180

BIBLIOGRAPHY

Hewing, Lukas, Juraj Kabzan, and Melanie N. Zeilinger (30, 2017). “Cautious Model
Predictive Control using Gaussian Process Regression”. In: arXiv: 1705.10702 [cs,
math] (cit. on p. 40).

Howard, Ronald A. and James E. Matheson (1972). “Risk-sensitive Markov decision pro-
cesses”. In: Management science 18.7, pp. 356–369 (cit. on p. 19).

Ibrahimi, Morteza, Adel Javanmard, and Benjamin V. Roy (2012). “Efficient Reinforcement
Learning for High Dimensional Linear Quadratic Systems”. In: Advances in Neural
Information Processing Systems 25. Ed. by F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger. Curran Associates, Inc., pp. 2636–2644 (cit. on p. 34).

Jacobson, David H. and David Q. Mayne (1970). “Differential dynamic programming”. In:
(cit. on p. 13).

Jain, A., T. Nghiem, M. Morari, and R. Mangharam (2018). “Learning and Control
Using Gaussian Processes”. In: 2018 ACM/IEEE 9th International Conference on Cyber-
Physical Systems (ICCPS). 2018 ACM/IEEE 9th International Conference on Cyber-
Physical Systems (ICCPS), pp. 140–149 (cit. on p. 106).

Jaksch, Thomas, Ronald Ortner, and Peter Auer (2010). “Near-optimal regret bounds for
reinforcement learning”. In: Journal of Machine Learning Research 11 (Apr), pp. 1563–
1600 (cit. on p. 33).

Jin, Ming and Javad Lavaei (26, 2018). “Stability-certified reinforcement learning: A control-
theoretic perspective”. In: arXiv: 1810.11505 [cs] (cit. on p. 40).

Johnson, Roger W. (2001). “An Introduction to the Bootstrap”. In: Teaching Statistics
23.2, pp. 49–54 (cit. on p. 28).

Jones, Donald R. (1, 2001). “A taxonomy of global optimization methods based on response
surfaces”. In: Journal of Global Optimization 21.4, pp. 345–383 (cit. on p. 29).

Kamthe, Sanket and Marc Deisenroth (31, 2018). “Data-Efficient Reinforcement Learning
with Probabilistic Model Predictive Control”. In: International Conference on Artifi-
cial Intelligence and Statistics. International Conference on Artificial Intelligence and
Statistics, pp. 1701–1710 (cit. on pp. 34, 104, 114).

Kanagawa, Motonobu, Philipp Hennig, Dino Sejdinovic, and Bharath K. Sriperumbudur
(6, 2018). “Gaussian processes and kernel methods: a review on connections and equiva-
lences”. In: arXiv: 1807.02582 [stat.ML] (cit. on p. 27).

Kearns, Michael and Satinder Singh (1, 2002). “Near-Optimal Reinforcement Learning in
Polynomial Time”. In: Machine Learning 49.2, pp. 209–232 (cit. on p. 33).

181

https://arxiv.org/abs/1705.10702
https://arxiv.org/abs/1705.10702
https://arxiv.org/abs/1810.11505
https://arxiv.org/abs/1807.02582

BIBLIOGRAPHY

Khalil, Hassan K. and J. W. Grizzle (1996). Nonlinear systems. Vol. 3. Prentice Hall (cit. on
pp. 16, 19, 90).

Khasminskii, Rafail (2012). Stochastic Stability of Differential Equations. 2nd ed. Stochastic
Modelling and Applied Probability. Berlin Heidelberg: Springer-Verlag (cit. on p. 75).

Kingma, Diederik P. and Max Welling (20, 2013). “Auto-Encoding Variational Bayes”. In:
arXiv: 1312.6114 [cs, stat] (cit. on p. 12).

Kirschner, Johannes and Andreas Krause (2018). “Information directed sampling and
bandits with heteroscedastic noise”. In: Proceedings of the 31st Conference On Learning
Theory. Vol. 75. Proceedings of Machine Learning Research. PMLR, pp. 358–384. arXiv:
1801.09667 (cit. on pp. 31, 171).

Kober, Jens and Jan Peters (2014). “Reinforcement learning in robotics: a survey”. In:
(cit. on pp. 1, 21).

Koller, Torsten, Felix Berkenkamp, Matteo Turchetta, Joschka Boedecker, and Andreas
Krause (27, 2019). “Learning-based model predictive control for safe exploration and
reinforcement learning”. In: arXiv: 1906.12189 [cs, eess] (cit. on pp. 4, 71, 89, 139,
145, 157).

Koller, Torsten, Felix Berkenkamp, Matteo Turchetta, and Andreas Krause (2018). “Learning-
Based model predictive control for safe exploration”. In: 2018 IEEE Conference on
Decision and Control (CDC). 2018 IEEE Conference on Decision and Control (CDC),
pp. 6059–6066 (cit. on pp. 71, 89, 139, 145, 157).

Krause, Andreas and Cheng S. Ong (2011). “Contextual Gaussian process bandit opti-
mization”. In: Proc. of Neural Information Processing Systems (NIPS), pp. 2447–2455
(cit. on pp. 31, 32, 54, 121).

Krause, Andreas, Ajit Singh, and Carlos Guestrin (2008). “Near-Optimal Sensor Place-
ments in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies”. In:
Journal of Machine Learning Research 9 (Feb), pp. 235–284 (cit. on p. 106).

Kurzhanskii, A. B. and István Vályi (1997). Ellipsoidal Calculus for Estimation and Control.
Nelson Thornes. 354 pp. (cit. on p. 79).

Kwakernaak, Huibert and Raphael Sivan (1972). Linear optimal control systems. Vol. 1.
Wiley-interscience New York (cit. on pp. 14, 105).

Lai, Tze Leung and Herbert Robbins (1985). “Asymptotically efficient adaptive allocation
rules”. In: Advances in applied mathematics 6.1, pp. 4–22 (cit. on p. 30).

Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell (2017). “Simple and
Scalable Predictive Uncertainty Estimation using Deep Ensembles”. In: Advances in

182

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1801.09667
https://arxiv.org/abs/1906.12189

BIBLIOGRAPHY

Neural Information Processing Systems 30. Ed. by I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Curran Associates, Inc.,
pp. 6402–6413 (cit. on p. 28).

Langford, John and Tong Zhang (2007). “The epoch-greedy algorithm for contextual
multi-armed bandits”. In: Proceedings of the 20th International Conference on Neural
Information Processing Systems. Citeseer, pp. 817–824 (cit. on p. 31).

Lattimore, Tor and Csaba Szepesvári (2018). “Bandit algorithms”. In: preprint (cit. on
pp. 28, 29).

Lederer, Armin, Jonas Umlauft, and Sandra Hirche (4, 2019). “Uniform Error Bounds for
Gaussian Process Regression with Application to Safe Control”. In: arXiv: 1906.01376
[cs, stat] (cit. on pp. 119, 172).

Lew, Thomas, Apoorva Sharma, James Harrison, and Marco Pavone (28, 2019). “Safe
Learning and Control using Meta-Learning”. In: Robust autonomy workshop at Robotics:
Science and Systems (cit. on p. 125).

Li, Huijuan and Lars Grüne (15, 2016). “Computation of local ISS Lyapunov functions for
discrete-time systems via linear programming”. In: Journal of Mathematical Analysis
and Applications 438.2, pp. 701–719 (cit. on p. 17).

Lillicrap, Timothy P., Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra (9, 2015). “Continuous control with deep
reinforcement learning”. In: arXiv: 1509.02971 [cs, stat] (cit. on pp. 12, 21).

Liu, Anqi, Guanya Shi, Soon-Jo Chung, Anima Anandkumar, and Yisong Yue (13, 2019).
“Robust Regression for Safe Exploration in Control”. In: arXiv: 1906.05819 [cs, eess,
stat] (cit. on p. 28).

Lizotte, Daniel J., Tao Wang, Michael H. Bowling, and Dale Schuurmans (2007). “Auto-
matic gait optimization with Gaussian process regression.” In: Proceedings of the Twenti-
eth International Joint Conference on Artificial Intelligence (IJCAI). Vol. 7, pp. 944–949
(cit. on p. 30).

Lu, Tyler, Martin Zinkevich, Craig Boutilier, Binz Roy, and Dale Schuurmans (29, 2017).
“Safe Exploration for Identifying Linear Systems via Robust Optimization”. In: arXiv:
1711.11165 [cs] (cit. on p. 41).

Luce, Robert Duncan and Howard Raiffa (1958). Games and decisions: Introduction and
critical survey. Wiley New York (cit. on p. 19).

183

https://arxiv.org/abs/1906.01376
https://arxiv.org/abs/1906.01376
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1906.05819
https://arxiv.org/abs/1906.05819
https://arxiv.org/abs/1711.11165

BIBLIOGRAPHY

Lupashin, Sergei, Markus Hehn, Mark W. Mueller, Angela P. Schoellig, Michael Sherback,
and Raffaello D’Andrea (2014). “A platform for aerial robotics research and demonstra-
tion: The Flying Machine Arena”. In: Mechatronics 24.1, pp. 41–54 (cit. on p. 59).

Lyapunov, Aleksandr Mikhailovich (1992). “The general problem of the stability of motion”.
In: International journal of control 55.3, pp. 531–534 (cit. on p. 16).

Maler, Oded and Dejan Nickovic (2004). “Monitoring Temporal Properties of Continuous
Signals”. In: Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant
Systems. Ed. by Yassine Lakhnech and Sergio Yovine. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, pp. 152–166 (cit. on p. 15).

Malik, Ali, Volodymyr Kuleshov, Jiaming Song, Danny Nemer, Harlan Seymour, and
Stefano Ermon (24, 2019). “Calibrated Model-Based Deep Reinforcement Learning”. In:
International Conference on Machine Learning. International Conference on Machine
Learning, pp. 4314–4323 (cit. on p. 34).

Marco, A., F. Berkenkamp, P. Hennig, A. P. Schoellig, A. Krause, S. Schaal, and S.
Trimpe (2017). “Virtual vs. real: Trading off simulations and physical experiments in
reinforcement learning with Bayesian optimization”. In: Proc. of the IEEE International
Conference on Robotics and Automation (ICRA), pp. 1557–1563 (cit. on pp. 30, 69).

Marcus, S. I., E. Fernández-Gaucherand, D. Hernández-Hernández, S. Coraluppi, and P.
Fard (1997). “Risk Sensitive Markov Decision Processes”. In: Systems and Control in the
Twenty-First Century. Ed. by Christopher I. Byrnes, Biswa N. Datta, Clyde F. Martin,
and David S. Gilliam. Systems & Control: Foundations & Applications. Birkhäuser
Boston, pp. 263–279 (cit. on p. 19).

Matthews, Alexander G. de G., Mark van der Wilk, Tom Nickson, Keisuke Fujii, Alexis
Boukouvalas, Pablo León-Villagrá, Zoubin Ghahramani, and James Hensman (2017).
“GPflow: a Gaussian process library using TensorFlow”. In: Journal of Machine Learning
Research 18.40, pp. 1–6 (cit. on p. 98).

Melchior, Silvan, Felix Berkenkamp, Sebastian Curi, and Andreas Krause (2019). Structured
Variational Inference in Unstable Gaussian Process State Space Models. (under review)
(cit. on p. 87).

Mitchell, I. M., A. M. Bayen, and C. J. Tomlin (2005). “A time-dependent Hamilton-Jacobi
formulation of reachable sets for continuous dynamic games”. In: IEEE Transactions on
Automatic Control 50.7, pp. 947–957 (cit. on p. 20).

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc
G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski,

184

BIBLIOGRAPHY

Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan
Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis (26, 2015). “Human-level
control through deep reinforcement learning”. In: Nature 518.7540, pp. 529–533 (cit. on
p. 1).

Mockus, Jonas (6, 2012). Bayesian approach to global optimization: theory and applications.
Springer Science & Business Media. 267 pp. (cit. on p. 29).

Moldovan, Teodor Mihai and Pieter Abbeel (2012). “Safe exploration in Markov decision
processes”. In: Proc. of the International Conference on Machine Learning (ICML),
pp. 1711–1718 (cit. on p. 39).

Moldovan, Teodor Mihai, Sergey Levine, Michael I. Jordan, and Pieter Abbeel (2015).
“Optimism-driven exploration for nonlinear systems”. In: Robotics and Automation
(ICRA), 2015 IEEE International Conference on. IEEE, pp. 3239–3246 (cit. on pp. 34,
116).

Morari, Manfred and Jay H. Lee (1, 1999). “Model predictive control: past, present and
future”. In: Computers & Chemical Engineering 23.4–5, pp. 667–682 (cit. on p. 12).

Munos, Rémi, Tom Stepleton, Anna Harutyunyan, and Marc G. Bellemare (8, 2016). “Safe
and Efficient Off-Policy Reinforcement Learning”. In: arXiv: 1606.02647 [cs, stat]
(cit. on p. 21).

Mutny, Mojmir and Andreas Krause (2018). “Efficient High Dimensional Bayesian Op-
timization with Additivity and Quadrature Fourier Features”. In: Advances in Neural
Information Processing Systems, pp. 9005–9016 (cit. on p. 31).

Nikolov, Nikolay, Johannes Kirschner, Felix Berkenkamp, and Andreas Krause (2019).
“Information-Directed Exploration for Deep Reinforcement Learning”. In: Proc. Inter-
national Conference on Learning Representations (ICLR) (cit. on p. 33).

Osband, Ian, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy (2016). “Deep
exploration via bootstrapped DQN”. In: Advances in neural information processing
systems, pp. 4026–4034 (cit. on p. 33).

Osband, Ian, Dan Russo, and Benjamin Van Roy (2013). “(More) Efficient Reinforcement
Learning via Posterior Sampling”. In: Advances in Neural Information Processing Sys-
tems 26. Ed. by C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger. Curran Associates, Inc., pp. 3003–3011 (cit. on p. 33).

Osband, Ian and Benjamin Van Roy (2014). “Model-based Reinforcement Learning and the
Eluder Dimension”. In: Advances in Neural Information Processing Systems 27. Ed. by

185

https://arxiv.org/abs/1606.02647

BIBLIOGRAPHY

Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger. Curran
Associates, Inc., pp. 1466–1474 (cit. on p. 34).

Osband, Ian and Benjamin Van Roy (9, 2016). “Posterior Sampling for Reinforcement
Learning Without Episodes”. In: arXiv: 1608.02731 [cs, stat] (cit. on p. 34).

Osband, Ian, Benjamin Van Roy, Daniel Russo, and Zheng Wen (2017). “Deep exploration
via randomized value functions”. In: arXiv preprint arXiv:1703.07608 (cit. on p. 33).

Osband, Ian, Benjamin Van Roy, and Zheng Wen (4, 2014). “Generalization and Explo-
ration via Randomized Value Functions”. In: arXiv: 1402.0635 [cs, stat] (cit. on
p. 33).

Ostafew, Chris J., Angela P. Schoellig, and Timothy D. Barfoot (2016). “Robust con-
strained learning-based NMPC enabling reliable mobile robot path tracking”. In: The
International Journal of Robotics Research (IJRR) 35.13, pp. 1547–1536 (cit. on pp. 40,
60, 114).

Pathak, Deepak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell (2017). “Curiosity-
driven exploration by self-supervised prediction”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, pp. 16–17 (cit. on p. 32).

Pecka, Martin and Tomas Svoboda (2014). “Safe exploration techniques for reinforcement
learning – an overview”. In: Modelling and Simulation for Autonomous Systems. Springer,
pp. 357–375 (cit. on p. 36).

Peters, Jan and Stefan Schaal (2006). “Policy gradient methods for robotics”. In: Proc. of
the IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 2219–2225 (cit. on
p. 21).

Polymenakos, Kyriakos, Alessandro Abate, and Stephen Roberts (2019). “Safe Policy
Search Using Gaussian Process Models”. In: Proceedings of the 18th International Confer-
ence on Autonomous Agents and MultiAgent Systems (Montreal QC, Canada). AAMAS
’19. Richland, SC: International Foundation for Autonomous Agents and Multiagent
Systems, pp. 1565–1573 (cit. on p. 41).

Powell, Warren B. (5, 2007). Approximate dynamic programming: solving the curses of
dimensionality. John Wiley & Sons. 488 pp. (cit. on p. 97).

Powell, Warren B. (1, 2009). “What you should know about approximate dynamic pro-
gramming”. In: Naval Research Logistics (NRL) 56.3, pp. 239–249 (cit. on p. 11).

Rasmussen, Carl Edward and Christopher K.I Williams (2006). Gaussian processes for
machine learning. Cambridge MA: MIT Press (cit. on pp. 23, 24, 59).

186

https://arxiv.org/abs/1608.02731
https://arxiv.org/abs/1402.0635

BIBLIOGRAPHY

Rawlings, James Blake and David Q. Mayne (2009). Model predictive control: Theory and
design. Nob Hill Pub. Madison, Wisconsin (cit. on pp. 19, 85, 101).

Richards, Arthur and Jonathan P. How (2006). “Robust variable horizon model predictive
control for vehicle maneuvering”. In: International Journal of Robust and Nonlinear
Control 16.7, pp. 333–351 (cit. on p. 108).

Richards, Spencer M., Felix Berkenkamp, and Andreas Krause (23, 2018). “The Lyapunov
Neural Network: Adaptive Stability Certification for Safe Learning of Dynamical Sys-
tems”. In: Conference on Robot Learning (CoRL). PMLR, pp. 466–476 (cit. on p. 126).

Rockafellar, R. Tyrrell and Stanislav Uryasev (1, 2002). “Conditional value-at-risk for
general loss distributions”. In: Journal of Banking & Finance 26.7, pp. 1443–1471 (cit.
on p. 19).

Rosolia, U. and F. Borrelli (2018). “Learning Model Predictive Control for Iterative Tasks.
A Data-Driven Control Framework”. In: IEEE Transactions on Automatic Control 63.7,
pp. 1883–1896 (cit. on p. 13).

Rosolia, Ugo and Francesco Borrelli (12, 2019). “Sample-Based Learning Model Predictive
Control for Linear Uncertain Systems”. In: arXiv: 1904.06432 [cs] (cit. on p. 40).

Russo, Daniel J., Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen (12,
2018). “A Tutorial on Thompson Sampling”. In: Foundations and Trends R© in Machine
Learning 11.1, pp. 1–96 (cit. on p. 31).

Russo, Daniel and Benjamin Van Roy (2014). “Learning to optimize via information-
directed sampling”. In: Advances in Neural Information Processing Systems 27. Ed. by
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger. Curran
Associates, Inc., pp. 1583–1591 (cit. on p. 31).

Ruszczyński, Andrzej (1, 2010). “Risk-averse dynamic programming for Markov decision
processes”. In: Mathematical Programming 125.2, pp. 235–261 (cit. on p. 19).

Sadigh, Dorsa and Ashish Kapoor (2016). “Safe control under uncertainty with Probabilistic
Signal Temporal Logic”. In: Proc. of Robotics: Science and Systems. arXiv: 1510.07313
(cit. on p. 39).

Schmidhuber, J. (1991). “Curious model-building control systems”. In: [Proceedings] 1991
IEEE International Joint Conference on Neural Networks. [Proceedings] 1991 IEEE
International Joint Conference on Neural Networks, 1458–1463 vol.2 (cit. on p. 32).

Schoellig, A.P., C. Wiltsche, and R. D’Andrea (2012). “Feed-forward parameter identifi-
cation for precise periodic quadrocopter motions”. In: Proc. of the American Control
Conference (ACC). American Control Conference (ACC), pp. 4313–4318 (cit. on p. 59).

187

https://arxiv.org/abs/1904.06432
https://arxiv.org/abs/1510.07313

BIBLIOGRAPHY

Schoellig, Angela P., M. Hehn, S. Lupashin, and R. D’Andrea (2011). “Feasiblity of motion
primitives for choreographed quadrocopter flight”. In: Proc. of the American Control
Conference (ACC). American Control Conference (ACC), 2011, pp. 3843–3849 (cit. on
p. 65).

Schreiter, Jens, Duy Nguyen-Tuong, Mona Eberts, Bastian Bischoff, Heiner Markert, and
Marc Toussaint (7, 2015). “Safe exploration for active learning with Gaussian processes”.
In: Machine Learning and Knowledge Discovery in Databases. 9286. Springer Interna-
tional Publishing, pp. 133–149 (cit. on pp. 37, 51).

Schulman, John, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov (19,
2017). “Proximal Policy Optimization Algorithms”. In: arXiv: 1707.06347 [cs] (cit. on
p. 21).

Schwarm, Alexander T. and Michael Nikolaou (1999). “Chance-constrained model predic-
tive control”. In: AIChE Journal 45.8, pp. 1743–1752 (cit. on p. 19).

Silver, David, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-
tot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever,
Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis
Hassabis (28, 2016). “Mastering the game of Go with deep neural networks and tree
search”. In: Nature 529.7587, pp. 484–489 (cit. on p. 1).

Silver, David, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin
Riedmiller (2014). “Deterministic policy gradient algorithms”. In: Proceedings of the
31st International Conference on Machine Learning (ICML-14), pp. 387–395 (cit. on
p. 21).

Simon, D., J. Löfberg, and T. Glad (2013). “Nonlinear model predictive control using Feed-
back Linearization and local inner convex constraint approximations”. In: 2013 European
Control Conference (ECC). 2013 European Control Conference (ECC), pp. 2056–2061
(cit. on p. 101).

Solak, E., R. Murray-smith, W. E. Leithead, D. J. Leith, and Carl E. Rasmussen (2003).
“Derivative observations in Gaussian process models of dynamic systems”. In: Proc. of
Neural Information Processing Systems (NIPS). Ed. by S. Becker, S. Thrun, and K.
Obermayer. MIT Press, pp. 1057–1064 (cit. on p. 52).

Soloperto, Raffaele, Matthias A. Müller, Sebastian Trimpe, and Frank Allgöwer (1, 2018).
“Learning-Based Robust Model Predictive Control with State-Dependent Uncertainty”.

188

https://arxiv.org/abs/1707.06347

BIBLIOGRAPHY

In: IFAC-PapersOnLine. 6th IFAC Conference on Nonlinear Model Predictive Control
NMPC 2018 51.20, pp. 442–447 (cit. on p. 40).

Srinivas, Niranjan, Andreas Krause, Sham M. Kakade, and Matthias Seeger (2012). “Gaus-
sian process optimization in the bandit setting: no regret and experimental design”.
In: IEEE Transactions on Information Theory 58.5, pp. 3250–3265. arXiv: 0912.3995
(cit. on pp. 23, 25, 26, 30, 106, 115, 120, 121, 132, 141, 151, 160–163, 167).

Sui, Yanan, Alkis Gotovos, Joel W. Burdick, and Andreas Krause (2015). “Safe exploration
for optimization with Gaussian processes”. In: Proc. of the International Conference on
Machine Learning (ICML), pp. 997–1005 (cit. on pp. 37, 47, 48, 53, 68, 130, 147, 152).

Sutton, Richard S. (1, 1988). “Learning to predict by the methods of temporal differences”.
In: Machine Learning 3.1, pp. 9–44 (cit. on p. 11).

Sutton, Richard S. (1, 1990). “Integrated Architectures for Learning, Planning, and React-
ing Based on Approximating Dynamic Programming”. In: Machine Learning Proceedings
1990. Ed. by Bruce Porter and Raymond Mooney. San Francisco (CA): Morgan Kauf-
mann, pp. 216–224 (cit. on p. 32).

Sutton, Richard S. and Andrew G. Barto (1998). Reinforcement learning: an introduction.
MIT press (cit. on pp. 1, 5, 20).

Sutton, Richard S., David A. McAllester, Satinder P. Singh, Yishay Mansour, et al. (1999).
“Policy gradient methods for reinforcement learning with function approximation.” In:
NIPS. Vol. 99, pp. 1057–1063 (cit. on p. 21).

Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus (2014). “Intriguing properties of neural networks”. In: Proc.
of the International Conference on Learning Representations (ICLR). arXiv: 1312.6199
(cit. on p. 99).

Tamar, Aviv, Shie Mannor, and Huan Xu (2014). “Scaling Up Robust MDPs by Reinforce-
ment Learning”. In: Proc. of the International Conference on Machine Learning (ICML).
arXiv: 1306.6189 (cit. on p. 97).

Tang, Haoran, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan,
John Schulman, Filip DeTurck, and Pieter Abbeel (2017). “#Exploration: A Study of
Count-Based Exploration for Deep Reinforcement Learning”. In: Advances in Neural
Information Processing Systems 30. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H.
Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Curran Associates, Inc., pp. 2753–
2762 (cit. on p. 32).

189

https://arxiv.org/abs/0912.3995
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1306.6189

BIBLIOGRAPHY

Tassa, Y., T. Erez, and E. Todorov (2012). “Synthesis and stabilization of complex behav-
iors through online trajectory optimization”. In: 2012 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 4906–4913 (cit. on p. 13).

Tesch, Matthew, Jeff Schneider, and Howie Choset (2011). “Using response surfaces and ex-
pected improvement to optimize snake robot gait parameters”. In: Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 1069–1074 (cit.
on p. 30).

The GPy authors (2012–2014). GPy: A Gaussian process framework in Python (cit. on
p. 58).

Theodorou, E., J. Buchli, and S. Schaal (2010). “Reinforcement learning of motor skills in
high dimensions: A path integral approach”. In: 2010 IEEE International Conference
on Robotics and Automation. 2010 IEEE International Conference on Robotics and
Automation, pp. 2397–2403 (cit. on p. 21).

Thomas, Philip S., Georgios Theocharous, and Mohammad Ghavamzadeh (2015a). “High
confidence policy improvement”. In: International Conference on Machine Learning,
pp. 2380–2388 (cit. on p. 37).

Thomas, Philip S., Georgios Theocharous, and Mohammad Ghavamzadeh (2015b). “High-
confidence off-policy evaluation”. In: Twenty-Ninth AAAI Conference on Artificial In-
telligence (cit. on p. 37).

Turchetta, Matteo, Felix Berkenkamp, and Andreas Krause (2016). “Safe exploration in
finite markov decision processes with gaussian processes”. In: Proc. of Neural Information
Processing Systems (NeurIPS), pp. 4305–4313 (cit. on pp. 39, 126).

Turchetta, Matteo, Felix Berkenkamp, and Andreas Krause (2019). Safe Exploration for
Interactive Machine Learning (cit. on pp. 125, 126).

Vershynin, Roman (12, 2010). “Introduction to the non-asymptotic analysis of random
matrices”. In: arXiv: 1011.3027 [cs, math] (cit. on pp. 27, 139, 140).

Vershynin, Roman (2012). Compressed Sensing, Theory and Applications (cit. on p. 139).
Vinogradska, Julia, Bastian Bischoff, Duy Nguyen-Tuong, and Jan Peters (2017). “Stability

of controllers for Gaussian process dynamics”. In: The Journal of Machine Learning
Research 18.1, pp. 3483–3519 (cit. on p. 40).

Wabersich, K. P. and M. N. Zeilinger (2018). “Linear Model Predictive Safety Certification
for Learning-Based Control”. In: 2018 IEEE Conference on Decision and Control (CDC).
2018 IEEE Conference on Decision and Control (CDC), pp. 7130–7135 (cit. on p. 40).

190

https://arxiv.org/abs/1011.3027

BIBLIOGRAPHY

Wachi, Akifumi, Yanan Sui, Yisong Yue, and Masahiro Ono (26, 2018). “Safe Exploration
and Optimization of Constrained MDPs Using Gaussian Processes”. In: Thirty-Second
AAAI Conference on Artificial Intelligence. Thirty-Second AAAI Conference on Artificial
Intelligence (cit. on p. 39).

Wächter, Andreas and Lorenz T. Biegler (1, 2006). “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming”. In: Mathemat-
ical Programming 106.1, pp. 25–57 (cit. on p. 104).

Wang, Y., N. Matni, and J. C. Doyle (2019). “A System Level Approach to Controller
Synthesis”. In: IEEE Transactions on Automatic Control, pp. 1–1 (cit. on p. 41).

Watkins, Christopher JCH and Peter Dayan (1992). “Q-learning”. In: Machine learning
8.3-4, pp. 279–292 (cit. on p. 33).

Wiesemann, Wolfram, Daniel Kuhn, and Berç Rustem (14, 2012). “Robust Markov Decision
Processes”. In: Mathematics of Operations Research 38.1, pp. 153–183 (cit. on pp. 39,
97).

Williams, G., N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots, and E. A.
Theodorou (2017). “Information theoretic MPC for model-based reinforcement learn-
ing”. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). 2017
IEEE International Conference on Robotics and Automation (ICRA), pp. 1714–1721
(cit. on p. 21).

Williams, Ronald J. (1, 1992). “Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning”. In: Machine Learning 8.3, pp. 229–256 (cit. on p. 20).

Woodcock, Jim, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald (2009). “Formal
Methods: Practice and Experience”. In: ACM Comput. Surv. 41.4, 19:1–19:36 (cit. on
pp. 15, 19).

Xie, C., S. Patil, T. Moldovan, S. Levine, and P. Abbeel (2016). “Model-based reinforce-
ment learning with parametrized physical models and optimism-driven exploration”. In:
2016 IEEE International Conference on Robotics and Automation (ICRA). 2016 IEEE
International Conference on Robotics and Automation (ICRA), pp. 504–511 (cit. on
pp. 34, 104).

Zanette, Andrea and Emma Brunskill (1, 2019). “Tighter Problem-Dependent Regret
Bounds in Reinforcement Learning without Domain Knowledge using Value Function
Bounds”. In: arXiv: 1901.00210 [cs, stat] (cit. on p. 33).

Zhou, Kemin and John Comstock Doyle (1998). Essentials of robust control. Vol. 104.
Prentice Hall (cit. on pp. 19, 39).

191

https://arxiv.org/abs/1901.00210

	Contents
	1 Introduction
	1.1 Contributions
	1.2 Publications Relevant to this Dissertation
	1.3 Collaborators

	2 Background and Related Work
	2.1 Notation
	2.2 Dynamical Systems
	2.3 Optimal Control
	2.3.1 Approximate Dynamic Programming
	2.3.1.1 Policy Evaluation
	2.3.1.2 Policy Improvement

	2.3.2 Model Predictive Control
	2.3.3 Episodic Control
	2.3.4 Sparse Rewards
	2.3.5 Certainty Equivalence

	2.4 Safe Control
	2.4.1 Definition
	2.4.1.1 Lyapunov Stability and Regions of Attraction
	2.4.1.2 Constraint Satisfaction

	2.4.2 Stochastic Safety
	2.4.3 Safety-constrained Markov Decision Process

	2.5 Reinforcement Learning
	2.5.1 Policy Improvement Without a System Model
	2.5.2 Model-based Reinforcement Learning
	2.5.3 Aleatoric versus Epistemic Uncertainty

	2.6 Modelling Epistemic Uncertainty
	2.6.1 Gaussian Processes
	2.6.1.1 Information Capacity

	2.6.2 Functions in a Reproducing Kernel Hilbert Space
	2.6.2.1 Confidence Intervals

	2.6.3 Other Models

	2.7 Uncertainty-based Exploration
	2.7.1 Bandits and Bayesian Optimization
	2.7.1.1 Bayesian Optimization

	2.7.2 Reinforcement Learning
	2.7.2.1 Reward Uncertainty
	2.7.2.2 Value Uncertainty
	2.7.2.3 Model Uncertainty

	2.8 Safe Reinforcement Learning
	2.8.1 Safe Model-free Reinforcement Learning
	2.8.1.1 High-confidence Policy Improvement
	2.8.1.2 Safe Bayesian Optimization

	2.8.2 Safe Model-based Reinforcement Learning
	2.8.2.1 Unknown Constraints
	2.8.2.2 Robust Control
	2.8.2.3 Safe Learning Control

	2.8.3 Safe Exploration

	3 Safe Direct Policy Optimization
	3.1 Problem Statement
	3.2 Multi-output RKHS Functions
	3.2.1 Confidence Intervals

	3.3 SafeOpt-MC (Multiple Constraints)
	3.3.1 The Algorithm
	3.3.2 Theoretical Results

	3.4 Context
	3.5 Practical Implementation
	3.6 Quadrotor Experiments
	3.6.1 Experimental Setup
	3.6.2 Kernel Selection
	3.6.3 Linear Control
	3.6.4 Nonlinear Control
	3.6.5 Circle Trajectory
	3.6.6 Context-Dependent Optimization

	3.7 Conclusion

	4 Safety Analysis of Learned Dynamical Systems
	4.1 Learning reliable models of dynamical systems
	4.1.1 Regularity Assumptions
	4.1.2 Bounding the Epistemic Uncertainty
	4.1.3 Bounding the Aleatoric Uncertainty

	4.2 Stability of Uncertain Systems
	4.2.1 State constraints

	4.3 Confidence Intervals for Finite-time Trajectories
	4.3.1 Ellipsoids
	4.3.2 Robust Multi-step Predictions
	4.3.2.1 One-step Predictions with Uncertain Inputs
	4.3.2.2 Multi-step Predictions
	4.3.2.3 Predictions under State-Feedback Control Laws
	4.3.2.4 Safety Constraints

	4.4 Conclusion

	5 Safe Exploration for Model-based Reinforcement Learning
	5.1 Exploration by Uncertainty Sampling
	5.1.1 Safe Policy Optimization
	5.1.2 Exploration Guarantees
	5.1.3 Practical Implementation and Experiments

	5.2 Safe Exploration with Model Predictive Control
	5.2.1 Safety and Performance
	5.2.2 Practical Considerations
	5.2.3 Experiments

	5.3 Task-driven Exploration
	5.3.1 Challenges for Safe Exploration
	5.3.1.1 Unlearnable, yet Desirable Decisions
	5.3.1.2 Safe and Informative, yet Undesirable Decisions

	5.3.2 Exploration Without Safety Constraints
	5.3.2.1 Problem Definition
	5.3.2.2 Expected Performance
	5.3.2.3 Optimistic Performance
	5.3.2.4 Practical Implementation

	5.3.3 Safe Exploration

	5.4 Conclusion

	6 Conclusion
	6.1 Future Work

	A Proofs for Safe Direct Policy Optimization
	B Proofs for Model Analysis
	B.1 Noise Bound
	B.2 Lyapunov Stability

	C Proofs for Safe Exploration
	C.1 Safe Exploration
	C.2 Safety and Policy Adaptation

	D Proofs for Exploration Regret Bound
	D.1 Bounding the Domain Under Aleatoric Uncertainty
	D.2 Regret Bound
	D.3 Bounding the Mutual Information
	D.4 Bound With Lipschitz Constraint
	D.5 Lipschitz Continuity of the Gaussian Process Variance
	D.6 Practical Implementation

	Bibliography

