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Abstract
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2015

Machine learning methods have been used to improve the performance of control systems

with experimental data when accurate system or environment models are unavailable.

Transfer Learning (TL) allows for this data to come from another, similar system. A

simplified TL scenario is studied to understand how the quality of an alignment-based

transfer of data varies with the parameters of two linear, time-invariant (LTI), single-

input, single-output systems that are tasked to follow the same reference signal. A scalar,

LTI transformation is used to align the output from a source system to the output from a

target system. An upper bound on the 2-norm of the transformation error is derived and

minimized with respect to the transformation scalar. This minimized bound is analyzed

with respect to the system parameters to show when TL works best. TL is further studied

for wheeled robots, with data from simulation and experiment to supplement theoretical

analysis.
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In this thesis, condensed versions of Chapters 1, 2, 3, and 4.1 have been published in

the proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS) [13]. The remainder of this thesis contains unpublished material.
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Chapter 1

Introduction

Models that accurately represent dynamic systems are often difficult to derive mathe-

matically, or are unreliable due to parameter uncertainties or unknown external distur-

bances affecting the system. The potential use of data from simulations or experiments

to improve models of dynamic systems is a prime motivator for modern research at the

intersection of machine learning and control theory. Various regression techniques have

been used to learn dynamics, kinematics and disturbance models using data from physical

trials or simulations of the robot [2, 10,12,16].

Transfer Learning (TL) allows for this data to be generated by a second system.

In a training phase, both systems generate data, and a transformation that aligns one

dataset to the other is learned. Once this mapping is learned, the first system, also called

the target system, can use data generated by the second system, the source system, in

subsequent model learning (see Fig. 1.0.1). This transfer of data may be beneficial to

the model learning process if the source system is less costly, difficult, or hazardous to

operate than the target system.

In this paper, we study when such a data transfer is beneficial. We investigate TL

for two simple, linear, time-invariant (LTI), single-input, single-output (SISO) systems.

We use an H∞-norm minimization framework to define the quality of the data transfer

and analyze when the transfer works well and when it does not.

In robotics, TL has often been considered in the context of speeding up a single

robot’s task learning using knowledge obtained in a previous task performed by the same

1
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System 2

System 1

+−
Controller 2 Plant 2

d(t)

+−
Controller 1 Plant 1

Learning 2

Learning 1

e2(t) u2(t) x2(t)

e1(t) u1(t) x1(t)

? Transfer Learning

Figure 1.0.1: Transfer Learning framework. Systems 1 and 2 learn from input-output data
(dashed lines). The concept of Transfer Learning (TL) allows for System 1 to use data from
System 2 for its own learning task (red dash-dotted line). In this paper, we study TL from a
system-theoretic perspective and provide insight to when TL is beneficial.

robot. TL has, for example, been successfully used in an Iterative Learning Control

(ILC) framework to speed up learning of new tasks [1, 7, 8]. Research for multi-agent

robotic systems is relatively sparse [19]. Most common applications aim to speed up

joint or sequential learning either in an ILC framework by transferring task-dependent

disturbance estimates [15], or in a Reinforcement Learning framework by transferring

rules and policies of simple systems with discrete states [4, 9, 18]. However, TL can also

be used in a model learning framework to apply a transformation on input-output data

generated by one robot. This transformed data can then be input to a model learning

algorithm for a second, similar robot [3]. We are interested in the latter multi-agent

learning scenario.

In several applications beyond robotics, Manifold Alignment has been used to find an

optimal transformation to align datasets [6, 21]. In [20], this technique is demonstrated

for two simple state-space models that each need to learn a task using Reinforcement

Learning. In [3], a similar transformation technique is used on data from one robotic

arm to speed up learning of a robot model for a second robotic arm.

While these works have shown that TL is feasible for some examples, they do not

address the question of when the data transfer works well and when it fails. This paper

provides insight on how the quality of the transformation depends on the system proper-
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ties of the source and target systems. We study two first-order, LTI, SISO systems tasked

to follow the same reference signal and show that the transfer quality depends on the

location of the poles (that is, the stability properties) of both systems. Furthermore, to

the best of the authors’ knowledge, TL between two mobile robots has not been studied,

either in simulation, or in practice.

Despite the simplicity of the systems we choose to study, this paper offers two novel

results. Firstly, we study the feasibility of TL for control systems from a system-theoretic

perspective by formulating the problem as an H∞-norm minimization problem. An upper

bound on the 2-norm of the transformation error for a large set of reference signals is

derived and minimized with respect to the transformation parameter. We then analyze

how this minimized upper bound depends on the parameters of the two systems, namely

the poles and the gains. From this analysis, we can gain insight for which configurations

TL works best in this simplified scenario. We then consider how these results change

when the reference signal is used as an additional input to the transformation. To further

extend this analysis, we study two more cases: (i) when the two systems are tasked to

follow a reference signal from a smaller, more realistic set, and (ii) when the two systems

have uncertain poles.

Secondly, we analyze TL for two wheeled robots in three ways: (i) using the H∞-

norm minimization framework for systems represented by linearized kinematic unicycle

models, (ii) using data generated in simulation of the linearized and nonlinear kinematic

models, and (iii) with experimental data from a Pioneer robot.

The remainder of the thesis is structured as follows: Chapter 2 provides a background

on model learning and TL for control systems. In Chapter 3, the problem of TL for the

two first-order, LTI, SISO systems is presented and the minimized upper bound on the

2-norm of the transformation error is derived. In Chapter 4, further results are derived

for the extension problems and analyzed. In Chapter 5, TL is studied for two wheeled

robots as previously mentioned. Lastly, Chapter 6 provides concluding remarks.



Chapter 2

Background

2.1 Model Learning

Dynamics and kinematics models govern a robot’s behavior. While analytic models

can be derived from first principles, they often do not capture the real-world dynamics

accurately [2, 12]. Supervised model learning presents a solution by employing a regres-

sion tool to find a map from input data to labelled observations. Given a sequence of

input-output data with input x[k] ∈ Rn and output y[k] ∈ Rp, where k ∈ {0, 1, 2, ..., N}

and N is the number of samples obtained, the problem of model learning is to find a

map M : f(x)→ y such that some measure of the magnitude of the error sequence,

ε[k] = y[k]− f(x[k]), k ∈ {0, 1, 2, ..., N}, (2.1.1)

is minimized. For example, learning an inverse dynamics model for a robot arm can

be formulated as finding a map M : f(q, q̇, q̈)→ τ , where q ∈ Rp is a vector of joint

angles for all p joints of the arm, τ ∈ Rp is a vector of applied torques to each joint

and x ∈ R3p [11].

4
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2.2 Transfer Learning

When two robots (or control systems, in general) S1 and S2 execute a task, data is

generated by each system. Data from S2 can then undergo a transformation to align

with data from S1. The problem is akin to model learning in that a map needs to be

found. In [3] and [20], the authors model this map as an LTI transformation for each

data sample. We make the same assumption.

Let vectors x1[k] and x2[k] be sampled data from S1 and S2. We thus define the

problem of TL as finding a matrix A such that the vector 2-norm of

ε[k] = x1[k]−Ax2[k] (2.2.1)

is minimized for all times k ∈ {0, 1, 2, ..., N}. The vector x can consist of system states,

control inputs, or other variables that are relevant for a specific model learning algo-

rithm. For the inverse dynamics model learning example in [3], the vector x is defined

as x = [qT , q̇T , q̈T ,uT ]T . Once such a matrix is learned from one pair of datasets, ad-

ditional training data for learning the model of S1 can be obtained by transforming

subsequent data collected from S2 using A.

To find an optimal transformation that aligns the discrete datasets, a priori models

of each system need not be known, as the transformation only depends on data col-

lected from physical trials of the two systems. The disadvantage of this data-alignment

technique is that it is difficult to make predictions on the quality of the transformation.

Furthermore, there usually is no guarantee on the performance of a given transformation

on subsequent data.

Work in [3] shows that for two simulated robot arms, the data alignment worked

well and sped up model learning. However, it is not obvious that the same approach

works in other applications. Our work is motivated by an interest to further explore the

properties of an LTI transformation for control system data, and determine when TL is

most beneficial and when it fails.

We therefore choose to study two first-order, LTI, SISO systems, S1 and S2. In

this framework, x1(t) = x1(t), and x2(t) = x2(t) are the scalar states of both systems
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and A = α is a scalar that must map x2(t) to x1(t). For reference signals in the

set D = {d(t) : ‖d‖2 ≤ 1}, a unique α∗ is found to optimally align x2(t) to x1(t) for

all t ∈ [0,∞) in an H∞-norm sense. We call this approach the Output Transfer (OT)

case.

In a second scenario, which we call the Input-Output Transfer (IOT) case, we study

the case when the common reference signal d(t) is used in the transformation; that

is, x2(t) = [x2(t), d(t)]T and A = [β1, β2]. A transformation {β∗1 , β∗2} is numerically found

to optimally align a linear combination of x2(t) and d(t) to x1(t) for all t ∈ [0,∞) in

an H∞-norm sense.

In both cases, we derive an upper bound on the 2-norm of the transformation error

signal and minimize it with respect to the transformation parameters. We show that for

these simple systems, the minimized upper bound strongly depends on the poles of S1

and S2, and that systems with a fast response have an advantage over systems with a

slow response. We further show that the IOT case reduces the minimized error bound.

In the OT case, we extend our analysis in two ways. In the first, we add a low-pass

filter to filter out high-frequency components of the reference signals in D. This allows us

to study how the quality of TL varies the system parameters for more realistic reference

signals. In the second, we study what happens when the two systems have uncertain

poles. This provides some initial insight into the problem of TL when the two systems

are not completely known, for example, robots that need to learn part of their models.

Lastly, we demonstrate the data-alignment technique for two unicycle models and

compare how the transformation error computed from data generated in simulation by a

specific reference signal varies with source and target system parameters to the variation

of the minimized error bound found through our mathematical analysis for the set D.



Chapter 3

Output Transfer – A Bound on the

Transfer Error 2-Norm

3.1 Problem Formulation

In this section, we introduce a framework for analyzing TL for simple, LTI, SISO systems

and define the H∞-norm minimization problem for the OT case; that is, the case where

a scalar α is used to align x2(t), the output of the source system, to x1(t), the output of

the target system.

These two systems have transfer functions

G1(s) =
k1

s+ a1
, (3.1.1)

G2(s) =
k2

s+ a2
, (3.1.2)

where−a1 and−a2 are the poles, and k1 and k2 are the gains of G1 and G2 (see Fig. 3.1.1).

These transfer functions can represent path-following robots with closed-loop poles −a1
and −a2 and proportional feedback controller gains k1 and k2. For example, a unicy-

cle’s linearized kinematics model with proportional feedback control with gain k can be

represented by the transfer function k(s+ k)−1 (see Section 5.1).

The quantity of interest in the TL problem for the OT case is the error of the alignment

7
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k2

s+ a2

S2

α

k1

s+ a1

S1

+−

d(t)

x2(t)

x1(t)

eA(t)

GA

Figure 3.1.1: In the Output Transfer case, the signal x2(t) is weighted by a scalar α to match
x1(t). While x1(t) and x2(t) are outputs of sub-systems S1 and S2, the output of the overall
system is eA(t).

of x2(t) to x1(t) and is the output of the transfer system,

eA(t) = x1(t)− αx2(t), (3.1.3)

where α is a time-invariant scalar. The transfer function from d(t) to eA(t) is

GA(s) =
k1

s+ a1
− α k2

s+ a2
. (3.1.4)

To assure that GA(s) is asymptotically stable, a1 and a2 are assumed to be positive.

Furthermore, k2 is assumed to be non-zero to avoid the degenerate case where GA = G1.

Design Criterion. The signal 2-norm is chosen as a measure for the signals eA(t)

and is denoted by ‖ · ‖2. This measure can be determined for a specific reference sig-

nal d(t) ∈ L2[0,∞), where L2[0,∞) denotes the set of all signals that have finite energy

on an infinite time interval [0,∞). However, the H∞-norm of GA provides the least upper

bound on ‖eA‖2 for all d(t) ∈ D, as shown in [5]; that is,

‖GA‖∞ = sup{‖eA‖2 : d(t) ∈ D}, (3.1.5)
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the H∞-norm of GA is defined as

‖GA‖∞ ··= sup
ω
|GA(jω, α)|. (3.1.6)

Definition 1. The transfer problem is formulated as minimizing ‖GA‖∞ with respect

to α:

α∗ ··= arg min
α
‖GA‖∞. (3.1.7)

The H∞-norm is useful in analyzing the properties of TL for a large set of refer-

ence signals. Assuming that any signal in D is a potential reference signal, the optimal

transformation α∗ represents the best possible transformation that would be obtained

when observing the system for an infinite amount of time under all possible reference

inputs d(t) ∈ D. Consequently, as long as the reference signal belongs to the set D,

the H∞-norm evaluated at α∗ provides the worst possible transformation error we could

get.

3.2 Analysis of the Error Bound

Recall the TL problem for this case,

α∗ := arg min
α
‖GA‖∞ (3.2.1)

= arg min
α
‖GA‖2∞, (3.2.2)

where minimizing the squared norm with respect to α is the same as minimizing the

norm itself. In this section, we derive an analytic expression for ‖GA‖2∞ as a function of

α, a1, a2, k1, and k2, and find minα ‖GA‖2∞ as a function of a1, a2 and k1.

To begin, ‖GA‖2∞ must be found. It is the peak squared magnitude over all frequen-

cies ω. The squared magnitude of GA(jω, α) is

|GA(jω, α)|2 =
λ1(α)ω2 + λ2(α)

ω4 + λ4ω2 + λ5
, (3.2.3)
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where

λ1(α) = (k1 − k2α)2, (3.2.4)

λ2(α) = (k1a2 − k2a1α)2, (3.2.5)

λ4 = a21 + a22, (3.2.6)

λ5 = a21a
2
2. (3.2.7)

The following expressions are used in the subsequent lemma:

α1 =
k1
k2

a2
a31

(a21 + a22 − a1a2 +
√

(a1 − a2)2(a21 + a22)), (3.2.8)

α2 =
k1
k2

a2
a31

(a21 + a22 − a1a2 −
√

(a1 − a2)2(a21 + a22)), (3.2.9)

φ(α) =
λ21

λ4λ1 − 2λ2 + 2
√
λ5λ21 − λ4λ1λ2 + λ22

, (3.2.10)

ψ(α) =
λ2(α)

λ5
. (3.2.11)

Lemma 1. For GA in (3.1.4), ‖GA‖2∞ is a piecewise continuous function with respect to α

that maximizes |GA(jω, α)|2 in (3.2.3) with respect to ω for all a1, a2 > 0, k1, and k2 6= 0.

With the expressions defined in (3.2.8)-(3.2.11), it is given by

γ2A(α) := ‖GA‖2∞ =

φ(α) if α2 < α < α1

ψ(α) otherwise.

(3.2.12)

Proof. The proof is presented in Appendix A.

The function γ2A(α) thus provides the least upper bound on ‖eA‖22, subject to d(t) ∈ D,

as a function of the user-defined parameter α. This function can be minimized with

respect to α. The result is given in Theorem 1.

Theorem 1. For GA in (3.1.4), the parameter α that minimizes ‖GA‖2∞ for
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all a1, a2 > 0, k1, and k2 6= 0 is given by

α∗ =
k1
k2

2a2(
4a1 + a2 −

√
8a21 + a22

) . (3.2.13)

Proof. The proof is presented in Appendix B.

Evaluating ‖GA‖2∞ at α∗ yields

γ∗A
2 := min

α
γ2A(α) (3.2.14)

=
k21

(
4a21 − a2

(
a2 +

√
8a21 + a22

))4
32a21(a1 + a2)3

(
4a1a2

√
ξ1 + (a2 − a1)ξ2

), (3.2.15)

where

ξ1 = 2a21(a1 − a2)2
(

4a21 + 5a22 − 3a2

√
8a21 + a22

)
, (3.2.16)

ξ2 = a42 − 8a21(a
2
1 + a22) + a2(4a

2
1 + a22)

√
8a21 + a22. (3.2.17)

Remark 1. If a1 = a2, the optimization problem in (3.1.7) is trivial; α∗ = k1k
−1
2

and γ∗A = 0. That is, if S1 and S2 have identical poles (but potentially different gains),

perfect transfer can be achieved with zero transfer error. In this case, α∗ only needs to

compensate for the difference in the gains of the two systems.

Remark 2. The minimized H∞-norm, γ∗A, is independent of k2. This can be explained by

observing that in Fig. 3.1.1, insufficient amplification of the output x2(t), by the gain k2,

can be compensated by the multiplier α.

Remark 3. If the poles −a1 and −a2 are held constant, γ∗A
2 is proportional to k21. As

a result, the transfer error decreases if |k1| is decreased with the degenerate limit case

being k1 = 0, α∗ = 0, γ∗A = 0, which achieves perfect matching because the target system

outputs zero.

Additionally, the result of Theorem 1 can be analyzed for varying pole combina-

tions (−a1, −a2). There are two different ways to interpret the result: (i) by keeping the
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target system gain k1 constant, or (ii) by re-parametrizing the systems using their DC

gains g1 = k1a
−1
1 and g2 = k2a

−1
2 , G1 = g1a1(s+ a1)

−1 and likewise for G2, and keeping

the DC gains constant.

Corollary 1. If the target system gain k1 is held constant, γ∗A, defined in (3.2.14),

approaches infinity as the pole of the target system S1 approaches the imaginary axis.

Therefore, TL may not be beneficial if the target system has a slow response to reference

inputs.

Proof. In (3.2.15), a21 is factored out in the denominator. Therefore, lim
a1→0+

γ∗A →∞.

Corollary 1 shows that TL is problematic if the target system has a pole that is close

to the imaginary axis, unless a2 ≈ a1. The interpretation of this is that if a1 � a2, the

target system response is slow and does not follow the reference signal well, while the

source system does. However, keeping k1 constant and decreasing a1 also means that the

DC gain g1 increases, which contributes to the bad transfer quality.

Therefore, it is valuable to study the results under the assumption of constant DC

gains, which is more realistic in practice. The minimized bound can then be written as

γ∗A
2 = g21

(
4a21 − a2

(
a2 +

√
8a21 + a22

))4
32(a1 + a2)3

(
4a1a2

√
ξ1 + (a2 − a1)ξ2

), (3.2.18)

where ξ1 and ξ2 are from (3.2.16) and (3.2.17).

Corollary 2. If g1 is held constant, it can be shown that γ∗A → |g1|/4 as a1 → 0

and γ∗A → |g1| as a2 → 0.

Proof. Corollary 2 follows directly from (3.2.16):(3.2.18) by taking the limit a1 → 0

and a2 → 0.

The aforementioned results can be visualized in a contour plot that illustrates how

the minimized H∞-norm of GA varies as a function of the pole magnitudes a1 and a2. In

Fig. 3.2.1a, we keep k1 constant (according to Corollary 1). The minimized bound γ∗A is

normalized by |k1|. The base-10 logarithm of the data is shown to illustrate the variation

more clearly. A white line is drawn through the diagonal as γ∗A = 0 when a1 = a2.
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(a) (b)

Figure 3.2.1: On the left is a contour plot of log10[γ
∗
A|k
−1
1 |] vs. a1 and a2. When a1 = a2, γ

∗
A|k
−1
1 |

is zero. As the pole a1 approaches zero, γ∗A|k
−1
1 | grows exponentially. The black line illustrates

a constant contour line where γ∗A|k
−1
1 | = 1E−2. On the right, a contour plot of log10[γ

∗
A] vs. a1

and a2 is shown for k1 = a1, that is, g1 = 1.

In Fig. 3.2.1b, a contour plot of γ∗A is shown, where now the DC gain g1 is held

constant (according to Corollary 2). We chose g1 = 1. This is in contrast to Fig. 3.2.1a

where k1 is held constant.

Key Observation 1: In Fig. 3.2.1a, the minimized H∞-norm, γ∗A, increases expo-

nentially with diminishing a1, a result expected from Corollary 1 for constant k1. This

indicates that S1 must not have a pole close to the imaginary axis if we want to achieve

an accurate data transfer from S2 to S1, unless |k1| is small as well.

Key Observation 2: For both Figs. 3.2.1a and 3.2.1b with constant k1 and con-

stant g1, respectively, the transfer quality is best if the poles of S1 and S2 lie close

together.

Key Observation 3: For both Figs. 3.2.1a and 3.2.1b, if the poles a1 and a2 are of

greater magnitude, they can be further apart for the minimized error bound to stay on the

same contour line. For example, consider the two black contour lines for γ∗A|k−11 | = 1E−2

in Fig. 3.2.1a. If a1 = 10, then to not do worse than an error of around 1E−2, a2 must be

approximately between 7.8 and 13.1. However, if a1 = 12, then the range of allowable a2

increases by around 47% to be approximately between 8.9 and 16.7.

Key Observation 4: According to Fig. 3.2.1b, if the DC gain g1 is held constant,

then it is slightly more preferable to have a2 > a1, in contrast to if the gain itself, k1, is
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held constant.

In the next chapter, we extend this analysis to the IOT case, where the reference

signal is used in the transformation. We also modify the OT case in two separate ways,

one by letting the reference signal go through a low-pass filter, and another by adding

uncertainty to the two systems S1 and S2.



Chapter 4

Extensions to the Output Transfer

Case

4.1 Input–Output Transfer Case

We now consider the case when the reference signal is also used in the transformation.

The output of the transfer system GB is the error signal

eB(t) = x1(t)− (β1x2(t) + β2d(t)), (4.1.1)

where {β1, β2} are time-invariant scalars. This is the Input-Output Transfer case (see

Fig. 4.1.1). The transfer function from d(t) to eB(t) is

GB(s) =
k1

s+ a1
− β1

k2
s+ a2

− β2. (4.1.2)

Definition 2. The transfer problem is formulated as minimizing ‖GB‖∞ with respect

to {β1, β2}:

{β∗1 , β∗2} := arg min
{β1,β2}

‖GB‖∞. (4.1.3)

15
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k2

s+ a2

S2

β1

β2

++

k1

s+ a1

S1

+−

d(t)

x2(t)

x1(t)

eB(t)

GB

Figure 4.1.1: In the Input-Output Transfer Case, the signal x1(t) is estimated with a linear
combination of x2(t) and d(t).

Finding equivalent analytic results for the IOT case proved to be more difficult. Re-

sults are obtained from numerically finding ‖GB‖∞ as a function β = [β1, β2]. Numerical

methods can then be used to find an estimate for β∗, along with γ∗B := γB(β∗), where we

use a similar notation as in (3.2.12): γB(β) := ‖GB‖∞.

The squared magnitude of GB(jω,β) is

|GB(jω,β)|2 =
θ1(β)ω4 + θ2(β)ω2 + θ3(β)

ω4 + λ4ω2 + λ5
, (4.1.4)

where

θ1(β) = β2
2 , (4.1.5)

θ2(β) = (k2β1 + a2β2)
2 + (k1 − a1β2)2 − 2β1k1k2, (4.1.6)

θ3(β) = (a1(k2β1 + a2β2)− a2k1)2. (4.1.7)

After finding the roots of the partial derivative of |GB(jω,β)|2 with respect to ω, it can

be shown that

γ2B(β) = max

β2
2 ,

θ3(β)

λ4
, |GB(jω2,β)|2

 , (4.1.8)
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where

ω2
2 = 2

√
p(β)2 − q(β)− 2p(β), (4.1.9)

p(β) =
1

2

λ5θ1(β)− θ3(β)

λ4θ1(β)− θ2(β)
, (4.1.10)

q(β) =
1

4

λ5θ2(β)− λ4θ3(β)

λ4θ1(β)− θ2(β)
. (4.1.11)

Remark 4. If a1 = a2, the optimization problem in (4.1.3) is trivial: β∗ = [k1k
−1
2 , 0]

and γ∗B = 0.

In Fig. 4.1.2a, a contour plot illustrates how the minimized H∞-norm of GB varies

as a function of the pole magnitudes a1 and a2. To compare the minimized H∞-norms

of the transfer functions GA and GB, a contour plot of the ratio γ∗B/γ
∗
A is shown in

Fig. 4.1.2b. This ratio is undefined when a1 = a2 because γ∗A = γ∗B = 0. For γ∗B, no closed-

form solutions are available to suggest how γ∗B may be normalized, if at all. Therefore, k1

and k2 are both set to one in Figs. 4.1.2a and 4.1.2b. To obtain β∗ and γ∗B, a basic

grid-search method was employed.

A visual comparison of Figs. 4.1.2a and 4.1.2b shows that adding a reference signal

to the transformation does not have a big impact on how the minimized H∞-norm varies

with a1 and a2. Indeed, the first three key observations made in Section 3.2 hold for this

case as well.

Figures similar to Fig. 4.1.2a and 4.1.2b can be generated for g1 = g2 = 1. The plot

of γ∗B for the constant DC gain case looks similar to Fig. 3.2.1b, but now appears almost

completely symmetrical. Similar to Corollary 2, γ∗B → |g1|/2 when a1 → 0 for fixed a2,

and also when a2 → 0 for fixed a1. The only difference is in the limit case. When a1 6= 0

and a2 = 0, γ∗B = |g1|/2, but when a1 6= 0 and a2 = 0, γ∗B = 0. Qualitatively, the ratio

plot of γ∗B/γ
∗
A looks very similar to Fig. 4.1.2b.

Key Observation 5: According to Fig. 4.1.2b, γ∗A is always greater than γ∗B. This

shows that using the reference signal in the transformation reduces the least upper bound

on the 2-norm of the transformation error; that is, γ∗B/γ
∗
A is smaller than one. The

asymmetry in Fig. 4.1.2b shows that it is especially useful to do this when a2 < a1; that
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(a) (b)

Figure 4.1.2: On the left, a contour plot of log10[γ
∗
B] vs. a1 and a2 is shown. The gains k1

and k2 are set to one to facilitate a fair comparison with γ∗A. Here too, γ∗B is zero when a1 = a2
and grows exponentially as the pole a1 approaches zero. On the right, a contour plot illustrates
the ratio γ∗B/γ

∗
A vs. a1 and a2 for k1 = 1 and k2 = 1. It can be seen that using the reference

signal in the transformation always reduces the minimized H∞-norm of the system and the
asymmetry reveals that the benefit of doing so is most evident when a2 < a1.

is, when the target system responds faster than the source system. The same observation

holds for the OT analysis with constant DC gain.

4.2 Output Transfer Case – With Low-Pass Filter

The H∞ analysis is useful for determining the worst-case transformation error for all the

reference signals in set D. However, this includes reference signals with high frequency

components that are unrealistic in practice. For example, the blue signal in Fig. 4.2.1b

has a 2-norm of about 0.8, but it is not one that a path-following robot would be expected

to track. To address this, a low-pass filter (LPF) can be added to the transfer system in

the OT case to filter out high-frequency components of d(t) (see Fig. 4.2.1a). A first-order

filter of the form

W (s) =
aW

s+ aW
(4.2.1)
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k2

s+ a2

S2

α

W (s)

k1

s+ a1

S1

+−

d(t)

x2(t)

x1(t)

eW (t)

GW

(a) (b)

Figure 4.2.1: On the left is a block diagram of the OT case modified with a low-pass filter W (s)
added to the reference signal. On the right, the effect of a low-pass filter can be visualized; the
high-frequency component of the blue signal is filtered out, leaving the red signal.

is chosen such that the DC gain of W (s) is 1. The parameter aW is assumed to always

be positive and is chosen to be less than both a1 and a2,

aW = ηmin(a1, a2), 0 < η < 1. (4.2.2)

This is done so that the filter’s cut-off frequency, that is, the frequency at which the

magnitude of the signal begins to decrease from its nominal value, is lower than the

cut-off frequency of the two systems S1 and S2. For aW = 0.5, the LPF produces the red

signal in Fig. 4.2.1b.

While the error signal remains the same as in (3.1.3), eW = x1(t)−αx2(t), the transfer

function from d(t) to eW (t) is

GW (s) =
aW

s+ aW

(
k1

s+ a1
− α k2

s+ a2

)
. (4.2.3)

The transfer problem remains the same: minimizing ‖GW‖∞ with respect to α. In

this problem, the H∞ norm of GW is found numerically over a search space of α. While

the derivative of |GW (ω, α)|2 with respect to ω can be computed, finding its zeros ana-

lytically is a complicated task. The maximizing ω can be found by numerically finding
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(a) (b)

Figure 4.2.2: On the left is a contour plot of log10[γ
∗
W ] vs. a1 and a2 for k1 = k2 = 1 and η = .5.

On the right, the same plot for g1 = g2 = 1.

the zeros of this derivative, evaluating |GW (ω, α)|2 at these zeros, and finding the max-

imum value γW (α) ··= maxω |GW (ω, α)|. Over a search space of α, the minimized H∞

norm, γ∗W ··= γW (α∗), can be found.

If a1 = a2, α
∗ = k1k

−1
2 and γ∗W = 0. When a1 6= a2, solutions can be found numerically.

For η = .5, Figs. 4.2.2a-4.2.2b show how γ∗W varies with the pole magnitudes, first when

the gains are constant, and then when the DC gains are constant.

Key Observation 6: While it can be shown that γ∗W < γ∗A as expected, we see that

the variation of γ∗W with a1 and a2 is similar to that of γ∗A. However, we also see that γ∗W

is more symmetrical with respect to a1 and a2 than γ∗A. For low-frequency reference

signals, it matters less if the target or source system has a faster response.

4.3 Output Transfer Case – Pole Uncertainty

In this section, we analyze TL for two systems whose poles −a1 and −a2 are uncertain.

This is done by using a technique from robust control to deal with the uncertainty in the

system. We begin by adding uncertainty to one system.
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H ∆

+−
G

d(t) x(t)

GP

Figure 4.3.1: Inverse multiplicative uncertainty added to a system G.

4.3.1 Adding Uncertainty to One System

If the pole of a first-order system of the form G = k(s+ a)−1 is uncertain, a new transfer

function can be expressed as

GP =
k

s+ a(1 + rδ)
, (4.3.1)

where δ is an unknown scalar (the source of the uncertainty) constrained to the inter-

val [−1, 1], and r is a known scalar in the interval [0, 1) used to express the degree of

uncertainty of a, the nominal pole magnitude. Rearranging 4.3.1, GP can be written as

GP =
G

1−H∆
, (4.3.2)

where δ has been replaced by an unknown transfer function ∆ that is subject to the

constraint, ‖∆‖∞ ≤ 1, and

H(s) := − ar

s+ a
(4.3.3)

is a known weight. Note that the DC gain of H(s) is r. The uncertainty of the trans-

fer function expressed by the form in (4.3.2) is known as inverse multiplicative uncer-

tainty [17] (see Fig. 4.3.1). Since ∆ is unknown, ‖GP‖∞ cannot be evaluated. However,

the known bound on ‖∆‖∞ can be used to derive a bound on ‖GP‖∞.
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Lemma 2. Let GP = G(1−H∆)−1. If ‖∆‖∞ ≤ 1 and ‖H‖∞ < 1, then

‖GP‖∞ ≤
‖G‖∞

1− ‖H‖∞
. (4.3.4)

Proof. Since the H∞ norm is sub-multiplicative,

‖GP‖∞ = ‖G(1−H∆)−1‖∞ (4.3.5)

≤ ‖G‖∞‖(1−H∆)−1‖∞. (4.3.6)

The norm of H∆ has an upper bound of 1,

‖H∆‖∞ ≤ ‖H‖∞‖∆‖∞, (4.3.7)

≤ ‖H‖∞, (4.3.8)

< 1. (4.3.9)

Using this bound and a result from geometric series,

‖(1−H∆)−1‖∞ = ‖
∞∑
i=0

(H∆)i‖∞, (4.3.10)

≤
∞∑
i=0

‖(H∆)i‖∞, (4.3.11)

=
1

1− ‖H∆‖∞
, (4.3.12)

≤ 1

1− ‖H‖∞
. (4.3.13)

Putting everything together,

‖GP‖∞ ≤
‖G‖∞

1− ‖H‖∞
. (4.3.14)
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G2

1−H2∆2

S2

α

G1

1−H1∆1

S1

+−

d(t)

x2(t)

x1(t)

eH(t)

GH

Figure 4.3.2: The OT case with inverse multiplicative uncertainty added to both systems.

4.3.2 Adding Uncertainty to the Transfer System

In this modified TL scenario, the α is computed to minimize an upper bound on ‖GH‖∞,

where GH is the transfer function from d(t) to eH(t) in Fig. 4.3.2,

GH =
G1

1−H1∆1

− α G2

1−H2∆2

(4.3.15)

=
G1 −G2α−G1H2∆2 +G2H1∆1α

(1−H1∆1)(1−H2∆2)
(4.3.16)

The same process to derive the upper bound in Section 4.3.1 can be used to derive an

upper bound on ‖GH‖∞,

‖GH‖∞ ≤ ρ(α) :=
‖G1 −G2α‖∞ + ‖G1H2‖∞ + ‖G2H1α‖∞

(1− ‖H1‖∞)(1− ‖H2‖∞)
. (4.3.17)

The TL problem is then formulated as

α∗ ··= arg min
α

ρ(α) (4.3.18)

= arg min
α

(‖G1 −G2α‖∞ + ‖G2H1α‖∞) . (4.3.19)
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Key Observation 7: In this uncertainty analysis, the optimal transformation α∗ is

independent of r2, the uncertainty of the source system.

The first term in the numerator of (4.3.17) is simply γ∗A(α), ‖H1‖∞ and ‖H2‖∞ are r1

and r2 respectively, and

‖G2H1α‖∞ = |k2α|
r1
a2
, (4.3.20)

‖G1H2‖∞ = |k1|
r2
a1
. (4.3.21)

Let ρ∗ ··= ρ(α∗). If a1 = a2, then

α∗ = arg min
α

(
|k1 − k2α|

a
+
|k2α|r1
a

)
(4.3.22)

The two points where the expression in (4.3.22) has local minima are αc1 = 0

and αc2 = k1k
−1
2 . At these two points, the expression equals |k1|a−1 and r1|k1|a−1.

Since r1 < 1, the global minimum is at α∗ = k1k
−1
2 and

ρ∗ =
|k1|
a

r1 + r2

(1− r1)(1− r2)
. (4.3.23)

This result shows that if the systems have uncertain poles but their nominal poles are

equal, then the best transformation is still the ratio of the gains of the two systems.

When a1 6= a2, solutions can be found numerically. For r1 = r2 = .2, Fig. 4.3.3a shows

how ρ∗ varies with the pole magnitudes when k1 = k2 = 1. Fig. 4.3.3b shows the same

plot when g1 = g2 = 1.

Key Observation 8: We see that when the DC gain is held constant, the upper

bound on the H∞-norm is much greater than when the gains themselves are held constant.
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(a) (b)

Figure 4.3.3: On the left is a contour plot of log10[ρ
∗] vs. a1 and a2 for k1 = k2 = 1 and

r1 = r2 = .2. On the right, the same plot for g1 = g2 = 1.

4.4 Summary of Theoretical Results

We conclude this chapter with a summary of the results presented above. For two first-

order, LTI, SISO systems, two ways to map to x1(t) for the purpose of TL were studied,

Output Transfer and Input-Output transfer. The OT case was further studied by adding

a low-pass filter to the reference signal and by considering pole uncertainty in the two

systems. The following observations were made:

1. if the two systems are dynamically similar, that is, a1 ≈ a2, the bound on the

transformation error is small relative to if the systems are dynamically different;

2. for a fixed error bound, the two systems can be dynamically further apart if the

poles are further from the imaginary axis;

3. the error bound is greater if the DC gain of the target system is greater;

4. the transformation error bound decreases if the reference signal is used, and more

so if the target system has a faster response than the source system;

5. the addition of low-pass filter to the OT case does not markedly change how the

error bound varies with a1 and a2, but it does make the bound more symmetrical

with respect to a1 and a2;
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6. and, if pole uncertainty is introduced to the two systems, the optimal transforma-

tion α∗ is independent of the uncertainty in the source system.

In general, we have seen how the stability properties of the two control systems

influence the quality of the transformation. While these results may scale to higher order

systems, the oscillatory behaviour of such systems will further contribute to how the

transformation error varies with the system characteristics.



Chapter 5

Transfer Learning for 2D Wheeled

Robots

We began the paper by making the argument that while TL for robotics has been shown

to work before for specific examples, it has not been systematically studied. Therefore,

our first novel result was the theoretical analysis of how the transfer error for first-order,

LTI, SISO, systems relates to the system poles and gains, highlighting that the more

dynamically similar the robots are, the better the transfer performance.

In this chapter, we perform a case study for two wheeled ground robots that can

be modelled in the same way but vary parametrically. We use our theoretical results

to study how well TL works for different pairs of source and target robots that vary in

their control gains. For these different pairs of robots, data is generated in simulation

and the transfer error 2-norm is compared to the error bound found from the H∞-norm

minimization technique. Lastly, experimental data obtained from operating a Pioneer

robot is used to learn a transformation and the error 2-norm computed. A comparison

is made to the corresponding error 2-norm computed from simulation data.

27
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5.1 Kinematic Model and Linearization about a

Point Ahead

The 2D unicycle, depicted in Fig. 5.1.1a, has the pose x = [x, y, θ]T and its motion in an

inertial frame can be modelled by the nonlinear kinematic equations,

ẋ = v cos θ, (5.1.1)

ẏ = v sin θ, (5.1.2)

θ̇ = ω, (5.1.3)

where v and ω are the translational and rotational speeds. To analyze TL for the unicycle

in the H∞ framework, the model must first be linearized. To begin, we define the unicycle

pose on the complex plane,

z = x+ jy, (5.1.4)

r = ejθ. (5.1.5)

In this coordinate system, the unicycle model is

ż = rv, (5.1.6)

ṙ = jrω. (5.1.7)

We then linearize the unicycle about a point p := z + εr that is a distance ε > 0 ahead

of the unicycle (see Fig. 5.1.1b). With a control input u, the linearized unicycle is then

a kinematic integrator

ṗ = u. (5.1.8)

By controlling the position of a point ahead of the robot, the rotation, and hence the non-

linearity of the system is removed. To track a reference signal zref , a simple proportional
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(a) (b)

Figure 5.1.1: On the left is a depiction of a 2D wheeled robot. On the right is the position z of
a unicycle on the complex plane with the point p ahead by distance ε.

controller with gain k can be devised,

u = k(zref − p). (5.1.9)

The resulting closed-loop system is G = k(s+ k)−1 (see Fig. 5.1.2a). This is exactly

the form of the system used in the TL analysis of the OT case with constant DC gain. In

this analysis, the output of each system is the position of a point ahead of the unicycle in

the complex plane: p = px + jpy. However, it is more desirable to analyze 2D TL, where a

time-invariant, 2×2 matrix A is optimized to align the vector [px,2, py,2]
T to [px,1, py,1]

T .

To facilitate this, we modify the closed-loop system G to be multi-input, multi-output

(MIMO) (see Fig. 5.1.2b). In the next section, we derive the H∞-norm of a 2D transfer

system and minimize it with respect to the matrix A.

But first, we derive nonlinear controllers for the translational and rotational velocities

of the unicycle from the linearized model. Given that

ṗ = rv + jrωε, (5.1.10)

the linear controller (5.1.9), and the error terms ex = xref − x and ey = yref − y, the
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+−
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+−
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s−1 0
0 s−1

][
xref
yref

]
u

[
px
py
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Figure 5.1.2: On the left, the closed-loop control block diagram for the linearized unicycle. On
the right, a 2D decomposition of the linearized system.

kinematic integrator can be expanded,

rv + jrωε = k (ex + ey − εr) . (5.1.11)

Two equations can obtained by separating the real and imaginary components

of (5.1.11), which can be solved for v and ω,

v = k (ex cos θ + ey sin θ − ε) , (5.1.12)

ω =
k

ε
(ey cos θ − ex sin θ) . (5.1.13)

These feedback controllers can control the nonlinear system (5.1.1):(5.1.3) in conjunction

with constraints on v and ω to give a more realistic simulation of unicycle robots as well

as to control the Pioneer robot in the indoor experiment.

5.2 Analysis of the Bound on the Transfer Error

2-Norm

The input of the 2D transfer system is d = [xref , yref ]T , the output is

eA =

px,1 − (a1,1px,2 + a1,2py,2)

py,1 − (a2,1px,2 + a2,2py,2)

 , (5.2.1)
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and the transfer function is

GA(s) = G1 −AG2. (5.2.2)

For the 2D system, the H∞-norm of GA is the peak singular value of the ma-

trix GA(jω,A),

‖GA‖∞ = max
ω

σ̄ (GA(jω,A)) . (5.2.3)

The peak singular value is given by

σ̄ =
tr(GH

AGA)

2
+

√(
tr(GH

AGA)

2

)2

− det(GH
AGA), (5.2.4)

where GH
A is the conjugate transpose of GA, tr(·) is the trace of the argument matrix,

and det(·) is the determinant of the argument matrix.

After numerically finding γA := minA ‖GA‖∞, we obtain the same result as in the OT

case with constant DC gain. Indeed, if γA were to be found for various combinations

of k1 and k2, a figure identical to Fig. 3.2.1b would be obtained. In fact, we find that the

optimal transformation matrix is simply

A∗ = α∗

1 0

0 1

 , (5.2.5)

where α∗ is the optimal transformation found in the OT case with constant DC gain.

That a∗12 = a∗21 = 0 is expected because of the diagonal nature of the transfer function

matrices of the linearized unicycle model; that is, py is independent of xref and vice-versa.

That a∗11 = a∗11 is expected because the gains used in each of the two dimensions are the

same.
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5.3 Alignment–based Transfer Learning with Simu-

lation Data

In this section, we demonstrate TL for datasets generated by tasking two linearized

unicycle robots to follow a specific reference signal in simulation. Their models and

controllers are given by (5.1.8) and (5.1.9) respectively.

For the simulation, the model and controller are discretized, resulting in the discrete-

time equations

p[i+ 1] = p[i] + δu[i] + np,x + jnp,y, np,x, np,y ∼ N (0, σ2), (5.3.1)

u[i] = k(zref [i]− p[i]), (5.3.2)

where i and δ are the discrete-time index and time step, respectively. For a sampling

rate of 200 Hz, δ is chosen to be 0.005. To the x and y dimensions, we separately add

noise np,x and np,y, which are Gaussian distributed with zero mean and variance σ2. The

robots are tasked to follow an outward spiral trajectory zref = xref + jyref , where xref

and yref are given by

xref (t) = η3 sin(η1t)e
η2t, (5.3.3)

yref (t) = η3
(

cos(η1t)e
η2t − 1

)
. (5.3.4)

The parameters η1 = .1, η2 = .01, and η3 = .03 are chosen and the simulation is run

for 4π/η1 ≈ 126 seconds such that ‖zref‖2 < 1. Data is collected for p1[i], p2[i], and zref [i],

where i ∈ {1, 2, . . . , N}. Let P1 denote a (N × 1) matrix of samples of p1[i],

P1 =
[
p1[1] · · · p1[i] · · · p1[N ]

]T
. (5.3.5)

Similarly, P2 is constructed from samples of p2[i]. Let M1 = [Re(PT
1 ), Im(PT

1 )]T and

likewise for M2. Then, by ordinary least-squares regression, an optimal ᾱ is found such
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that

ᾱ = arg min
α

ET
AEA, (5.3.6)

where EA := M1 − αM2. The solution is given by

ᾱ = M+
2 M1, (5.3.7)

where M+
2 = [MT

2 M2]
−1MT

2 . The mapped trajectory in the complex plane is then

P̂1D = ᾱP2. (5.3.8)

An estimate of the 2-norm of the error signal is then computed by trapezoidal integration,

‖eA‖2 =

√√√√δ

2

N∑
i=2

(|eA[i]|2 + |eA[i− 1]|2), (5.3.9)

eA[i] = p1[i]− ᾱp2[i]. (5.3.10)

Here too, a 2× 2 matrix Ā can be found to optimally align the x and y position data

of one unicycle to the other. Let T = [Re (P1) , Im (P1)] and S = [Re (P2) , Im (P2)].

Then, a vector of the four optimal parameters in Ā, ā = [ā11, ā12, ā21, ā22]
T , can be found

by minimizing the sum squared error terms,

ā = arg min
a

ET
AEA, (5.3.11)

EA = vec(T)− [I2 ⊗ S] a, (5.3.12)

where vec(·) transforms the argument matrix into a column vector, I2 is the 2× 2 identity

matrix, and ⊗ is the Kronecker product operator; [I2 ⊗ S] results in a 2N × 4 block

diagonal matrix with S on the diagonal and zeros elsewhere. Similar to (5.3.7), the
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optimal transformation is given by

ā = [I2 ⊗ S]+ vec(T). (5.3.13)

The mapped trajectory in the complex plane is then constructed by using the first and

second columns of the N × 2 matrix SĀ as real and imaginary components,

P̂2D = SĀ

1

0

+ j

1

0

 . (5.3.14)

An estimate of the 2-norm of the 2D error signal is then computed by trapezoidal inte-

gration,

‖eA‖2 =

√√√√δ

2

N∑
i=2

(eA[i]eTA[i] + eA[i− 1]eTA[i− 1]), (5.3.15)

eA[i] = T[i]− S[i]Ā. (5.3.16)

Fig. 5.3.1a shows the trajectories of the target and source systems and the 1D and 2D

alignments for k1 = 0.5 and k2 = 1.25, with noise variance σ2 = 1E−5. Fig. 5.3.1b shows

the 1D alignment (black) and the 2D alignment (green) errors, |eA[i]| and
√

eA[i]eTA[i]

respectively, at each time step i = 1, 2, ..., N , as well as the distance between the target

and source systems’ trajectories and the (blue), which acts as a control case.

Over the full time period, the estimates of the 2-norm of each error signal and of the

control case are given in Table 5.3.1.

Table 5.3.1: The 2-norm of the 1D and 2D transformation errors and of the difference between
the source and target trajectories.

‖p1 − p2‖2 1.63
‖eA‖2 1.52
‖eA‖2 0.69

Although the H∞ analysis predicts that the performance of the 2D transformation will

not improve over the 1D one, Fig. 5.3.1b and Table 5.3.1 show that the 2D transformation
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(a) (b)

Figure 5.3.1: On the left, the two unicycle models move in the outward spiral. The TL objective
is to align the red trajectory to the blue through ᾱ for the 1D case (black line) and through Ā
for the 2D case (green line). On the right is a plot of the error distance at each time step of the
simulation for the 1D case (black line), 2D case (green line), as well as the distance between
both unicycle trajectories for comparison (blue line).

reduces the error. Indeed, we see that the 2× 2 matrix learned from this data is

Ā =

 0.9762 0.1146

−0.0759 0.9773

 , (5.3.17)

unlike A∗ in (5.2.5) from the H∞ analysis, whose off-diagonal elements are 0.

We now see how the 2-norm of the transformation error varies for simulations that

use different combinations of k1 and k2 in Fig 5.3.2a. Fig 5.3.2b illustrates the ratio

of ‖eA‖2/‖eA‖2 vs. k1 and k2. A plot similar to Fig. 5.3.2a can be made by running the

nonlinear model from (5.1.1):(5.1.3) with the nonlinear controller from (5.1.12):(5.1.13)

in simulation. However, this plot is not included here due to the visual similarity with

Fig. 5.3.2a.

From Fig. 5.3.2a, we see that ‖eA‖2 varies in a way that is similar to γ∗A without

the constant DC gain in some regions, but varies similar to γ∗A with the constant DC

gain when k1 � k2. Specifically, we see that the asymmetry in Fig. 3.2.1b is preserved

in Fig. 5.3.2a; that is, the transformation error is greater when k1 � k2, as compared to

when k1 � k2.

We see from Fig. 5.3.2b that the error 2-norm is always lower when the 2D trans-
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(a) (b)

Figure 5.3.2: On the left is a contour plot of log10[‖eA‖2] vs. k1 and k2. On the right, a contour
plot of ‖eA‖2/‖eA‖2 vs. k1 and k2 is shown. For both figures, σ2 = 1E−5.

formation is used; that is, ‖eA‖2 < ‖eA‖2. However, when k1 ≈ k2, there is no marked

benefit of using the 2D transformation.

A more detailed comparison of ‖eA‖2 and γ∗W (OT case with constant DC gain and

the low-pass filter) can be made by observing Figs. 5.3.3a and 5.3.3c. In each figure,

line plots of the transformation error 2-norm or bound are shown for a fixed gain of one

system and varying gain of the other system. Essentially, they are a cross-section of the

contour plots Fig.5.3.2a and Fig. 4.2.2b. The blue plots are for fixed k2 and the red plots

are for fixed k1.

Furthermore, a cross section of ‖eA‖2 computed from simulating the nonlinear system

and controller is shown in Fig. 5.3.3b. For the simulation of the nonlinear model and

controller, the distance of the point ahead was set to ε = .1. Constraints were imposed on

the velocities; the allowable range for v and ω were v ∈ [−vlim, vlim] and ω ∈ [−ωlim, ωlim],

where vlim = 0.5 m s−1 and ωlim = 1.0 rad s−1.

We see that the gap between the red and blue plots in Figs. 5.3.3a and 5.3.3b is much

smaller than the corresponding gap in Fig. 5.3.3c. This indicates that ‖eA‖2 is much

more symmetrical than γ∗W with respect to the system parameters (gains).

Key Observation 9: We have shown results from studying TL for two linearized

unicycle models that are tasked to follow a specific reference signal in simulation. These

results are dependent on the specific reference signal used and may vary for other reference
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(a) (b) (c)

Figure 5.3.3: On the left are line plots of log10[‖eA‖2] vs. k1 for k2 = 0.5 and k2 = 5 (red) and
the same vs. k2 for k1 = 0.5 and k1 = 5 (blue), with noise σ2 = 1E−5. In the centre are similar
plots using data from simulating the nonlinear model and controller. On the right are similar
line plots for log10[γ

∗
W ] from the OT case with the constant DC gain and low-pass filter.

signals. However, the general trends of the error 2-norm are consistent with those of the

error bound from the H∞ analysis. In the next section, we show that this is also the case

with experimental data.

5.4 Alignment–based Transfer Learning with Exper-

imental Data

In this section, we obtain results similar to those in the previous section, but for data

gathered in physical experiments with the Pioneer 3-AT, a small four-wheel drive, skid-

steer robot (see Fig. 5.4.1a).

It is roughly 27 cm long (distance between front and rear wheel centres) and 50 cm

wide. It can drive at a maximum speed of 0.7 m s−1 and turn at a maxi-

mum rate of 2.44 rad s−1. However, we use the limits from the previous sec-

tion, vlim = 0.5 m s−1 and ωlim = 1.0 rad s−1. Considering these parameters, we

choose η1 = 0.1, η2 = .01, η3 = .7, and ε = 0.1 for an appropriate path to track.

For data acquisition, we use VICON, a motion capture system that uses active infra-

red cameras to provide the robot pose in an inertial frame at 200 Hz. The Pioneer is tasked

to follow the path a few times, each time with a different controller gain. Although the

robot’s initial pose is different each time and not at the origin of the reference frame, the
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(a) (b)

Figure 5.4.1: On the left is the Pioneer 3-AT robot in the VICON lab at UTIAS. On the right,
the outward spiral trajectory traversed by the Pioneer robot using two different controller
gains, k1 = 0.5 (blue) and k1 = 1.25 (red), and the alignment from red to blue is shown in black
for the 1D transformation and green for the 2D transformation.

initial condition of the reference signal is subtracted from the collected data; that is,

x[i] = x[i]− xref [1], (5.4.1)

for all time steps i ∈ {1, 2, · · · , N}, and likewise for y[i]. The initial condition for the

robot’s orientation is θ[1] = 0. The number of data points collected, N , is different each

time. To obtain time-synchronized data that can be used in the TL algorithm, the pose

from one dataset is interpolated at the time steps of the other dataset and vice-versa.

Duplicate values that occur at time steps that are common between both datasets are

removed.

Figure 5.4.1b shows two trajectories of the Pioneer with different controller

gains, k1 = 0.5 (blue) and k2 = 1.25 (red). The black and green lines are the align-

ment curves from the 1D and 2D least-squares TL algorithm, where an optimal scalar ᾱ

and matrix Ā are found respectively. The corresponding error plot is shown in Fig. 5.4.2.

Estimates for ‖eA‖2 and ‖eA‖2 are 1.52 and 0.69. If the source and target gains are

swapped, that is, if k1 = 1.25 and k2 = 0.5, ‖eA‖2 and ‖eA‖2 increase to 1.56 and 0.72,

as expected from our theoretical analysis.
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Figure 5.4.2: A plot of the error distance at each time step of the experiment for the 1D case
(black line), 2D case (green line), as well as the distance between both Pioneer trajectories for
comparison (blue line).

For other combinations of k1 and k2, ‖eA‖2 is given in Table 5.4.1. In this table, the

difference between k1 and k2 is held constant at 0.25. We observe that

1. as k1 and k2 increase in magnitude, ‖eA‖2 decreases (relates to Key Observation

2 from Section 3.2);

2. if k1 and k2 are small, the difference between ‖eA‖2 for the cases k1 > k2

and k1 < k2 is larger than if k1 and k2 are larger (relates to Key Observa-

tion 3 from Section 3.2); for example, the difference between ‖eA‖2 for the

cases {k1 = 0.5, k2 = 0.75} and {k1 = 0.75, k2 = 0.5} is 0.013, but for the

cases {k1 = 1.0, k2 = 1.25} and {k1 = 1.25, k2 = 1.0}, the difference is 0.001;

3. if k1 > k2, ‖eA‖2 is greater than if k1 < k2 (relates to Key Observation 4 from

Section 3.2).

These observations are consistent with the results from the simulations and H∞ anal-

ysis.
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Table 5.4.1: A table of ‖eA‖2 for different gain combinations used in the Pioneer experiment.

k1 k2 ‖eA‖2
0.5 0.75 0.768
0.75 1.0 0.497
1.0 1.25 0.276
0.75 0.5 0.781
1.0 0.75 0.501
1.25 1.0 0.277

5.5 Summary

In this chapter, we studied TL for 2D wheeled robots. First, the H∞ analysis was done

for two kinematic unicycle models, each linearized about a point ahead of the unicycle.

Then, the unicycle models were tasked to follow an outward spiral trajectory in simula-

tion for various combinations of target and source system gains. For each combination,

an estimate of the transfer error 2-norm was computed. For all combinations, the error 2-

norm was compared to the error bound from the H∞ analysis. This was repeated for the

error 2-norm computed from simulating the nonlinear unicycle system with a nonlinear

controller and velocity constraints. It was shown that the 2-norm from the simulations

varied with the system parameters in a similar way to the error bound. Lastly, experi-

mental data was obtained from a Pioneer robot following the spiral trajectory indoors for

a few different controller gains. By computing and comparing the transfer error 2-norm

for a few combinations of these gains, it was shown that the results were consistent with

those from the simulations and H∞ analysis.



Chapter 6

Conclusions and Outlook

A robot’s path-tracking performance has been shown to improve by using data-driven

learning techniques. Can the source of this data be another robot? How feasible is

Transfer Learning for robotics?

To begin to quantitatively answer these questions, a simplified scenario that involved

two first-order, LTI, SISO systems was studied. In this scenario, an LTI, scalar trans-

formation is used to map the output from one system to the output from another - the

Output Transfer (OT) case. By framing this as an H∞-norm minimization problem, an

upper bound on the 2-norm of the transformation error is derived and minimized with

respect to the transformation scalar. This minimized error bound is a measure of the

quality of TL.

The bound is shown to grow with the DC gain of S1, the target system. It is reduced

when the systems are dynamically similar; that is, when the poles of the systems are

located close to each other. For systems with larger pole magnitudes, the poles can be

located further apart from each other for the same error bound.

Extensions to the OT case were then studied. In the first, the reference signal is

included in the transformation, and the error bound was reduced further. In the second,

a low-pass filter was added to the reference signal in order to filter out the high frequency

components of the signal and perform a more realistic analysis of the variation of the

error bound. While keeping the DC gain of the target system, we see that the error

bound varies with the system poles more symmetrically than without the low-pass filter.

41
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Figure 6.0.1: A summary of the tools used to study TL in this project.

In the third, pole uncertainty was added to each of the two systems and the least upper

bound on the H∞-norm of the transfer system derived. It was shown that in the OT

case, this new bound was greater when the DC gain is held constant.

Overall, the theoretical results provide initial insight to the problem of learning a map

between data from two control systems. These results can be further extended for higher

order systems. It is expected that the location of the poles closest to the imaginary axis

will have more impact on the transfer quality. However, the transfer quality will also be

affected by the oscillatory behaviour of such systems.

In addition to these results, TL was studied for 2D wheeled robots. The nonlinear,

kinematics model of a unicycle was linearized about a point ahead and its control loop

closed by a proportional controller. The resulting system was shown to be a special case

of the general first-order, LTI, SISO system studied in the OT case. The system was then

modified to be MIMO, where the transformation applied on the 2D output, x and y, is

a 2× 2 matrix. It was shown that this had no effect on the error bound since the control

of the x and y dimensions are independent of each other.

The two linearized unicycle models, each with a different controller gain, were then

tasked to follow a spiral trajectory in simulation. An estimate of the 2-norm of the

transfer error was computed for several combinations of the two system gains. It was

shown that the variation of this 2-norm was consistent with the variation of the error

bound from the H∞ analysis of the OT case with the constant DC gain and low-pass
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filter, though the error 2-norm varied more symmetrically with the system parameters

than the error bound. This analysis was repeated for simulations with the nonlinear

unicycle models and velocity constraints. Lastly, we showed similar results using data

obtained from indoor experiments with a Pioneer robot.



Appendix A

Proof for Lemma 1

Proof. Note that all four λ parameters in (3.2.4)-(3.2.7) are non-negative, and that λ1

and λ2 are functions of α. To reduce clutter, λ1(α) and λ2(α) are denoted by λ1 and λ2

in the remainder of the paper. If a1, a2 > 0, then for all α ∈ R,

lim
ω→±∞

|GA(jω, α)|2 = 0. (A.1)

Let the frequency that maximizes the squared magnitude for a given value of α be

ω∗(α) = arg max
ω

|GA(jω, α)|2. (A.2)

The maximum of |GA(jω, α)|2 can be obtained by finding the roots of the derivative

of |GA(jω, α)|2 with respect to ω,

∂|GA(jω, α)|2

∂ω
= 0 (A.3)

⇔ −2ω (λ1ω
4 + 2λ2ω

2 + λ2λ4 − λ1λ5)
(ω4 + λ4ω2 + λ5)2

= 0 (A.4)

⇔ ω
(
λ1ω

4 + 2λ2ω
2 + λ2λ4 − λ1λ5

)
= 0 (A.5)

⇔ ω

(
1

4
ω4 + p(α)ω2 + q(α)

)
= 0, (A.6)
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where

p(α) =
λ2
2λ1

, (A.7)

q(α) =
λ2λ4 − λ1λ5

4λ1
. (A.8)

In (A.5), the equation is divided by 4λ1 to obtain a standard form of the quartic term

in (A.6), whose roots are known functions of p(α) and q(α) (see Appendix C). Note

that p(α) is always non-negative, whereas q(α) can be negative. Case C2 in Appendix C

is not possible since if p(α) = 0, then q(α) = −λ5/4 < 0, contradicting case C2.

To find maxω |GA(jω, α)|2, the real roots of the polynomial in (A.6) need to be found.

Therefore, there are two cases of interest:

Case 1: This case corresponds to cases C1 and C3 from Appendix C, and consid-

ers q(α) ≥ 0. In this case, the only real root of (A.6) is 0. After verifying that ω = 0 is a

local maximum of ‖GA(jω, α)‖2 with the second derivative, we obtain ω∗ = 0 for all α

due to (A.1). Therefore,

‖GA‖2∞ = |GA(0j, α)|2 (A.9)

=
λ2
λ5

(A.10)

=
(k1a2 − k2a1α)2

a21a
2
2

:= ψ(α). (A.11)

As a result, ‖GA‖2∞ is a quadratic function of α.

Case 2: This case corresponds to case C4 from Appendix C, and considers q(a) < 0. In

this case, there are three real roots. In addition to the real root ω1 = 0, the quartic term

has two real roots ±ω2. Since there are three real roots with non-zeros second derivative

and because of (A.1), the vertices at ±ω2 must be maxima and the vertex at ω1 = 0 must
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be a minimum. Therefore,

(ω∗(α))2 = ω2
2 (A.12)

= 2
√
p2(α)− q(α)− 2p(α) (A.13)

=

√
λ22 − λ1λ2λ4 + λ21λ5 − λ2

λ1
. (A.14)

Evaluating (3.2.3) at ω2 = ω2
2 results in

‖GA‖2∞ = |GA(±ω2 j, α)|2 (A.15)

=
λ21

g(α) + 2
√
f(α)

:= φ(α), (A.16)

where

f(α) := λ5λ
2
1 − λ4λ1λ2 + λ22, (A.17)

g(α) := λ4λ1 − 2λ2. (A.18)

In this case, ‖GA‖2∞ is a nonlinear function of α.

The last step in proving Lemma 1 is to re-work the conditions in Case 1 and Case 2,

which are expressed in terms of q(α) and not α.

We first consider the special case where a2 = a1 = a. Then q(α) = a4/4. In this

case, q(α) > 0 for all α and according to (A.11),

‖GA‖2∞ =
(k1 − αk2)2

a2
. (A.19)

Since (A.19) is quadratic in α, a unique minimizing α exists:

α =
k1
k2
, (A.20)

which is the ratio of the system gains.

When a2 6= a1, q(α) can be negative. To obtain a solution, we find the roots of q(α)
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by solving

0 = q(α) (A.21)

⇔ 0 = λ2λ4 − λ1λ5 (A.22)

⇔ 0 =
(
a41k

2
2

)
α2 − (2a1a2k1k2(a

2
1 − a1a2 + a22))α +

(
a42k

2
1

)
. (A.23)

We obtain two real roots:

α1 =
k1
k2

a2
a31

(a21 + a22 − a1a2 +
√

(a1 − a2)2(a21 + a22)), (A.24)

α2 =
k1
k2

a2
a31

(a21 + a22 − a1a2 −
√

(a1 − a2)2(a21 + a22)). (A.25)

It is clear that α2 < α1 for all a1, a2 > 0, k1, and k2 6= 0. When α ≤ α2

or α ≥ α1, q(α) ≥ 0 and ‖GA‖2∞ = ψ(α). When α2 < α < α1, q(α) < 0

and ‖GA‖2∞ = φ(α). To summarize, ‖GA‖2∞ and ω∗(α) are piecewise functions

of α and are given by

γ2A(α) := ‖GA‖2∞ =

φ(α) if α2 < α < α1

ψ(α) otherwise

, (A.26)

ω∗(α) =

±ω2 if α2 < α < α1

0 otherwise

, (A.27)

with

ω2 :=

√
2
√
p2(α)− q(α)− 2p(α).

To prove continuity of γA(α), it must be shown that

(i) ψ(α) is continuous in the intervals (−∞, α2] and [α1,∞),

(ii) φ(α) is continuous in the open interval (α2, α1),

(iii) and that φ(α1) = ψ(α1) and φ(α2) = ψ(α2) for all a1, a2 > 0, k1, and k2 6= 0.
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The first condition is true because ψ(α) is a polynomial and is thus continuous over

its domain.

Secondly, the function φ(α) is continuous under the following two conditions:

1. We first make sure that the square-root term in (A.16) is well-defined:

0 ≤ f(α) (A.28)

= k1k2(a1 − a2)2
[
(2a1k

2
2(a1 + a2))α

2 + (−k1k2(a21 + 6a1a2 + a22))α + 2a2k
2
1(a1 + a2)

]
α.

(A.29)

The inequality is true when α ≥ αf,1 and 0 ≤ α ≤ αf,2, where

αf,1 =
k1
k2

(a1 + a2)

2a1
, (A.30)

αf,2 =
k1
k2

2a2
(a1 + a2)

. (A.31)

It can be shown that αf,1 > αf,2 for all a1, a2 > 0, k1, and k2 6= 0. To show that

the inequality in (A.29) is true over the interval (α2, α1), it can be shown that

either αf,2 > α1 or that αf,1 < α2; that is, αf,2, αf,1 6∈ (α2, α1).

2. The second condition is that

g(α) + 2
√
f(α) 6= 0. (A.32)

To satisfy (A.32), α 6= α0 with α0 := k1k
−1
2 because

0 = f(α)− g2(α)

4
(A.33)

= −(a21 − a22)2(k1 − αk2)4

4
. (A.34)

It can be shown that either α0 < α2, or α0 > α1, for all a1, a2 > 0, k1, and k2 6= 0.

Therefore, φ(α) is continuous in the open interval (α2, α1).

The third condition can be shown to be true by evaluating φ(α) and ψ(α) at α1

and α2. We used analytic simplification techniques in MATLAB to determine that for
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all a1, a2 > 0, k1, and k2 6= 0, φ(α1) = ψ(α1) and φ(α2) = ψ(α2).



Appendix B

Proof for Theorem 1

Proof. To find the minimum of γ2A(α), one possibility is to find the minimum of φ(α) for

all α ∈ (α2, α1) and the minimum of ψ(α) for all α 6∈ (α2, α1), and then compare the two.

However, it can be shown that α2 < α∗ < α1 for all a1, a2 > 0, k1, and k2 6= 0, thereby

limiting the search for the minimum to φ(α). To prove that α2 < α∗ < α1, one can use

Bolzano’s Theorem [14], which considers the derivative of φ(α) with respect to α denoted

by φ′(α) and states: if φ′(α)|α=α2
< 0 and φ′(α)|α=α1

> 0, then φ′(α) has a minimum in

the interval (α2, α1). MATLAB can be used to check the aforementioned conditions

on φ′(α) at the points α1 and α2. However, it is easier to validate that φ′(α) = ψ′(α)

at α1 and α2, and use the fact that ψ(α) satisfies the above conditions. The function ψ(α)

is a convex parabola with a single minimum at

αψ =
k1
k2

a2
a1
. (B.1)

It is sufficient to show that α2 < αψ < α1 for all a1, a2 > 0, k1, and k2 6= 0.

It now remains to find α∗ by solving φ′(α) = 0. The derivative φ′(α) is

φ′(α) = − 2k2h
3(α)

(2(
√
f(α)− λ2) + λ4λ1)2

(
4
√
f(α) + 2g(α) + h(α)z2(α)

)
, (B.2)
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where

z2(α) = m(α) +
n(α)√
f(α)

, (B.3)

h(α) =
√
λ1, (B.4)

m(α) = (a2 − a1) (k2 (a1 + a2)α− k1 (a2 − a1)) , (B.5)

n(α) = k1 (a2 − a1)2
(
(a1 + a2)

(
3a1k

2
2α

2 + a2k
2
1

)
− k1k2

(
a21 + 6a1a2 + a22

)
α
)
. (B.6)

Besides the three roots at a0 = k1k
−1
2 found from the term h3(α) in (B.2), the other roots

of φ′(α) are found by solving

0 = 4
√
f(α) + 2g(α) + h(α)z2(α). (B.7)

As it was previously shown that f(α) ≥ 0 in the interval (α2, α1), further modifications

of (B.7) result in a new equation to solve for α:

f(α) =

(
4f(α) + n(α)h(α)

2g(α) +m(α)h(α)

)2

(B.8)

⇔ 0 = f(α) (2g(α) +m(α)h(α))2 − (4f(α) + n(α)h(α))2 (B.9)

⇔ 0 = (k1 − k2α)5
(
2k22a1(a1 + a2)α

2 − a2k1k2(4a1 + a2)α + a22k
2
1

)
. (B.10)

In addition to the several roots at α0, the quadratic expression in (B.10) yields two real

roots:

αφ,1 =
k1
k2

2a2(
4a1 + a2 −

√
8a21 + a22

) , (B.11)

αφ,2 =
k1
k2

2a2(
4a1 + a2 +

√
8a21 + a22

) . (B.12)

One can show that α2 < αφ,1 < α1 and φ′(α)|α=αφ,1 = 0 for all a1, a2 > 0, k1, and k2 6= 0.

The same is not true for αφ,2, which represents a degenerate case obtained by squar-

ing (B.7). Therefore, α∗ = αφ,1.
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Roots of the Biquadratic Equation

Consider the general biquadratic equation,

1

4
x4 + px2 + q = 0. (C.1)

The discriminant of this equation is given by

D = q(p2 − q). (C.2)

The four roots of the biquadratic equation are given in terms of p and q for four cases:

Case C1: For q > p2, there are four complex roots,

x1,2,3,4 = ±
√√

q − p± j
√√

q + p. (C.3)

Case C2: For p ≤ 0 ≤ q ≤ p2, there are four real roots,

x1,2,3,4 = ±
√√

q − p±
√
−√q − p. (C.4)

Case C3: For p > 0 and 0 ≤ q ≤ p2, there are four roots with zero real part,

x1,2,3,4 = j(±
√
p+
√
q ±

√
p−√q). (C.5)
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Case C4: For, q < 0, there are two real roots and two roots with zero real part,

x1,2 = ±
√

2
√
p2 − q − 2p, (C.6)

x3,4 = ±j
√

2
√
p2 − q + 2p. (C.7)
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