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Abstract
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2016

Quadrotor UAVs are popular due to their mechanical simplicity, as well as their capa-

bility to hover and vertically take-off and land. As applications diversify, quadrotors

are increasingly required to operate under unknown mass properties, for example as a

multirole sensor platform or for package delivery operations. The work presented here

consists of the derivation of a generalized quadrotor dynamic model without the typical

simplifying assumptions on the first and second moments of mass. The maximum payload

capacity of a quadrotor in hover, and the observability of the unknown mass properties

are discussed. A brief introduction of L1 adaptive control is provided, and three different

L1 adaptive controllers were designed for the Parrot AR.Drone quadrotor. Their tracking

and disturbance rejection performance was compared to the baseline nonlinear controller

in experiments. Finally, the results of the combination of L1 adaptive control with itera-

tive learning control are presented, showing high performance trajectory tracking under

uncertainty.
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Chapter 1

Introduction

1.1 Overview and Motivation

The number of applications for Unmanned Aerial Vehicles (UAVs) has grown tremen-

dously over the last decade. Historically, these were used primarily by the military for

aerial surveillance and reconnaissance, but today the UAV industry also targets civil and

commercial markets including disaster management, search and rescue, agriculture and

film/photography [2]. Nonmilitary applications of UAV technology is the fastest growing

sector in the global aerospace industry and is expected to grow by 700% between 2012

and 2018 [3]. Within the next 10 years, [4] anticipates US$90 billion to be spent on the

UAV industry worldwide, and [5] expects the United States to spend US$82 billion with

the creation of an additional 100,000 jobs by 2025.

The quadrotor UAV has gained popularity due to its Vertical Takeoff and Landing

(VTOL) and hovering capabilities. Its simple mechanical design is comprised of four

motors for lift and control, mounted on the ends of four arms meeting at the center of

the airframe. Lightweight construction and recent developments in battery technology

allow for range and endurance of up to 50 minutes [6], sufficient for a broad range of

applications.

The applications of the quadrotor UAVs are primarily determined by the wide vari-

ety of payloads that can be carried; from cameras for surveillance and photography, to

gripping mechanisms for carrying packages or other objects. Particularly interesting ap-

plications include parcel package delivery (e.g., from Amazon.com and DHL), and UAVs

with modular sensor payload capabilities (e.g., from Aeryon Labs Inc.). The challenge

associated with these applications is that the UAV mass, center of gravity (CG) and

inertia change between or during flights, which imposes requirements on the safety and

stability of the UAV. The controller performance will be dependent on how well the un-

1
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known dynamics can be compensated for. Typical classical linear control techniques such

as proportional-derivative-integral (PID) control can be inadequate to control the vehicle

in these cases [7], so a safer more flexible approach in dynamic modelling and control is

required for these applications.

1.2 Project Scope and Objectives

The scope of the project includes the derivation of a general dynamic model of the

quadrotor without simplifying assumptions on the center of gravity location and inertia.

Using this model, the dynamic behaviour of a quadrotor in atypical mass configurations

can be analyzed, such as the payload mass limitations in hover. The model can also be

used to determine the observability of the unknown mass properties, which will indicate

whether controller design is feasible for a system with ten unknown mass properties.

The project scope also includes the design of an adaptive controller for the control of a

quadrotor UAV. After this development, the controller will be implemented in experiment

on a Parrot AR.Drone 2.0 quadrotor and a quantitative comparison will be made with

the baseline nonadaptive nonlinear controller previously used in the lab. Finally, the

scope includes a successful demonstration of unknown payload transportation using this

quadrotor.

The final high-level objective of this project is summarized in Figure 1.1.

(a) Obtain unknown package/payload. (b) Fly, and adapt the controller online.

Figure 1.1: Project overview.



Chapter 2

Related Work

2.1 Quadrotor Dynamics Model

The dynamics used to model a quadrotor typically use a rigid-body assumption. The

coordinate system and frames of reference used in deriving the dynamic equations of

motion are shown in Figure 2.1. For the standard quadrotor model [2], the following

assumptions are usually made:

• The quadrotor frame is rigid and rotors are rigid, meaning there are no aeroelastic

effects on the propellers. Gyroscopic effects are also omitted.

• The quadrotor center of gravity (CG) coincides with the geometric center of the

quadrotor frame.

• The quadrotor frame is aligned with the principal axis frame, meaning that the

off-diagonal terms in the second moment of inertia matrix are zero.

Figure 2.1: Coordinate system and reference frames from [1].

3
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The second assumption has been omitted when uncertainties in CG offsets were used

as unknown parameters [7, 8, 9]. The general full-inertia matrix is less widely used,

where only [10], [8] and [9] assume the off-diagonal terms in the inertia matrix to be

non-zero. Even among research that attempted to disturb the CG location by adding

payload, the inertia matrix is assumed to be diagonal in the quadrotor aligned reference

frame [11, 12]. The dynamic model of quadrotors to which a robotic arm was mounted

has been treated differently. Since a moving robotic arm introduces changes in inertia and

CG location, [13] and [14] make use of the Euler-Lagrange formulation using the kinetic

and potential energy in both the quadrotor and each of the elements in the robotic

arm. Other approaches have used a sequence of rotation matrices and application of

the parallel-axis theorem to obtain the inertia matrix in the quadrotor frame taking into

account each robot arm [15].

For this project the rigid-body assumption will be retained, so the dynamic model

can be derived using the Newton-Euler formulation based on the time rate of change

of linear and angular momenta. CG offsets can be taken into account as an additional

vector from the geometric center of the quadrotor to the actual CG location. For second

moment of inertia, the full matrix can be treated with a set of six unknown parameters.

2.2 Quadrotor Control Techniques Under Uncertainty

2.2.1 Standard Control Techniques

One standard method in quadrotor control is to linearize the nonlinear quadrotor model,

and control it using linear controller design techniques such as linear quadratic regulator

optimal control, as done by [2]. In experiment, this technique achieved good tracking in

altitude, but not in roll and pitch. In [16], a PID controller was implemented to track de-

sired altitude and horizontal position, while a proportional-derivative (PD) controller was

used to track attitude angles of the quadrotor UAV. The mass of the UAV was assumed

to be unknown and estimated for the altitude control loop, and this resulted in adequate

altitude tracking. A similar PD controller was implemented by [7] for attitude control

and found to diverge when CG location was perturbed. Feedback linearization, where the

system dynamics are linearized through a transformation, also produced unstable results

after perturbation of the CG location [7]. From these results, it is clear that a standard

control technique such as PD or PID control applied to the nonlinear or linearized model

does not satisfy stability requirements under mass, CG or inertia uncertainty. In [11]

the uncompensated PID controller had approximately five times larger tracking errors in
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altitude compared to the compensated controller using the mass estimate. This explains

why adequate control was achieved by [16], since all mass properties except total mass

were known before flight, and the controller was allowed to update according to the mass

estimate.

For this project where mass, CG location and inertia are not known, a different control

design must be implemented.

2.2.2 System Identification for UAVs

System identification is used to determine the mathematical model of unknown or un-

modelled dynamics given a set of data. A particular model structure is typically assumed

and the model parameters are chosen to best fit the data of the system [17]. System iden-

tification is relevant to this project since one method of achieving the objectives is to

identify the dynamics of the vehicle model with unknown mass, inertia and offsets must

be identified, after which the model can be used to design a controller. The system identi-

fication techniques used by [18] and [19] use batch Prediction Error Method (PEM) with

the System Identification toolbox in MathWorks MATLAB, while [20] uses CIFER Flight

Control Software in the frequency domain for system identification. In [18], the perfor-

mance of different model structures was evaluated by comparing the identified heave, roll,

pitch and yaw dynamics with the actual dynamic model of a quadrotor. Data used in

system identification was simulated using the same dynamic model. It was found that the

Auto Regressive Moving Average model with eXogenous inputs (ARMAX) model struc-

ture produced the closest matching results. On the other hand, [20] found the Output

Error (OE) model structure more appropriate using fixed-wing UAV experimental data in

identifying the roll and pitch dynamics. In addition, [19] performed off-line, time-domain

system identification of a Helicopter UAV around hover, and used the identified yaw and

heave dynamics in the design of a controller. Unfortunately, the system identification

techniques used in [18, 19, 20] are all offline methods meaning that these techniques are

based on data obtained beforehand.

For this project, this is not ideal because this time consuming process requires previous

experimental data, which would need to be obtained for each payload or package. Fur-

thermore, it is not practical to obtain experimental data and expect the offline hardware

required for system identification to be present at each location the UAV is commanded

to go.
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2.2.3 Online Parameter Estimation

To overcome the disadvantages of offline batch estimation techniques discussed above,

recursive parameter estimation algorithms can be used online and are discussed in [21].

Although [18] and [19] use Prediction Error Methods (PEM) offline in MATLAB, PEM

can also be used recursively to estimate parameters online. A large number of online

parameter estimation techniques used in literature are discussed in detail in [21]. The

gradient-based method is one of the online PEM parameter estimation techniques that

seeks to minimize a quadratic error based cost function by using the gradient to find

the minimum. The gradient-based method is most widely used in mass and inertia

estimation [16, 7], and in some cases in wind parameter estimation as well [22, 23]. The

gradient-based parameter estimation is the simplest of the methods to implement and

works well with constantly fluctuating parameters [21]. A least squares algorithm with

exponential forgetting ensures that old parameter estimates are used with less weight in

the estimation of current parameters, making this method appropriate for time-varying

parameters as well [21]. This method is implemented by [11] where it is used to estimate

mass, CG offset and inertias of a quadrotor UAV fitted with a grasping mechanism.

Although an online parameter estimation scheme can be used for the control of a

quadrotor, it is limited to the parameters included within the design of the controller.

Any disturbances and unmodelled dynamics influence the estimation of these parameters.

2.2.4 Robust Control Techniques

The limitations introduced above can be accounted for in robust control where stability

is guaranteed in a specific parameter uncertainty envelope. Sliding mode control is a

robust controller technique implemented in quadrotor control by [24], and is tested in

simulation with 30% state and mass properties parameter deviations. Although a stable

response is obtained, roll and pitch angles only stabilize after 20 seconds, resulting in

large position errors. In [25], a robust controller is initially implemented to take into

account the unknown total mass of the quadrotor. A small tracking error was present and

slowly converged to zero, but much better performance was obtained when an adaptive

controller with a mass estimation algorithm was used in the control loop. This shows the

stability of the system under uncertainty using a robust controller, but also the limitations

in performance. This is because the robust controller seeks to optimize performance

over a relatively large range of unknown parameters. The work in [25] shows that a

robust control technique augmented with an adaptive controller can successfully control

a quadrotor under mass uncertainty. The main disadvantage of this approach is that it is
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much more complicated to implement compared to either an adaptive or robust controller

only.

In the application of quadrotor package delivery, robust control is able to compensate

for the associated mass uncertainties, but in exchange for compromised tracking perfor-

mance. This is not feasible for eventual full-scale implementation due to the extended

endurance requirements which would not be necessary if high performance is achieved.

2.2.5 Adaptive Control For Quadrotor UAVs

For the limitations discussed in the previous two sections, the majority of previous work

with unknown parameters have implemented an adaptive controller [8, 9, 11, 12, 14,

15]. The two main adaptive control techniques used are the model reference adaptive

control (MRAC) and self-tuning control (STC) designs. MRAC compares the actual

output with the output of a reference model, and from this the unknown parameters

are estimated. On the other hand, STC estimates the parameters based on the control

input and output of the plant [21]. The estimates of the unknown parameters are then

used in the adaptation of the controller. MRAC is used in the motion control of a

quadrotor equipped with a moving robotic arm [14, 15] but also under mass and inertia

uncertainties [12], where the dynamic quadrotor model is used as the reference model.

STC is successfully implemented in the control of a quadrotor UAV with an unknown

payload mass [11] and with an unknown CG location in [9]. Both cases were validated

in experiment.

Owing to the broad range in operating conditions of large-scale aircraft throughout

their operating envelope, adaptive control techniques have been developed to maximize

control performance under all operating circumstances [21]. The L1 adaptive controller

was designed to improve the performance of classical adaptive control techniques, and

has been successfully implemented in high-performance small-scale UAVs such as the

NASA AirSTAR flight test vehicle [26]. This control architecture has recently also been

implemented on manned aircraft including the variable stability Learjet [27] and F-16

Fighting Falcon [28]. The advantage of the L1 adaptive control is that to the pilot flying

the aircraft, the inputs are always predictable and produce the same response, regardless

of operating condition. As a result, implementing an L1 adaptive controller removes the

variability of the system resulting in consistent and repeatable performance.

L1 adaptive control is based on the MRAC architecture with the addition of a low

pass filter that decouples robustness from adaptation [21]. This allows arbitrarily high

adaptation gains to be chosen for fast adaptation. The development of improved L1
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adaptive control schemes in theory and verified in simulation for a quadrotor show its

promising potential [29, 30]. This relatively new algorithm has already shown promising

results showing compensation of partial motor failure in [31] in a higher level translational

velocity L1 control loop. Improved tracking performance and successful disturbance

rejection of offset center of gravity location has been demonstrated by [32] using an

L1 adaptive attitude controller to augment a baseline controller tested on a quadrotor,

hexacopter and octocopter. Compensation of quadrotor mass uncertainty with an L1

adaptive controller was shown in [33] on a quadrotor in experiment.

As a result of its emerging use in quadrotor control and the successful control per-

formance achieved in experiments, an L1 adaptive controller seems to be a logical choice

for control under uncertainty in mass properties.

2.3 Payload Carrying Methods

While the majority of related research work that has looked into mass property param-

eter identification has mainly achieved this by adding masses at different locations on

the quadrotor frame [9, 34, 12], some interesting designs have been implemented to carry

objects with a quadrotor. A simple friction contact mechanism was implemented in [11]

and [35, 36] consisting of two arms that would squeeze the object to be carried. Addi-

tionally, [11] used an ingressive grasping mechanism using four hooks that imbedded into

objects made of soft wood. In [15] and [14], a more complicated mechanism to perturb

CG and inertia is achieved with a robotic arm which was mounted to the underside of

the quadrotor frame, which has been implemented in experiment by [37].

An attachment mechanism must be implemented in order to demonstrate package

delivery in this project. However, the design should be simple and easy to implement in

order to analyze the controller performance, which is the focus of this project.



Chapter 3

Contributions

3.1 Novel Contributions of This Work

As a result of its relatively recent development, there is a limited variety of L1 adaptive

control architectures implemented on quadrotors. The aim of previous work was primarily

to show the capability of L1 adaptive control in quadrotors. It has not been implemented

in experiments under complete uncertainty in the mass properties. Applications of the

L1 adaptive control framework in quadrotors has also been limited, including the specific

objectives of package delivery. The work presented here, compares the tracking perfor-

mance and disturbance rejection of several different L1 adaptive control architectures

implemented on a quadrotor. Knowledge of the performance characteristics of different

architectures will serve as a design guideline for practical L1 adaptive control design.

In addition, a preliminary L1 adaptive control tuning guideline is presented based on

experimental tuning of a quadrotor. Furthermore, the results of experiments combining

L1 adaptive control within an Iterative Learning Control (ILC) framework in quadrotors

show it is suitable for integration into frameworks with higher level control objectives.

Finally, a cost function to quantify tracking error or control input shows continuity in

the L1 tuning parameters. This confirms the compatibility of L1 adaptive control with

other learning schemes that aim to optimize performance.

3.2 Outline

The remainder of this thesis is broadly divided according to the logical progression of the

project objectives as discussed above in Section 1.2. First, a three-dimensional dynamic

model is presented to understand how the quadrotor dynamics are affected by uncon-

9
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ventional center-of-mass location and a full second-moment-of-mass matrix. This section

also contains an analysis of the maximum payload limitations dependent on quadrotor

design constraints. Using this dynamic model, a nonlinear observability analysis of the

unknown mass properties is conducted to ensure that typical quadrotor measurements al-

low for the estimation of these parameters. This is followed by an overview of the existing

nonlinear controller used by the Dynamic Systems Lab for the control of an undisturbed

Parrot AR.Drone quadrotor UAV. Next, the L1 adaptive control theory is introduced as

well as the different architectures used in experiments, and a general guideline of tuning

an L1 adaptive controller. An analysis of the convergence, transient and steady-state

behaviours is also provided for the closed-loop L1 adaptive output feedback controller

implemented on a quadrotor. Finally, the experimental setup, results and discussion of

the performance comparison are presented. This section also shows the demonstration of

a payload transporting quadrotor meeting the objectives as outlined above in Section 1.2.



Chapter 4

General Quadrotor Dynamics Model

This section derives the full three-dimensional dynamics model of the quadrotor with

offset center of gravity in the body-fixed frame FB with the reference point OB chosen to

coincide with the geometric center. This frame and reference point rotates and translates

with respect to an inertial reference frame FI with an inertial reference origin OI .

For the purposes of observability analysis, the equations of motion are required to be

in control-affine form:

ẋ = f(x,u) = f0(x) +
m∑
i=1

fi(x)ui , (4.1)

where x ∈ Rn is the state, u ∈ Rm are the control inputs, and fi : Rn → Rn for

i = 0, . . . ,m are nonlinear vector fields. This is achieved by treating the translational

and rotational dynamics together.

4.1 Preliminaries

The notation used in this chapter is identical to [38]. The frames and points of reference

are shown in Figure 4.1. The center of gravity is offset from the geometric center by

~roff. The vector between the inertial reference origin point OI to the quadrotor geometric

center, OB is ~rb. The center of mass location of the quadrotor assumed to be a rigid-body

is indicated by ⊕ and the position vector from the inertial origin is defined to be ~r⊕.

11
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Figure 4.1: Inertial and body-fixed 3D frames and points of reference.

4.1.1 Time Rate of Change of Vectors

Differentiation in time in FI and FB are defined as follows:

(·)· , d

dt
(·)
∣∣∣∣
FI

and (·)◦ , d

dt
(·)
∣∣∣∣
FB

. (4.2)

Let ~vBI be the relative translational velocity of OB to OI measured in FI . In other

words, ~vBI , ~r ·
b . Additionally, let ~ωBI be the relative angular velocity of FB with respect

to FI .
Recall that time differentiation of a vector in one frame of reference is different as

expressed in a different frame of reference depending on the relative angular velocity

between the two frames of reference [38]. Consider a vector ~r, then the time rate of

change of ~r in the rotating frame FB is:

~r · = ~r ◦ + ~ωBI × ~r . (4.3)

4.1.2 Referential Form and Rotation of Vectors

Vectors can be expressed in referential form by making use of the Hughes vectrix, ~F
which is a 3 × 1 column matrix of coordinate vectors defining the respective reference

frame [39]. The vector ~r can be expressed in both frame FI and FB as follows:

~r = ~F
I

T rI = ~F
B

T rB . (4.4)
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The rotation from FI to FB is given by the 3× 3 rotation matrix CBI :

~F
I

T = ~F
B

TCBI such that (4.4) can be expressed in FB: CBIrI = rB . (4.5)

Rotation matrices are by definition orthogonal such that C−1
IB = CT

IB = CBI . Rota-

tions between reference frames are chosen to be represented by Euler angles. Although

there always exists a singularity with a 3-dimensional representation of a rotation ma-

trix, only three parameters are associated with the rotation instead of four. The 3-2-1

(Z-Y-X) Euler rotation sequence from the body frame to the inertial frame is defined by

the following sequence of principal rotations:

CIB(φ, θ, ψ) = Cx(φ)Cy(θ)Cz(ψ) =

 cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ

cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ

 , (4.6)

where φ, θ, ψ are the roll, pitch and yaw angles, respectively, and cb = cos(b) and

sb = sin(b).

A 3-2-1 (Z-Y-X) Euler rotation sequence is chosen since the singularity occurs at a

pitch angle of θ = ±90◦ [38], which is not expected to occur during normal, non-agressive

operation.

4.1.3 Euler Angle Rates

The relationship between the attitude described by the Euler angles θ = (φ, θ, ψ) and

angular velocity ωBIB of FB with respect to FI expressed in FB is given by:

ωBIB = S(φ, θ)θ̇ =

1 0 − sin(θ)

0 cos(φ) sin(φ) cos(θ)

0 − sin(φ) cos(φ) cos(θ)


φ̇θ̇
ψ̇

 , (4.7)

where the angular velocity is expressed in terms of Euler angle rates [2, 7]. Derivation of

this equation is provided in [38] and [39]. The inverse of S(φ, θ) is:

S−1(φ, θ) =

1 sin(φ) tan(θ) cos(φ) tan(θ)

0 cos(φ) − sin(φ)

0 sin(φ) sec(θ) cos(φ) sec(θ)

 , (4.8)

which is singular at the pitch angle singularities, but invertible everywhere else.
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4.1.4 Cross Product

The cross operator for any matrix a =
[
a1 a2 a3

]T
∈ R3×1 is defined as follows:

a× ,

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 . Note that a× is antisymmetric: a×
T

= −a×. (4.9)

From [39, 38], the cross product between two vectors can be expressed in reference frame

FB as follows:

~a×~b = ~a× ~F
B

Tb
B

= ~F
B

T a×
B
b
B
. (4.10)

4.1.5 Referential Form of Twain Vectors and the Cross Opera-

tor

Twain vectors and their respective referential form will become useful to compactly ex-

press the translational and rotational dynamics. A detailed discussion of twain vector

algebra is provided in [39] A Chain of Bodies. For the purposes of deriving the dynamic

model, it is sufficient to only discuss the referential form of a dextor and its cross operator.

Consider the referential form of dextor a
~

associated with a reference frame and refer-

ence point attached in this frame:

a ,

[
a

α

]
where a is defined above and α ,

[
α1 α2 α3

]T
∈ R3×1 . (4.11)

The twain cross operator a× of a twain vector in referential form a is defined as:

a× ,

[
α× a×

03×3 α×

]
, (4.12)

where the cross operator on the 3× 1 matrices a and α are defined in (4.10).
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4.2 Quadrotor Dynamic Model

4.2.1 Quadrotor Kinematics

The quadrotor position in space is given by the vector ~rb from the inertial origin to the

quadrotor geometric center. The translational velocity of the quadrotor is defined by

the vector ~vBI , ~r ·
b as mentioned above in Section 4.1.1. This establishes the following

relationship in referential form:

~F
I

T ṙbI = ~F
B

TvBIB = ~F
I

TCIBvBIB

ṙbB = CIBvBIB . (4.13)

Similarly, for the Euler angles θ = (φ, θ, ψ) in (4.7):

θ̇ = S−1(φ, θ)ωBIB . (4.14)

4.2.2 Linear and Angular Momentum

The linear momentum ~p and angular momentum ~h for an arbitrary reference point OB

within a rigid body is derived by treating the rigid body as a collection of infinitesimal

mass elements dm. The expressions derived here for the quadrotor are based on the

extension of the derivation for a system of particles in [39]. Let ~s be a vector to an

arbitrary mass element within the rigid body from the reference point OB. Since the

body is rigid, ~s ◦ = ~0, and:

~s · = ~ωBI × ~s , (4.15)

where ~ωBI is the angular velocity between the body-fixed and inertial reference frames.

Also let the translational velocity of the reference point OB with respect to an inertial

reference point OI be ~vBI = ~r ·
b where ~rb is the vector from OI to OB. Finally, let ~r be

a vector from the inertial origin OI to an arbitrary mass element, such that ~r = ~rb + ~s .

This means that:

~r · = ~vBI + ~s · (4.16)

= ~vBI + ~ωBI × ~s . (4.17)
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The linear momentum of the rigid-body is:

~p ,
∫
B

~r ·dm (4.18)

=

∫
B

~vBI + ~ωBI × ~s dm after substitution of (4.17),

=

∫
B

dm ~vBI −
(∫

B

~s dm

)
× ~ωBI

= m~vBI − ~c× ~ωBI , (4.19)

where m ,
∫
B
dm and ~c ,

∫
B
~s dm are the definitions of the zeroth and first moments of

mass about OB respectively [39]. In the case of the quadrotor, the first moment of mass

is ~c = m~roff, where ~roff is defined in Section 4.1. This means that the linear momentum

is:

~p = m~vBI −m~roff × ~ωBI . (4.20)

The angular momentum of the rigid body about the body-fixed reference point OB

is:

~h ,
∫
B

~s× d~p (4.21)

=

∫
B

~s× ~r ·dm

=

∫
B

~s× ~vBI dm+

∫
B

~s× (~ωBI × ~s) dm after substitution of (4.17),

=

∫
B

~s dm× ~vBI −
∫
B

~s× (~s× ~ωBI) dm .

Substituting in the definition of the first moment of mass, and making use of the vector

triple product identity [39]
(

(~a×~b)× ~c = −~c× (~a×~b) = (~c · ~a)~b− (~c ·~b)~a
)
:

= ~c× ~vBI −
∫
B

(~s · ~s)~ωBI − (~s · ~ωBI)~s dm

= ~c× ~vBI +

∫
B

[(~s · ~s)1
~
− ~s~s] · ~ωBI dm ,



Chapter 4. General Quadrotor Dynamics Model 17

where 1
~

is the unit dyadic, and ~s~s indicates the dyadic product.

= ~c× ~vBI +

(∫
B

(~s · ~s)1
~
− ~s~s dm

)
· ~ωBI

= ~c× ~vBI + J
~
· ~ωBI , (4.22)

where J
~
,
∫
B

(~s · ~s)1
~
− ~s~s dm is the definition of the second moment of mass or inertia

tensor about OB (a second-order tensor) [39]. In the quadrotor case, no further restricting

assumptions are made on the inertia tensor due to the center of gravity offset. As in the

linear momentum above, ~c = m~roff meaning that the angular momentum about OB is:

~h = m~roff × ~vBI + J
~
· ~ωBI . (4.23)

The translational and rotational equations of motion of the quadrotor are derived

next. Note that the moments of mass m, ~c and J
~

are constants in the body-fixed frame,

and that the first and second moments are dependent on the choice of reference point OB.

As discussed in the previous section, OB is chosen to be coincident with the geometric

center of the quadrotor. However, since different payloads or packages will be carried by

the quadrotor, all three moments of mass will change with a different quadrotor-payload

configuration.

4.2.3 Translational Equations of Motion

The translational dynamics of a rigid body in three dimensions are governed by Newton’s

law of motion:

~p · = ~fext (4.24)

where ~p is the linear momentum, and ~fext is the externally applied force to the rigid body.

Making use of (4.3) the time rate of change of ~p in the body frame is:

~p · = ~p ◦ + ~ωBI × ~p

= ~p ◦ − ~p× ~ωBI .
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Substitution of (4.20) and recalling that m◦ = 0 and ~r ◦off = ~0 results in:

~p · = (m~vBI −m~roff × ~ωBI)◦ − (m~vBI −m~roff × ~ωBI)× ~ωBI
= m~v ◦BI −m~roff × ~ω ◦BI +m~ωBI × ~vBI −m~ωBI × (~roff × ~ωBI) .

Therefore, the translational dynamics are described by the following equation:

m~v ◦BI −m~roff × ~ω ◦BI +m~ωBI × ~vBI −m~ωBI × (~roff × ~ωBI) = ~fext . (4.25)

Alternatively, (4.25) can be expressed in referential form in the body-fixed frame:

m~F
B

T v̇BIB −m~F
B

T r×offB
ω̇BIB +m~F

B

Tω×BIBvBIB −m~ωBI × ~F
B

T r×offB
ωBIB = ~F

B

T fextB

~F
B

T
(
mv̇BIB −mr×offB

ω̇BIB +mω×BIBvBIB −mω×BIBr×offB
ωBIB

)
= ~F

B

T fextB

mv̇BIB −mr×offB
ω̇BIB +mω×BIBvBIB −mω×BIBr×offB

ωBIB = fextB . (4.26)

4.2.4 Rotational Equations of Motion

Consider the rigid body from the previous section. The rotational dynamics are derived

by differentiating the definition of the angular momentum of a rigid body (4.21) about

the body-fixed reference point OB in the inertial reference frame FI :

~h · =

(∫
B

~s× d~p
)·

=

∫
B

~s · × d~p+

∫
B

~s× d~p · . (4.27)

From (4.16) and (4.24):

=

∫
B

(~r · − ~vBI)× d~p+

∫
B

~s× d~f

=

∫
B

~r · × ~r ·dm− ~vBI ×
∫
B

~r ·dm+

∫
B

~s× d~f .
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Since ~r · × ~r · = ~0 , ~τext ,
∫
B
~s × d~f is the total external torque about the reference

point OB, and ~p ,
∫
B
~r ·dm from definition (4.18):

~h · = −~vBI × ~p+ ~τext

~h · + ~vBI × ~p = ~τext , which results in:

~h ◦ + ~ωBI × ~h+ ~vBI × ~p = ~τext , (4.28)

where the derivative is taken in the body frame FB. An expression for the third term

~vBI × ~p can be obtained from (4.20):

~vBI × ~p = ~vBI × (m~vBI −m~roff × ~ωBI)

= m~vBI × ~vBI −m~vBI × (~roff × ~ωBI)

= m~vBI × (~ωBI × ~roff) . (4.29)

The rotational dynamics are obtained by substituting (4.23) and (4.29) into (4.28):

(m~roff × ~vBI + J
~
· ~ωBI)◦ + ~ωBI × (m~roff × ~vBI + J

~
· ~ωBI) + (m~vBI × (~ωBI × ~roff)) = ~τext

m~roff × ~v ◦BI + J
~
· ~ω ◦BI +m

(
~ωBI × (~roff × ~vBI) + ~vBI × (~ωBI × ~roff)

)
+ ~ωBI × J

~
· ~ωBI = ~τext .

By using the Jacobi identity
(
~a× (~b× ~c) +~b× (~c× ~a) + ~c× (~a×~b) = ~0

)
:

m~roff × ~v ◦BI + J
~
· ~ω ◦BI −m~roff × (~vBI × ~ωBI) + ~ωBI × J

~
· ~ωBI = ~τext . (4.30)

As in the linear momentum case, (4.30) can be expressed in referential form in the body-

fixed frame:

~F
B

T
(
mr×offB

v̇BIB + Jω̇BIB −mr×offB
v×BIBωBIB + ω×BIBJωBIB

)
= ~F

B

Tτ extB

mr×offB
v̇BIB + Jω̇BIB −mr×offB

v×BIBωBIB + ω×BIBJωBIB = τ extB . (4.31)

4.2.5 Combined Translational and Rotational Dynamics

Both (4.26) and (4.31) describe the dynamics of the quadrotor. To arrive at the control-

affine form in (4.1), the translational rotational equations of motion expressed in the

body-fixed frame can be stacked to simplify the nonlinear observability analysis. Define



Chapter 4. General Quadrotor Dynamics Model 20

the following matrices:

v ,

[
vBIB
ωBIB

]
, M ,

[
m13×3 −mr×offB

mr×offB
J

]
, f ,

[
fextB

τ extB

]
, (4.32)

where 1n×n is the n-by-n identity matrix. Note that M = MT is symmetric, v is the

referential form of a dextor and f is the referential form of a pseudodextor. Since m > 0,

and the inertia matrix J is of a rigid-body occupying three-dimensional space, J > 0 is

positive-definite, therefore det(M) 6= 0 and M is invertible.

Combining (4.26) and (4.31) and making use of the Jacobi identity for matrices in

referential form:[
mv̇BIB −mr×offB

ω̇BIB +mω×BIBvBIB −mω×BIBr×offB
ωBIB

mr×offB
v̇BIB + Jω̇BIB −mr×offB

v×BIBωBIB + ω×BIBJωBIB

]
=

[
fextB

τ extB

]
[
m13×3 −mr×offB

mr×offB
J

][
v̇BIB
ω̇BIB

]

+

[
mω×BIBvBIB −mω×BIBr×offB

ωBIB
m(v×BIBω

×
BIB

roffB + ω×BIBr×offB
vBIB) + ω×BIBJωBIB

]
=

[
fextB

τ extB

]

Mv̇ +

[
mω×BIBvBIB −mω×BIBr×offB

ωBIB
−mv×BIBr×offωBIB +mω×BIBr×offB

vBIB + ω×BIBJωBIB

]
= f

Mv̇ +

[
ω×BIB 03×3

v×BIB ω×BIB

][
mvBIB −mr×offB

ωBIB
−mr×offB

vBIB + JωBIB

]
= f

Mv̇ −

[
−ω×BIB 03×3

−v×BIB −ω×BIB

][
m13×3 −mr×offB

mr×offB
J

][
vBIB
ωBIB

]
= f

Mv̇ − v×TMv = f . (4.33)

This expression describes the combined translational and rotational dynamics of the

quadrotor in the body-fixed frame FB about the geometric center OB of the quadrotor

frame for the general case, i.e. without the simplifying assumptions on center of gravity

location and body-frame axes alignment. Note that with the simplifying assumptions of

a center of gravity location coincident with the geometric center, and FB aligned with the

principal axis frame, the first moment of mass about OB becomes zero (roffB = 0), and

the second moment of mass about OB reduces to a diagonal matrix. The resulting mass

matrix M also reduces to a diagonal matrix recovering the typical dynamic quadrotor
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model in [2].

4.2.6 External Forces and Torques

As defined in (4.32), the external forces and torques applied to the quadrotor are com-

bined into f . To obtain the control-affine form in (4.1), it is beneficial to decompose f

into the forces and torques from the controller, and those applied to the quadrotor by

Earth’s gravity separately:

f = f g + f c =

[
FgB

τ gB

]
+

[
FcB

τ cB

]
.

The external forces and torques arising from gravity acting on the quadrotor geometric

center f g can be obtained by assuming gravity acts as a uniform vector field. This

assumption means that gravity acts as a force on the quadrotor center of gravity in the

inertial reference frame, which can be expressed in the body frame as follows:

~fg = ~F
I

TFgI = ~F
I

T

 0

0

−mg

 = ~F
B

TCBI

 0

0

−mg

 = ~F
B

TFgB , (4.34)

where the first relation in (4.5) has been used to rotate the force of gravity in the body-

fixed frame. The external torque about OB is simply the moment of ~fg acting ~roff from

OB:

~τg = ~roff × ~fg = ~roff × ~F
B

TFgB = ~F
B

T r×offB
FgB = ~F

B

Tτ gB . (4.35)

The forces and torques from the motors acting on the quadrotor about the geometric

center are independent of the assumptions on center of gravity location and inertia, so the

typical quadrotor control forces and torques are derived here. The motor locations with

respect to the body-fixed reference frame and geometric center are shown in Figure 2.1.

The quadrotor has a motor driving a propeller on each end of its four arms with length

l from the quadrotor geometric center. These control the quadrotor by applying forces

and moments to the quadrotor. In the body-fixed frame, the control inputs are defined
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as:

FcB =

 0

0

F1 + F2 + F3 + F4

 and τ cB =

 l(F2 − F4)

l(−F1 + F3)

M1 −M2 +M3 −M4

 . (4.36)

The thrust, Fi, and moment, Mi, generated by each propeller are modelled to be

proportional to the square of the rotational speed ωi of the propeller blade [2], such that

Fi = kfω
2
i and Mi = kmω

2
i . This results in the following relationship between the thrust

and moment: Mi = γFi, where γ = km
kf

.

Let the control inputs, be defined as the individual motor forces ui , Fi, then the

control inputs can be expressed as follows:

f c =



0

0

F1 + F2 + F3 + F4

l(F2 − F4)

l(−F1 + F3)

M1 −M2 +M3 −M4


=



0

0

1

0

−l
γ


F1 +



0

0

1

l

0

−γ


F2 +



0

0

1

0

-l-

γ


F3 +



0

0

1

−l
0

−γ


F4 .

Define the following 6× 1 matrices gi :

g1 ,
[
0 0 1 0 −l γ

]T
g2 ,

[
0 0 1 l 0 −γ

]T
g3 ,

[
0 0 1 0 l γ

]T
g4 ,

[
0 0 1 −l 0 −γ

]T
This means that the all the external forces and torques acting on the quadrotor can be

summarized as follows:

f = f g + g1u1 + g2u2 + g3u3 + g4u4 where f g =

[
FgB

r×offB
FgB

]
. (4.37)

No distortion in the control inputs arise as discussed in [8] where the reference point

was changed to the offset CG location, the reference point OB for the moments is kept

at the geometric center of the quadrotor. Substitution of (4.37) into (4.33) results in the
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following control-affine form:

Mv̇ − v×TMv = f g + g1u1 + g2u2 + g3u3 + g4u4

Mv̇ = v×
T
Mv + f g + g1u1 + g2u2 + g3u3 + g4u4

v̇ = M−1(v×
T
Mv + f g) +M−1(g1u1 + g2u2 + g3u3 + g4u4) . (4.38)

4.2.7 Quadrotor Nonlinear State Equation in Control Affine

Form

Define the state x to be a 12-dimensional column matrix constructed from the position

rbI = (xI , yI , zI) expressed in the inertial frame, the attitude described by the Euler

angles θ = (φ, θ, ψ), translational velocity vBIB = (ẋB, ẏB, żB) expressed in the body

frame, and the relative angular velocity of the body frame with respect to the inertial

frame expressed in the body frame ωBIB = (p, q, r) [2, 7]:

x =
[
rTbI θT vTBIB ωTBIB

]T
=
[
rTbI θT vT

]T
. (4.39)

The control-affine state equation ẋ = f(x,u) in (4.1) can be obtained by combining the

quadrotor kinematics and dynamics in (4.13), (4.14) and (4.38) respectively as follows:

ẋ =

 CIB(θ)vBIB
S−1(θ)ωBIB

M−1(v×
T
Mv + f g)

+

 03×1

03×1

M−1g1

u1 +

 03×1

03×1

M−1g2

u2

+

 03×1

03×1

M−1g3

u3 +

 03×1

03×1

M−1g4

u4 , (4.40)

which is in control-affine form with four inputs and a 12-dimensional state x, where f0(x)

and fi(x) are defined as follows:

f0(x) ,

 CIB(θ)vBIB
S−1(θ)ωBIB

M−1(v×
T
Mv + f g)

 , and fi(x) ,

 03×1

03×1

M−1gi

 for i = 1, . . . , 4. (4.41)
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4.3 Analysis of the Dynamics Model

4.3.1 Equilibria of the Equations of Motion

To gain more insight into the equilibria of the dynamics model, consider the following

equivalent form of (4.40):

ẋ =

 CIB(θ)vBIB
S−1(θ)ωBIB

M−1(v×
T
Mv + f g)

+

 03×1

03×1

M−1f c

 , where f c =

[
FcB

τ cB

]
=


[
02×1

uF

]
uτ

 ,

(4.42)

where uF ∈ R is the sum of the vertical thrust applied by the motors in the body frame,

and uτ ∈ R3×1 is the control torque applied by the four motors about the quadrotor

geometric center, as both defined in (4.36).

Definition. (x,u) is an equilibrium pair if ẋ = f(x,u) = 0.

Solving (4.42) for f(x,u) = 0, start with the first equation:

CIB(θ)vBIB = 03×1 (4.43)

implies that vBIB = 0 since CIB
−1 = CT

IB is invertible, and that the equilibrium position

rbI =
[
x̄I ȳI z̄I

]
is arbitrary. Also:

S−1(θ)ωBIB = 03×1 , (4.44)

means that ωBIB = 0 if θ 6= ±π
2
, since (S−1(θ))

−1
= S(θ) is nonsingular. It further

follows from (4.43) and (4.44) that v = 0. The final equations in (4.42) are: −f g = f c,

which can be expressed as:

−r×offB
CBIFgI = τ cB = uτ , and FgI = −CIBFcB . (4.45)

The second equation can be further expanded as follows:

 0

0

−mg

 = −

 cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ

cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ


 0

0

uF

 , (4.46)
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where the first and second rows lead to: sin(θ) = 0, and − sin(φ) cos(θ) = 0 under the

assumption of positive thrust control inputs Fi > 0. This results in φ = 0 ± nπ and

θ = 0 ± nπ for n ∈ Z. Assuming only upright attitude, the equilibrium Euler angles

θ =
[
0 0 ψ̄

]T
where ψ̄ is an arbitrary yaw angle. This also means that the rotation

matrix CIB = Cz(ψ̄) the principal rotation matrix about the vertical axis. As a result

the equilibrium state is:

x =
[
x y z 0 0 ψ 0 0 0 0 0 0

]T
, (4.47)

which describes the quadrotor in hover at an arbitrary position in space and at an arbi-

trary yaw attitude.

In terms of the control inputs at the equilibrium state, the expressions in (4.45) reduce

to the following:

u =

[
uF

uτ

]
=

[
mg

−r×offB
CBIFgI

]
, (4.48)

which implies that the net lift from all four rotors F1 + F2 + F3 + F4 , uF = mg is

equal to the weight of the quadrotor and the payload it is carrying. It also shows that

the torque applied by the motors about the quadrotor geometric center exactly balances

out the torque that the offset center of gravity applies to the quadrotor. Both of these

results are logical for a quadrotor in hover with an offset center of gravity position.

4.3.2 Quadrotor Load Limits Under Design Constraints

Ultimately, the theoretical limitations on the payload mass properties that can be carried

by a quadrotor are a direct result of the design parameters of the airframe. In practice,

the design of the controller dictates how close this limit will be approached.

The control inputs discussed in Section 4.2.6 have limits in the amount of thrust that

can be produced. The thrust envelope and the length of the quadrotor arms limit the total

net force and torque that can be applied to the airframe. This translates into a maximum

total mass of the quadrotor, and maximum CG offset to maintain hover. These limitations

are design dependent and will be different for different quadrotors. From (4.48), the

parameters that influence the maximum mass and CG offset are the thrust constant kf ,

the quadrotor arm length from the geometric center l and the minimum and maximum

propeller rotational speeds ω discussed in Section 4.2.6. To illustrate the maximum mass

and CG offset, the parameters from a typical quadrotor found experimentally in [2] are
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used.

The parameters of the Hummingbird Quadrotor [2] are:

1200 < ω < 7800 [rpm] , l = 0.175 [m] and kf = 6.11× 10−8

[
N

rpm2

]
.

Figure 4.2 shows the contour plot of the maximum mass that can be supported at each

horizontal CG offset location. As expected, the maximum mass decreases the further the

center of mass is located from the geometric center, since a larger thrust is required to

produce a counter moment. The contours are square because the motor pairs produce

moments independently in the pitch and roll axes, which are perpendicular, and the

quadrotor frame is symmetric.
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Figure 4.2: Mass limits due to actuator limits.

Load limits under maneuvering flight can be calculated from the dynamic equations

of motion in (4.40). Further design constraints on the desired translational and angular

accelerations are necessary to solve the equations of motion. As a result of the quadrotor

symmetry, the contours will always be square in plots similar to Figure 4.2 of mass

properties given performance constraints. Rectangular contours will be obtained for

asymmetric performance specifications.
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Nonlinear Observability Analysis

This section discusses the observability of the unknown mass properties in the augmented

full nonlinear general model extended from the dynamic model in (4.40) derived previ-

ously. First, the definitions for nonlinear observability are presented. This is followed

by the identification of the unknown parameters involved. The output model is chosen

based on the realistic selection of sensor measurement types for a typical quadrotor con-

figuration consisting of interoceptive and exteroceptive sensor measurements. Finally,

the results of the observability analysis are presented.

The objective is to determine whether the unknown mass properties can be estimated

from typical quadrotor output measurements.

5.1 Preliminaries

The notation used in this chapter is identical to [40]. Let h : Rn → R be a smooth scalar

function, and f : Rn → Rn be a smooth vector field on Rn.

Definition (Lie Derivative). The Lie derivative [21] of h with respect to f is a scalar

function defined by:

Lfh , ∇hf =
[
∂h
∂x1

∂h
∂x2

· · · ∂h
∂xn

]
f , (5.1)

27
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where ∇(·) is the gradient operator that maps a scalar function dependent on n vari-

ables into a 1× n matrix of its partial derivatives. Repeated Lie derivatives are defined

recursively as follows:

Lifh , Lf(L
i−1
f h) = ∇(Li−1

f h)f for i = 1, 2, . . . , where: (5.2)

L0
fh , h (5.3)

Consider the following control-affine system x ∈ Rn, u ∈ Rm, and y ∈ Rp, where:

ẋ = f(x,u) = f0(x) +
m∑
i=1

fi(x)ui , (5.4)

y = h(x) =
[
h1(x) · · · hp(x)

]T
(5.5)

Definition (Observability Matrix). [40] Given the system in (5.4) and (5.5), the ob-

servability matrix, O is defined as:

O ,
[
(∇L0

fh1)T · · · (∇L0
fhp)

T · · · (∇Ln−1
f h1)T · · · (∇Ln−1

f hp)
T
]T

(5.6)

Definition (Weak Local Observability). [40] The system defined by (5.4) and (5.5) is

weakly locally observable at x0 if rank(O) = n at x0.

5.2 Augmented Control-Affine State Equation

Unknown Mass Properties

The quadrotor carrying an unknown payload has ten unknown parameters associated

with the unknown mass properties. These are:

1. Mass, m

2. Center of gravity location, roffB =
[
xCG yCG zCG

]T

3. Second moment of inertia matrix, J = JT =

Jxx Jxy Jxz

Jxy Jyy Jyz

Jxz Jyz Jzz


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Output Model

Typical sensors onboard a quadrotor include an Inertial Measurement Unit (IMU) con-

taining a 3-axis accelerometer, 3-axis gyroscope and 3-axis magnetometer, a GPS sensor

or other positioning system such as a Vicon motion capture system, and an altimeter.

These data provide information on the vehicle’s position and attitude, from which all

states are observed directly with noise. For the purpose of analyzing the observability of

the unknown mass properties, it is assumed that the full state in (4.39) can be directly

measured.

The output equation y = h(x) ∈ Rp can therefore be written as follows:

y = h(x) =
[
rTbI θT vT

]T
. (5.7)

Augmented State Equation

To analyze the observability of the unknown parameters, the quadrotor control-affine

state equation in (4.40) is augmented with the unknown parameters discussed in Sec-

tion 5.2. These parameters are assumed to be constant in time such that the additional

rows in f0 to f4 contain only zeros. The augmented state equation is:

ẋ = f0(x) +
4∑
i=1

fi(x)ui ∈ R22×1 , where: (5.8)

x ,
[
rTbI θT vT m roffB Jxx Jxy Jxz Jyy Jyz Jzz

]T
,

f0(x) ,


CIB(θ)vBIB
S−1(θ)ωBIB

M−1(v×
T
Mv + f g)

010×1

 , and fi(x) ,


03×1

03×1

M−1gi

010×1

 for i = 1, . . . , 4.

Note that the first 12 rows in (5.8) are identical to (4.40). The system described by (5.8)

and (5.7) is in a form from which the observability matrix can be constructed and the

observability of the unknown mass parameters can be analyzed.
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5.3 Nonlinear Observability of the Augmented State

Equation

The observability analysis of the system defined by (5.8) and (5.7) is elaborate and

therefore omitted for brevity. Instead, a MATLAB script was written to determine the

rank of the observability matrix from which the observability of the unknown parameters

can be determined. This script is included in Appendix A.

The output of the script returns a rank 22 observability matrix constructed from

only the zeroth and first order Lie derivatives of h(x) with respect to f0(x), f1(x), f2(x),

f3(x) and f4(x). Since this holds for any value of the extended state, the unknown mass

properties are weakly observable. This means that having access to the output and

the control inputs, the augmented state can be reconstructed using a state estimation

algorithm, including the constant unknown mass properties. This result shows that

a parametric adaptive controller with estimation of the unknown mass properties can

successfully control a quadrotor UAV when these are not known.

Parametric based control has limitations which include the inability to compensate

for other disturbances and unmodelled dynamics. These influence the estimates of the

parameters over time which in turn affect the controller. For this reason, an L1 adap-

tive controller is used to control the quadrotor, which compensates for any disturbances

including those arising from changes in the moments of mass. However with this ap-

proach, the parameters being updated within the controller become abstract, and any

information about the unknown mass properties is lost.



Chapter 6

L1 Adaptive Control

The L1 adaptive controller was derived from a reparameterization of the MRAC archi-

tecture with the addition of a low-pass filter through which the control signal is passed.

This additional attenuation of the high frequency component ensures that only the dis-

turbances and unmodelled dynamics within the bandwidth of the control channel are

compensated for. As a result, the low-pass filter decouples adaptation from robustness,

because the high-frequency oscillations that can lead to instability are not propagated

through the rest of the controller. This means that arbitrarily high adaptation gains

can be selected in the adaptation, without resulting in unstable or undesirable transient

behaviour. This overcomes the major drawback of the classical MRAC architecture,

which is sensitive to the large adaptation gains. The trade-off between performance and

robustness still exists and is addressed by the appropriate choice of low-pass filter. The

reparameterization of MRAC and the design rationale behind the L1 adaptive control

framework is provided in [41]. After introducing the general structure of the L1 adaptive

controller and its components, the different architectures that were implemented on the

AR.Drone quadrotor are presented. This section also includes a transient analysis of the

closed-loop L1 adaptive output feedback architecture, which was not given in any of the

literature.

6.1 Preliminaries

The notation used in this chapter is identical to [41], which does not denote vector or

matrix entities with a boldface font. A typical L1 adaptive control loop for uncertain

input disturbances is shown in Figure 6.1 and consists of an output predictor, a parameter

adaptation law, and a low pass filter. A description of each block and its respective

purpose in the adaptive controller is provided in the subsequent sections.

31
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Low Pass Filter System

Output Predictor

Adaptation Law

r + u

−

y

ŷ +

ỹ

+

σ̂

+

−

Figure 6.1: General L1 adaptive output feedback controller with input disturbances.

6.1.1 State or Output Predictor

This block within the architecture uses the current estimate of the unknown parameter,

and the control input to the system to predict what the actual output should be. With

respect to MRAC, the output predictor is analogous to the reference model. The method

of the prediction is up to the designer, since any deviation between the predicted output

and the actual output will be compensated for by a change in the estimate of the unknown

parameter. This block therefore dictates the user specified desired performance, which

the remainder of the L1 architecture will aim to achieve.

In general, the SISO output predictor with uncertain input disturbances has the

following form:

˙̂x(t) = Amx̂(t) +Bm(u(t) + σ̂(t)) , x̂(0) = 0

ŷ(t) = CT x̂(t) , (6.1)

where σ̂(t) is the adaptive estimate of σ(t), and Am ∈ Rn×n, Bm ∈ Rn×1 and C ∈ Rn×1

describe a user specified SISO system with desired closed-loop behaviour. In the Laplace

domain, this is equivalent to:

x̂(s) = H(s)(u(s) + σ̂(s)) , where H(s) , (sI− Am)−1Bm , (6.2)

ŷ(s) = M(s)(u(s) + σ̂(s)) , where M(s) , CT (sI− Am)−1Bm , (6.3)

the n× n identity matrix is denoted as I, and x̂(s), ŷ(s), u(s) and σ̂(s) are the Laplace

transforms of the respective time-domain signals.
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6.1.2 Projection Based Adaptation Law

The adaptive estimate, σ̂, is updated according to one of two methods. The first is the

projection-based adaptation law:

˙̂σ(t) = ΓProj(σ̂(t),−mPỹ(t)) , σ̂(0) = 0 , (6.4)

where ỹ(t) , ŷ(t)−y(t), and P > 0 solves the algebraic Lyapunov equation ATmP+PAm =

−Q for arbitrary Q > 0 . In the implementation of this adaptation law, Q = 1
2

was chosen

resulting in P = 1
m

. Γ ∈ R+ is the adaptation rate subject to the lower bound as specified

in [41]. Typically in L1 adaptive control, Γ is set very large. Experiments described in

the next section were carried out with an adaptation rate of at least Γ = 1000.

The projection operator Proj(·, ·) is defined as:

Definition (Projection Operator). [41] Consider the parameter θ with vector norm

bound θmax. The projection operator is defined as:

Proj(θ, y) ,


y if f(θ) < 0 ,

y if f(θ) ≥ 0 and ∇fTy ≤ 0 ,

y − ∇f
‖∇f‖(

∇f
‖∇f‖

T
y)f(θ) if f(θ) ≥ 0 and ∇fTy > 0 .

(6.5)

The scalar function f : Rn → R is defined as follows:

f(θ) ,
(εθ + 1)θT θ − θ2

max

εθθ2
max

, (6.6)

where εθ > 0 is a user specified tolerance bound on the projection operator.

The operator ensures that the estimation of σ is guaranteed to remain within a spec-

ified convex set, determined by σmax and εσ which are the design parameters of the

function f(σ̂). This is achieved by scaling the component normal to the convex set of

the update to σ̂, only when the estimate is close to the boundary. This occurs when

(εσ̂ + 1)σ̂T σ̂ > σ2
max, and ỹ has a component normal to the set such that ∇fT ỹ > 0.

At the boundary of the set, the component of ỹ normal to the set is driven to zero, by

subtracting the component of ỹ normal to the convex set from it, when f(σ̂) = 1. This

ensures that the update to σ̂ never updates beyond the boundary of the set. The projec-

tion is also used in other adaptive controllers [41]. In the case of SISO L1 adaptive output

feedback under input disturbance, σ is a scalar, meaning that the projection operator

linearly scales the update to zero as it approaches its bound defined by f(σ̂).
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6.1.3 Piecewise Constant Parameter Adaptation

The second adaptation law updates the parameter at the sampling rate of the L1 adaptive

controller:

σ̂(t) = σ̂(iTs) , t ∈ [iTs, (i+ 1)Ts) ,

where Ts is the sampling time of the L1 control loop. This relation shows the piecewise

constant parameter estimate, which is valid for the duration of each time step. The

parameter estimate is calculated as follows:

σ̂(iTs) = −B−1
m (eAmTs − I)−1Ame

AmTs ỹ(iTs) , for i = 1, 2, . . . , (6.7)

where eAmTs is the matrix exponential of AmTs. The advantage of this parameter es-

timation law is that the adaptation rate is as high as possible for the rate at which

the controller is running. Additionally, for small or diagonal matrices Am, the matrix

exponential is not expensive to compute.

6.1.4 Control Law

The control input to the system is computed from the current adaptive parameter esti-

mate, and the desired output that the system is required to track. As a result of the fast

adaptation, the parameter estimate signal contains high frequency oscillations which the

control law is required to attenuate. This is the key behind decoupling the adaptation

from robustness [41].

For the single-input single-output case, the control input signal is the difference be-

tween the L1 desired trajectory signal, r and the adaptive estimate, σ̂ after being filtered

by the strictly-proper low-pass filter C(s), with DC gain C(0) = 1:

u(s) = C(s)(r(s) + σ̂(s)) . (6.8)

In the case of multiple-input multiple-output (MIMO) L1 adaptive control, C(s) is a

matrix of transfer functions. The trade-off between performance and robustness is dic-

tated by the design of the low-pass filter. A larger cutoff frequency improves performance

but simultaneously affects the robustness of the controller. The optimal design of the

frequency response of the low-pass filter is still an open area of research [41].

The appropriate choice of M(s) and C(s) is governed by the L1-norm condition

from which the adaptive controller bears its name. For the state feedback L1 adaptive
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controller the L1-norm condition is defined as:

‖G(s)‖L1L < 1 , where G(s) , H(s)(1− C(s)) , (6.9)

and L is a maximum bound on the absolute value of the unknown parameter. In output

feedback, the uncertainty in the system cannot be decoupled from the L1-norm condition.

The L1-norm condition for this case is presented below in the analysis of the closed-loop

L1 output feedback controller.

6.1.5 Systems Theory and Norms

The following norm definitions are included here for completeness. A complete review of

norms on vectors, matrices, and systems are provided in [41], and [42]

Definition (Vector norms). Consider the vector u =
[
u1 · · · um

]T
∈ Rm, the norms

on this vector are defined as follows:

1-norm: ‖u‖1 ,
m∑
i=1

|ui| , (6.10)

p-norm: ‖u‖p ,
( m∑

i=1

|ui|p
) 1

p

, for p ∈ [1,+∞) , (6.11)

∞-norm: ‖u‖∞ , max
1≤i≤m

|ui| (6.12)

Definition (L-spaces and L-norms). Consider the function f : [0,+∞)→ Rn, the norms

on this function are defined as follows:

L1-norm: ‖f‖L1 ,
∫ ∞

0

‖f(τ)‖dτ <∞ , (6.13)

Lp-norm: ‖f‖Lp ,
(∫ ∞

0

‖f(τ)‖pdτ
) 1

p

<∞ , (6.14)

L∞-norm: ‖f‖L1 , max
1≤i≤n

(
sup
τ≥0
|fi(τ)|

)
<∞ . (6.15)

The space of piecewise continuous integrable functions with bounded Lp-norm is defined

to be the Lnp space.

In the above definition of L-norms, any of the vector norms defined above can be

used. The Lnp space can be extended by truncating the function f(t):
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Definition (Extended Lnp e space). [41] The extended space Lnp e is defined as the space

of functions:

Lnp e , {f(t)|fτ (t) ∈ Lnp ,∀τ ∈ [0,+∞)} , (6.16)

where

fτ (t) ,

{
f(t) 0 ≤ t ≤ τ ,

0 t > τ .
(6.17)

The extended Lnp e space holds for any of the L-norms defined above. The system

norm is defined as follows:

Definition (System norm). Consider the following linear time-invariant transfer function

matrix G(s), with impulse response g(t) ∈ Rp×m. The L1 norm of the system is defined

as:

‖G(s)‖L1 , max
i=1,...,p

( m∑
j=1

‖gij‖L1
)
. (6.18)

The result of the following two lemmas from [41] will become useful in proving the

bounded-input bounded-output stability of the L1 reference system.

Lemma 6.1.1. Assume that G(s) ∈ L1. Then for arbitrary d(t) ∈ L∞e,

‖eτ‖L∞ ≤ ‖G(s)‖L1‖dτ‖L∞ , (6.19)

and e(t) ∈ L∞e

Proof. Provided in [41].

Lemma 6.1.2. A continuous time linear time-invariant proper system, e(s) = G(s)d(s)

with impulse response matrix g(t) is bounded-input bounded-output stable if and only if

its L1-norm is bounded, i.e. G(s) ∈ L1.

Proof. Provided in [41].

6.2 Quadrotor L1 Adaptive Control Architectures

The general L1 adaptive control structure has many different forms and can be combined

or nested within other control laws suitable for different systems. A complete overview
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and theoretical discussion of the L1 adaptive controller is provided in [41]. In this sec-

tion, several different L1 adaptive control architectures are presented that place the L1

adaptive output controller at different places within the cascaded control structure of the

quadrotor. Each of these architectures has been implemented on the Parrot AR.Drone,

and the results of each architecture are presented in Section 7. In each of the architec-

tures introduced below, the controllers are implemented separately in each of the three

directions x, y and z or the respective attitude angles that actuate the system in these

directions. This means that any unknown coupling or asymmetric dynamics if present,

are rejected by the L1 output feedback controller.

6.2.1 Translational Velocity Control Approach

The architecture presented in [31] is a good starting point for the L1 adaptive control

implementation, because it has shown the feasibility for quadrotors. The main archi-

tecture is shown in Figure 6.2, where the L1 adaptive control was chosen to act on the

translational velocity of the quadrotor. The additional proportional feedback controller

around the L1 architecture was added such that the system tracks a position trajectory

instead of translational velocity. This produces much more predictable results [31], and

in the application to quadrotor control within a confined space such as the UTIAS In-

door Robotics Lab, this architecture also ensures that the quadrotor stays within the

boundaries of the space. This is not necessarily the case when tracking a translational

velocity profile.

However, there are some theoretical and practical drawbacks of this approach. As a

result of the additional feedback loop, the proofs for stability and transient performance

found in [41] are no longer valid. Unfortunately, only the architecture was presented

in [31]; no proof on transient and steady-state performance was conducted. The implica-

tions of the additional feedback loop also means there is one more additional parameter

to tune. As shown in Section 6.4, the tuning is further complicated in this architecture

since the tuning parameters of the L1 controller are coupled in the effect they have on

the natural frequency and damping ratio of the response.

The following definitions of the intermediate signals as shown in Figure 6.2 are used

for the stability and transient proofs conducted in Section 6.3. The desired position tra-

jectory is given by the signal r2(t). The error between the desired position r2(t) and the

actual position y2(t) is passed to a proportional controller resulting in a desired trans-

lational velocity, r2(t). This is the input to the L1 adaptive output feedback controller

shown in Figure 6.1. The error between the desired translational velocity r1 and the
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parameter estimate σ̂, is passed through the low-pass filter obtaining the control input

u(t). This is fed into both the output predictor and the system, the latter consisting of

the standard nonlinear quadrotor controller and the Parrot AR.Drone quadrotor. Similar

to [31], the projection-based parameter adaptation law discussed above is used in this

architecture. Measurements from the Vicon motion capture system allow the position y2

and translational velocity y1 to be measured for feedback in the controller.

K Gain
Low Pass
Filter

System

Output Predictor

Adaptation Law

r2 r1 u y2

ŷ

ỹ

σ̂

−− y1

−

Figure 6.2: L1 adaptive output feedback controller in velocity.

The system block in Figure 6.2 contains a cascaded control architecture consisting of

the nonlinear controller, the AR.Drone onboard controller and the quadrotor dynamic

system. The nonlinear controller also uses the estimates of attitude from the Vicon mo-

tion capture system to compute its control signals, while the onboard quadrotor controller

uses state estimates from its onboard inertial measurement unit.

6.2.2 Position Control Approach

The position based L1 adaptive controller is a direct implementation of the adaptive

output feedback controller from [41]. As a result, the control block diagram is identical

to Figure 6.1. The adaptive estimate σ̂ is subtracted from the desired position trajectory

r(t) and is filtered through the low-pass filter. The control signal u(t) representing a

desired position is subsequently passed to the system consisting of the nonlinear controller

and Parrot AR.Drone. The Vicon motion capture system is used to obtain measurements

of the quadrotor position, y(t). The piecewise constant adaptation law is used to update

σ̂ with a sampling rate equal to the rate at which the L1 control loop is operating.

The stability and transient performance analyses are provided in [41]. Surprisingly, no

previous work has attempted to implement this controller in the outer position control

loop for quadrotor control.
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6.2.3 Attitude Control Approach

The attitude based L1 adaptive controller is placed in the same position in the cascaded

control architecture as in [32] of the Euler angle variant, except that desired roll and pitch

attitude inputs to the L1 controller are obtained from the nonlinear controller instead.

Therefore in this architecture shown in Figure 6.3, the L1 adaptive control augments the

standard nonlinear controller. For convenience, the MIMO L1 adaptive control archi-

tecture is shown, but the implementation of this architecture involves diagonal low-pass

filter and output predictor transfer function matrices resulting in decoupling of the roll,

pitch and climb rate dynamics. Hence, Figure 6.3 can be represented as three separate

control block diagrams.

Nonlinear
Controller

Low Pass
Filter

AR.Drone

Output Predictor

Adaptation Law

r2 r1 u y2

ŷ

ỹ

σ̂

−− y1

−

Figure 6.3: Roll, pitch and climb rate based L1 adaptive output feedback controller.

The definitions of each of the intermediate signals are defined as follows:

r2 ,

xy
z

 , r1 ,

φdes

θdes

żdes

 , u ,

φL1des

θL1des

żL1des

 , ŷ ,

φ̂θ̂
ˆ̇z

 , y1 ,

φθ
ż

 , y2 ,

φθ
ż

 ,

(6.20)

where r2(t) is a desired position trajectory, r1(t) is the output of the nonlinear controller

specifying a desired roll, pitch climb rate command. Instead of passing this signal into

the Parrot AR.Drone onboard controller, r1 is the input to the L1 adaptive controller.

The control input u consisting of desired roll and pitch angles as well as the climb rate

is obtained from the filtering the error between r2 and the parameter estimates σ̂. The

control input is then passed to the AR.Drone onboard controller as well as the designer

specified output predictor. The output of the AR.Drone consists of y1 containing Vicon

motion capture measurements of the attitude and climb rate, and y2 containing Vicon

measurements of the current quadrotor position.
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Similar to the position-based approach in Section 6.2.2, the structure of the adaptive

output feedback loop is unchanged.

6.3 Proof of the Stability and Transient Behaviour of

the Closed-Loop L1 Adaptive Output Feedback

Controller

As mentioned above in Section 6.2.1, the additional feedback loop shown in Figure 6.2

means that the proofs provided in [41] are no longer valid. To prove the stability and

transient behaviour of this architecture, a generalized system with uncertainty is chosen

similar to [41], and the analysis is conducted on an equivalent block diagram to Figure 6.2.

6.3.1 Problem Formulation

The analysis starts with the SISO system identical to [41] for output feedback:

y1(s) = A(s)(u(s) + d(s)) , (6.21)

where A(s) is a strictly proper unknown transfer function, u(s) is the Laplace transform

of the input signal, and d(s) is the Laplace transform of the disturbance signal defined

as d(t) , f(t, y1(t)), where f : R × R → R is an unknown map subject to the following

assumption:

Assumption 6.3.1 (Lipschitz continuity). There exist constants L > 0 and L0 > 0,

possibly arbitrarily large, such that the following inequalities hold uniformly in t:

|f(t, x)− f(t, y)| ≤ L|x− y| , and (6.22)

|f(t, y)| ≤ L|y|+ L0 . (6.23)

When the L1 adaptive control is acting on the velocity, the output y1(t) is the velocity

of the system. The additional proportional closed-loop feedback controller around the

L1 controller acts on the position. As a result, the following relation holds:

y2(s) ,
1

s
y1(s) , (6.24)

meaning that the overall closed-loop structure tracks a position instead of translational

velocity.
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The objective of the closed-loop L1 adaptive output feedback control is to design a

control input u(t) such that y2(t) tracks r2(t).

Assumption 6.3.2. The desired trajectory r2(t) is a bounded piecewise continuous

signal.

As discussed above in Section 6.2.1, this can be achieved by nesting the L1 adaptive

output feedback controller within a proportional feedback controller such that y1(t) tracks

r1(t). Following the same method to simplify the proof as presented in [41], the objective

of the L1 adaptive controller is for y1(t) to track r1(t) according to a first-order reference

system:

M(s) =
m

s+m
, m > 0 . (6.25)

6.3.2 L1 Adaptive Controller Definitions and L1-Norm Condi-

tion

Proceeding with the L1 formulation in [41], the system in (6.21) can be rewritten in terms

of the first-order reference system (6.25):

y1(s) = A(s)u(s) + A(s)d(s)

= A(s)u(s) +M(s)u(s)−M(s)u(s) + A(s)d(s)

= M(s)u(s) +M(s)

(
(A(s)−M(s))u(s) + A(s)d(s)

M(s)

)
= M(s)(u(s) + σ(s)) , (6.26)

where the uncertainties of A(s) and d(s) are combined into σ:

σ(s) =
(A(s)−M(s))u(s) + A(s)d(s)

M(s)
. (6.27)

Consider a strictly-proper low-pass filter C(s) with C(0) = 1, a proportional gain

K ∈ R+, as well as the following transfer functions:

H(s) ,
A(s)M(s)

C(s)A(s) + (1− C(s))M(s)
, (6.28)

F (s) ,
1

s+H(s)C(s)K
. (6.29)
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Lemma 6.3.1. There exists a low-pass filter C(s) with C(0) = 1 such that the transfer

function H(s) is stable if A(s) can be stabilized by a proportional-integral controller.

Proof. Shown in [41] when C(s) is a first-order low-pass filter.

Assumption 6.3.3 (Stability of F (s)). There exists a proportional gain K such that

the transfer function F (s) is stable.

Remark. From Lemma 6.3.1, H(s) is stable given the conditions on A(s). These same

conditions on A(s) can be used to determine the stability of F (s) using the root locus

with the gain K. A related lemma and detailed proof will be established in future work.

Also, C(s) and K are chosen such that the L1-norm condition is satisfied:

‖G(s)‖L1L < 1 , (6.30)

where

G(s) , H(s)(1− C(s))F (s) . (6.31)

For the proof of the bounded response of the closed-loop L1 adaptive output feedback

controller, the following definitions will become useful:

H0(s) ,
A(s)

C(s)A(s) + (1− C(s))M(s)
, and (6.32)

H1(s) ,
(A(s)−M(s))C(s)

C(s)A(s) + (1− C(s))M(s)
. (6.33)
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From [41], it is shown that both H0(s) and H1(s) are strictly-proper stable transfer

functions. Furthermore, the following expressions using the definitions of H0(s) and

H1(s) will also be useful:

M(s)H0(s) = M(s)

(
A(s)

C(s)A(s) + (1− C(s))M(s)

)
= H(s) , and (6.34)

M(s)
(
C(s)+H1(s)(1− C(s))

)
= M(s)

(
C(s) +

( (A(s)−M(s))C(s)

C(s)A(s) + (1− C(s))M(s)

)
(1− C(s))

)
= M(s)

(
1 +

( (A(s)−M(s))

C(s)A(s) + (1− C(s))M(s)

)
(1− C(s))

)
C(s)

= M(s)

(
C(s)A(s) + (1− C(s))M(s) + (A(s)−M(s))(1− C(s))

C(s)A(s) + (1− C(s))M(s)

)
C(s)

= M(s)

(
A(s)

C(s)A(s) + (1− C(s))M(s)

)
C(s)

= H(s)C(s) . (6.35)

Finally, let ρr be defined as follows:

ρr ,
K‖H(s)C(s)F (s)‖L1‖r2‖L∞ + ‖G(s)‖L1L0

1− ‖G(s)‖L1L
. (6.36)

6.3.3 Revised Closed-loop L1 Adaptive Control Architecture

Figure 6.2 can be rearranged into the following SISO closed-loop L1 adaptive controller

architecture shown in Figure 6.4.

K Gain
Low Pass
Filter

System 1
s

Output Predictor

Adaptation Law

r2 r1 u y1

−ŷ

ỹ
σ̂

−−

y2

Figure 6.4: Closed-loop L1 adaptive output feedback controller.

The specific individual components of the L1 architecture are introduced below upon
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substitution of the quantities introduced in Section 6.2.1 into the L1 adaptive output

structure in Section 6.1. The equations for the outer proportional control loop are also

shown here.

Output Predictor

The following output predictor is obtained upon substitution of (6.25):

˙̂y(t) = −mŷ(t) +m(u(t) + σ̂) , ŷ(0) = 0 , (6.37)

where σ̂ is the adaptive estimate of σ. In the Laplace domain, this is equivalent to:

ŷ(s) = M(s)(u(s) + σ̂(s)) . (6.38)

Adaptation Law

The adaptive estimate, σ̂, is updated according to the projection-based adaptation law

introduced in Section 6.1.2.

Control Law

The control input signal is the difference between the L1 desired trajectory signal, r1 and

the adaptive estimate, σ̂ after being filtered by the low-pass filter C(s):

u(s) = C(s)(r1(s) + σ̂(s)) . (6.39)

Closed-Loop Feedback

The following equations describe the closed-loop feedback loop around the L1 controller:

y2(s) =
1

s
y1(s) . (6.40)

The negative feedback is defined as follows:

r1(s) = K(r2(s)− y2(s)) , (6.41)

where the objective is for y2 to track r2.

The equations describing the closed-loop L1 output feedback architecture are (6.38),

(6.4), (6.39), (6.40) and (6.41).
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6.3.4 Transient and Steady-State Performance

Lemma 6.3.2. Let C(s), M(s) and K satisfy the L1-norm condition in (6.30). Then

the following closed-loop reference system:

y2,ref(s) = F (s)H(s)
(
C(s)Kr2(s) + (1− C(s))dref(s)

)
(6.42)

dref(t) , f(t, y2,ref(t))

is bounded-input bounded-output stable.

Proof. Since r2(t) is bounded and H(s), C(s) and F (s) are strictly proper stable transfer

functions, taking the norm of the reference system and making use of Assumption (6.22)

yields the following lower bound:

‖y2,reft‖L∞ ≤ K‖H(s)C(s)F (s)‖L1‖r2‖L∞ + ‖G(s)‖L1‖f(t, y2,ref(t))‖L∞
‖y2,reft‖L∞ ≤ K‖H(s)C(s)F (s)‖L1‖r2‖L∞ + ‖G(s)‖L1(L‖y2,reft‖L∞ + L0) , (6.43)

where ‖y2,refτ‖L∞ is the truncated L∞-norm of the signal y2,ref(t) up to t = τ . From the

L1-norm condition in (6.30) and the definition of ρr in (6.36):

‖y2,reft‖L∞ ≤ ρr . (6.44)

This result holds uniformly, so ‖y2,ref‖L∞ is bounded. Hence, from Lemma 6.1.2 the

closed-loop reference system in (6.42) is bounded-input bounded-output stable.

Theorem 6.3.1. Consider the system in (6.21), with a control input from the closed-loop

L1 output feedback adaptive controller defined in (6.38), (6.4), (6.39), (6.40) and (6.41).

Suppose C(s), M(s) and K satisfy the L1-norm condition in (6.30). Then the following

bounds hold:

‖ỹ‖L∞ ≤ γ0 , (6.45)

‖y2,ref − y2‖L∞ ≤ γ1 , (6.46)

where ỹ(t) , ŷ(t)− y1(t), γ0 ∝
√

1
Γ

is defined in [41], and

γ1 ,
‖F (s)H(s)C(s)

M(s)
‖L1

1− ‖G(s)‖L1L
γ0 . (6.47)
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Proof. Theorem 4.1.1 in [41] proves the bound in (6.45) for the same conditions, so only

the bound in (6.46) remains to be shown.

Let σ̃(t) , σ̂(t) − σ(t) where σ̂ is the adaptive estimate, and σ is defined in (6.27).

From the control law in (6.39):

u(s) = C(s)(r1(s)− σ̂(s))

= C(s)r1(s)− C(s)(σ̃(s) + σ(s)) . (6.48)

Substituting (6.48) into the system (6.26):

y1(s) = M(s)
(
u(s) + σ(s)

)
= M(s)

(
C(s)r1(s)− C(s)σ(s) + σ(s)− C(s)σ̃(s)

)
= M(s)

(
C(s)r1(s) + (1− C(s))σ(s)− C(s)σ̃(s)

)
, (6.49)

as well as into (6.27) results in the following expression for σ:

σ(s) =
(A(s)−M(s))

(
C(s)r1(s)− C(s)(σ̃(s) + σ(s))

)
+ A(s)d(s)

M(s)

M(s)σ(s) = (A(s)−M(s))
(
C(s)r1(s)− C(s)σ̃(s)

)
+ A(s)d(s)

− (A(s)−M(s))C(s)σ(s)(
A(s)C(s) +M(s)−M(s)C(s)

)
σ(s) = (A(s)−M(s))C(s)

(
r1(s)− σ̃(s)

)
+ A(s)d(s)

σ(s) =
(A(s)−M(s))C(s)

C(s)A(s) + (1− C(s))M(s)
(r1(s)− σ̃(s))

+
A(s)

C(s)A(s) + (1− C(s))M(s)
d(s) .

From the definitions of H0(s) and H1(s) in (6.32) and (6.33) respectively:

σ(s) = H1(s)(r1(s)− σ̃(s)) +H0(s)d(s) . (6.50)
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Substituting (6.50) into (6.49) results in:

y1(s) = M(s)
(
C(s)r1(s) + (1− C(s))

(
H1(s)(r1(s)− σ̃(s)) +H0(s)d(s)

)
− C(s)σ̃(s)

)
= M(s)

(
C(s)(r1(s)− σ̃(s)) + (1− C(s))

(
H1(s)(r1(s)− σ̃(s)) +H0(s)d(s)

))
= M(s)

(
C(s) +H1(s)(1− C(s))

)(
r1(s)− σ̃(s)

)
+M(s)H0(s)(1− C(s))d(s).

From (6.35) and (6.34), this expression simplifies to:

y1(s) = H(s)C(s)
(
r1(s)− σ̃(s)

)
+H(s)(1− C(s))d(s) . (6.51)

An expression for y2 is obtained by substituting (6.51) and (6.41) into (6.40) as follows:

y2(s) =
1

s
y1(s)

=
1

s

(
H(s)C(s)

(
K(r2(s)− y2(s))− σ̃(s)

)
+H(s)(1− C(s))d(s)

)
=
H(s)

s

(
C(s)

(
Kr2(s)− σ̃(s)

)
+ (1− C(s))d(s)

)
− H(s)C(s)K

s
y2(s)

=
1

s+H(s)C(s)K
H(s)

(
C(s)

(
Kr2(s)− σ̃(s)

)
+ (1− C(s))d(s)

)
.

Using the definition of F (s) in (6.29) results in:

= F (s)H(s)
(
C(s)

(
Kr2(s)− σ̃(s)

)
+ (1− C(s))d(s)

)
= F (s)H(s)

(
C(s)Kr2(s) + (1− C(s))d(s)

)
− F (s)H(s)C(s)σ̃(s) . (6.52)

From the definition of ỹ in the adaptation law:

ỹ(s) = ŷ(s)− y1(s) .
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Substitution of the output predictor and the output of the actual system in (6.26) results

in the following expression for ỹ(s):

ỹ(s) = M(s)(u(s) + ˆσ(s))−M(s)(u(s) + σ(s))

= M(s)(σ̂(s)− σ(s))

= M(s)σ̃(s) (6.53)

Recalling the reference system in (6.42) and using the expression for y2 in (6.52), the

error between reference and actual systems, y2,ref − y2 is obtained as follows:

y2,ref(s)− y2(s) = F (s)H(s)
(
C(s)Kr2(s) + (1− C(s))dref(s)

)
− F (s)H(s)

(
C(s)Kr2(s) + (1− C(s))d(s)

)
− F (s)H(s)C(s)σ̃(s)

= F (s)H(s)
(
1− C(s)

)
(dref(s)− d(s))− F (s)H(s)C(s)σ̃(s)

= F (s)H(s)
(
1− C(s)

)
(dref(s)− d(s))− F (s)H(s)C(s)

M(s)
M(s)σ̃(s) .

Substituting the expression for ỹ(s) in (6.53) and the definition of G(s) in (6.31):

= G(s)(dref(s)− d(s))− F (s)H(s)C(s)

M(s)
ỹ(s) ,

Finally, since the L1-norm of G(s) exists, and F (s)H(s)C(s)
M(s)

is strictly proper and stable,

the following bound holds by taking the truncated L∞-norm:

∥∥y2,reft − y2t

∥∥
L∞
≤
∥∥G(s)

∥∥
L1

∥∥dreft − dt
∥∥
L∞

+

∥∥∥∥F (s)H(s)C(s)

M(s)

∥∥∥∥
L1

∥∥ỹt∥∥L∞ .

From Assumption (6.23):

∥∥y2,reft − y2t

∥∥
L∞
≤
∥∥G(s)

∥∥
L1
L
∥∥y2,reft − y2t

∥∥
L∞

+

∥∥∥∥F (s)H(s)C(s)

M(s)

∥∥∥∥
L1

∥∥ỹt∥∥L∞
≤

∥∥F (s)H(s)C(s)
M(s)

∥∥
L1

1−
∥∥G(s)

∥∥
L1
L

∥∥ỹt∥∥L∞ .
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This bound holds uniformly, so:

∥∥y2,ref − y2

∥∥
L∞
≤

∥∥F (s)H(s)C(s)
M(s)

∥∥
L1

1−
∥∥G(s)

∥∥
L1
L

∥∥ỹ∥∥L∞ .

From the bound in (6.45) proven in [41], the following bound also holds:

∥∥y2,ref − y2

∥∥
L∞
≤

∥∥F (s)H(s)C(s)
M(s)

∥∥
L1

1−
∥∥G(s)

∥∥
L1
L
γ0 .

Using the definition of γ1 in (6.47):

∥∥y2,ref − y2

∥∥
L∞
≤ γ1 ,

which proves the second bound in (6.46).

Remark. Similar to the L1 adaptive output feedback controller without the outer loop

as discussed in [41], the performance of the closed-loop L1 adaptive output controller

can be made arbitrarily close to that of the reference system in (6.42), by increasing the

adaptive gain Γ. This reduces both the magnitudes of γ0 and γ1.

Remark. Both the proofs provided here and in [41] are under the assumption of first-order

reference system M(s) and low-pass C(s). As shown in the simulation examples in [41],

higher order filters have a larger attenuation for frequencies above the cutoff frequency.

Hence, for the same L1-norm condition, a higher-order low-pass filter allows for a smaller

adaptation gain, or smaller cutoff frequency to be chosen for the same level of perfor-

mance [41]. The following third order low-pass filter was determined experimentally to be

the best trade-off between complexity in implementation, and improved high-frequency

attenuation:

C(s) =
3ω2

cs+ ω3
c

(s+ ωc)3
. (6.54)

To keep the number of tuning parameters low, a first-order reference system of the form

in (6.25) is implemented in the experiments. In total, there are three tuning parameters

associated with this SISO architecture. These are the low-pass filter cutoff frequency ωc,

the pole m of the reference system, and the proportional gain K of the outer loop.
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6.4 Guideline for Tuning an L1 Adaptive Controller

Tuning of the L1 adaptive controller is not covered in any of the L1 adaptive control liter-

ature including [41]. Tuning in [31] was conducted offline by optimizing the performance

of a quadrotor model obtained through system identification. Finding the parameters of

the L1 controller for optimal tracking performance is not trivial if the parameter adap-

tation is not fast enough. In the projection-based adaptation, the gain Γ must be set

large, or the sampling time of the control loop in the piecewise constant adaptation Ts

must be set sufficiently small. A theoretical lower bound for Γ is provided in Chapter 4

of [41], but it is not trivial to calculate. In practice, the piecewise constant parameter

adaptation sampling time should be chosen to update at the same rate at which the L1

adaptive control loop is operating. Furthermore, tuning of the cutoff frequency and the

output predictor is challenging as well, as both influence the intermediate signals within

the L1 control loop.

To demonstrate the complexity of tuning the output predictor and the proportional

gain in the translational velocity L1 controller, consider the following closed-loop reference

system in (6.42) with perfect cancellation of the unknown parameters, and no high-pass

frequency attenuation, i.e., C(s) = 1:

yref(s) = F (s)H(s)Kr2(s) .

Since C(s) = 1, H(s) reduces to M(s):

yref(s) =
1

s+M(s)K
M(s)Kr2(s)

=
m
s+m

K

s+ m
s+m

K
r2(s)

=
mK

s(s+m) +mK
r2(s)

=
mK

s2 +ms+mK
r2(s) . (6.55)

The denominator can be expressed as s2 + 2ζω0s+ ω2
0 where ζ is the damping ratio and

ω0 is the natural frequency which specify the time-domain response of the system. For

desired performance specifications ζ and ω0, the controller parameters m and K can be

chosen as follows:

m = 2ζω0 and K =
ω0

2ζ
. (6.56)
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The coupling shown in (6.56) is further complicated in the actual implementation of the

L1 controller by the inclusion of the low-pass filter, and the fact that the disturbances

are not perfectly cancelled out.

The procedure outlined in this section provides a guideline to tuning an L1 adaptive

controller, and the intermediate signal behaviour that is desired for optimal tracking

performance.

The main objective in the first stage of tuning is to find a combination of tuning

parameters that ensure the system is stable. This is dependent on the system that is

being controlled, and how deep the L1 architecture is embedded within the overall control

framework. For a quadrotor, the deeper the L1 architecture is within the control design,

the more difficult it is to achieve this objective. This is because the outside controllers

are still able to destabilize the overall system, even if the L1 is stable but responds slowly.

During this stage, it is also important to be able to switch to a safe backup controller,

or land in the event the quadrotor diverges. It is also critical to ensure the system as a

whole is operating reliably during the tuning process. Any communication timeouts, or

any minor failures will affect controller performance even if the optimal tuning parameters

have been obtained.

Although there is no recipe for achieving a stable system from which performance can

be optimized, the following suggestions have been found to facilitate finding a compatible

combination. Start off tuning with a relatively low cutoff frequency, and realistic desired

response of the output predictor. If there are additional outer control loops, such as the

proportional control loop in the velocity based L1 controller, these gains should be set

low to ensure the time constant is larger than the operation of the L1 control loop. Only

when a good response is obtained, should the gains of the outer loops be increased. If

the projection based adaptation is used, a relatively large gain Γ should be chosen, on

the order of 500 at a minimum, dependent on the low-pass filter design.

The key to high tracking performance of the L1 control loop is to have high frequency

oscillations in the adaptive estimate channel σ̂(t), and have a smooth control signal u(t).

The challenge is to find the right balance between high cut-off frequency and a fast

output predictor (i.e., pole farther from the origin on the left half plane real axis). A

high frequency signal in the σ̂(t) channel can be obtained when the output predictor is

designed to have a fast response. Since the input to the output predictor is the sum of

the smooth control signal u(t) and the parameter estimate σ̂ containing high frequency

oscillations, its output ŷ will also contain high frequency oscillations that are then fed

back into the adaptation law. In fact, the frequency of the oscillations are dictated by

the output predictor as it constantly overshoots the actual output from the system. The
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large adaptive gain will then cause the adaptive estimates to oscillate at the overshooting

frequency of the output predictor with large amplitude. Note that the low-pass filter

should not be used in adjusting the high frequency component in the σ̂(t) channel.

The low-pass filter is designed to match the bandwidth of the control channel of the

system. The tuning task is to increase the cutoff frequency ωc while maintaining high

frequency oscillations in the adaptive estimate channel σ̂(t). Oscillations in the system

output typically indicate that the cutoff frequency has been set too high. The reason for

maximizing the cutoff frequency is because of the frequency response of a low-pass filter.

For low cutoff frequencies, the phase shift is unnecessarily large in the bandwidth of the

system control channel. This results in a delay between the desired input r(t) and the

corresponding signal in the control input u(t). Besides increasing the cutoff frequency,

another method of reducing the phase shift is to increase the order the low-pass filter.



Chapter 7

Experimental Results

7.1 Experimental Setup

This section discusses the nonlinear proportional-derivative controller used in combina-

tion with the L1 adaptive controllers described in the previous chapter. The UTIAS

Indoor Robotics Lab is also introduced as well as the Vicon motion capture system used

for accurate quadrotor state estimation. The platform used in all experiments is the

Parrot AR.Drone 2.0 UAV.

7.1.1 Baseline Nonlinear Controller

The proportional-derivative controller forms a basis for the control of the Parrot AR.Drone

quadrotor. It has been developed by the Dynamic Systems Lab prior to this project. In

addition to serving as a baseline controller for the purpose of comparison, the L1 architec-

tures developed in the previous section augment it, or share many of its components. A

brief overview of its implementation is provided here. A detailed review of the controller

is provided in [2].

The Parrot AR.Drone interface with the Robot Operating System (ROS) involves

the following four control inputs: φcmd, θcmd, ψ̇cmd and żcmd in the body frame. The

onboard controller then computes the required motor thrusts, F1 to F4. The objective of

the nonlinear controller is to compute these commands, such that the quadrotor tracks a

desired position rdes = (xdes, ydes, zdes), horizontal translational velocity ṙdes = (ẋdes, ẏdes)

and desired heading, ψdes in the inertial frame. From the Vicon overhead motion capture

system, the controller obtains measurements about the current position, r = (x, y, z),

translational velocity, ṙ = (ẋ, ẏ, ż), and Euler angles θ = (φ, θ, ψ) in the inertial frame.

This information can then be used to compute the desired input to the Parrot AR.Drone

53
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controller which calculates the required propeller rotation for each motor to ensure the

commanded roll, pitch, yaw rate and climb rate are tracked.

Nonlinear Control Law

From the error in horizontal velocity and position, a desired horizontal acceleration can

be calculated. This value is dependent on desired transient performance through the

tuning parameters τxy and ζ which are the time constant and damping ratio respectively:

ẍcmd =
2ζ

τxy
(ẋdes − ẋ) +

1

τ 2
xy

(xdes − x) , (7.1)

ÿcmd =
2ζ

τxy
(ẏdes − ẏ) +

1

τ 2
xy

(ydes − y) . (7.2)

The only method for the quadrotor to accelerate horizontally is by tilting in the desired

direction of travel. When tilted, the thrust generated by the four motors contains a

nonzero horizontal force component which will result in acceleration of the quadrotor in

this direction. Before this operation can be done, the desired accelerations in the inertial

frame must be rotated to be in the body-fixed frame, and the respective magnitudes

must be less than the maximum available mass-normalized thrust. The mass-normalized

thrust, Tm, is the magnitude of the acceleration of the quadrotor including the compen-

sation against the force of gravity:

Tm =
∥∥∥r̈− 1

m
FgI

∥∥∥
2

=
√
ẍ2 + ÿ2 + (g + z̈)2 . (7.3)

The desired normalized horizontal accelerations can then be rotated by the yaw angle of

the quadrotor as follows:[
ẍb

ÿb

]
=

[
cos(ψ) sin(ψ)

− sin(ψ) cos(ψ)

][
min(ẍcmd, Tm)T−1

m

min(ÿcmd, Tm)T−1
m

]
. (7.4)

The minimum is taken since the desired accelerations cannot be greater than the total

available mass-normalized thrust. The resulting roll and pitch angle commands can then

be calculated from trigonometry:

φcmd = sin−1(ÿb) , and θcmd = sin−1(ẍb) . (7.5)

The climb and yaw rate commands are calculated from their respective errors as
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follows:

żcmd =
1

τ 2
z

(zdes − z) , and ψ̇cmd =
1

τω
(ψdes − ψ) . (7.6)

7.1.2 Indoor Robotics Lab

The UTIAS Indoor Robotics Lab consists of the Vicon motion capture system an inter-

facing computer, and a flying space in which flying experiments can be conducted. The

general system setup is shown in Figure 7.1. The Vicon system estimates the position of

multiple reflective markers fixed to the rigid quadrotor body using ten infrared cameras

and emitters located at known locations within the space. This system is capable of

millimeter level positioning accuracy. The computer interface stores a unique model of

the quadrotor markers and estimates quadrotor position and attitude at a nominal rate

of 200 Hz. This data is sent via ethernet to another computer on which the L1 adaptive

control algorithms are computing control inputs in the form of desired roll, pitch, yaw

rate and climb rate commands. After the control inputs are computed, they are sent

over a 2.4 GHz Wi-Fi wireless connection to the AR.Drone onboard controller. Using its

onboard IMU sensor measurements the AR.Drone calculates the required motor speeds,

completing the feedback loop. For safety, the flying space is surrounded by a net that

prevents the quadrotor from exiting the designated flying area.

Parrot AR.Drone 2.0

Vicon Cameras

Vicon ComputerOff-board Control

Figure 7.1: UTIAS Indoor Robotics Lab setup showing the components that constitute
the complete control loop.
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Parrot AR.Drone 2.0 Quadrotor

The Parrot AR.Drone 2.0 is a geared brushless quadrotor shown in Figure 7.2. The

quadrotor operates on a 1.5 Ah three cell lithium polymer battery pack. The four rotors

are protected by a lightweight extruded polypropylene foam hull that absorbs impact,

results in safer operation, and prevents objects from contacting the propellers. The

reflective Vicon markers are also mounted to this hull. This platform has been successfully

used for research projects in the lab for the previous three years.

Figure 7.2: Parrot AR.Drone 2.0 showing extruded polypropylene hull and spherical
Vicon reflective markers. A clamp is also shown attached to the aft-right landing leg to
simulate a mass disturbance.

What follows is a comparison between the different control architectures in trajectory

tracking performance and unknown disturbance rejection.

7.2 Comparison of L1 Adaptive Controllers

7.2.1 Step Input

The time domain response to a step input in the x, y and z directions of the closed-loop

L1 adaptive output controllers and the nonlinear controller are shown in Figure 7.3. The

step input is 2 m in the x and y directions and 0.75 m in the z direction due to height

limitations of the UTIAS Indoor Robotics Lab and ground proximity effects.
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(a) Step response comparison in x direction.
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(b) Step response comparison in y direction.
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(c) Step response comparison in z direction.

Figure 7.3: Tracking performance comparison of the position-based L1 (blue), velocity-
based L1 (purple), attitude-based L1 (yellow) and nonlinear controller (green) in response
to a step input (red).
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Framework Average error [m]
step input

Average error [m]
hover disturbance

Position-based L1 adaptive control 0.380 0.126
Velocity-based L1 adaptive control 0.364 0.083
Attitude-based L1 adaptive control 0.403 0.078

Baseline nonlinear controller 0.549 0.233

Table 7.1: Average position error for the three L1 adaptive control and baseline nonlinear
control architectures. The errors for both the step input and the disturbance under hover
are shown here.

In order to quantitatively compare the trajectory tracking performance, the following

error metric is used based on the average position error for 20 seconds after the step

input:

J(y) =
N∑
i=1

1

N
‖rdes,i − yi‖2 , (7.7)

where rdes,i is the desired position (xdes, ydes, zdes), and yi is the actual position of the

quadrotor (x, y, z) at each time-step i up to N when 20 seconds of time have elapsed. As

shown in Figure 7.3, the 20-second comparison period is well beyond the settling time of

any of the responses. The average tracking error as computed in (7.7) for each L1 control

architecture and the baseline nonlinear controller are shown in the middle column of

Table 7.1.

As a result of the long rise time in the x and y directions, the average position

error of the nonlinear controller is the largest at 0.549 m for this trajectory, despite its

superior tracking performance in the z direction. Although the transient behaviour is

comparatively slower in the nonlinear control response, there are no oscillations in the x

and y directions that are present in all three L1 adaptive control architectures as shown

in Figure 7.3. This is primarily due to the tuning difficulties discussed in Section 6.4, and

an improved tuning procedure for L1 adaptive control architectures has the potential to

eliminate these oscillations and further improve tracking performance. For this reason, no

conclusion can be made on the dependence of high tracking performance on the location

of the adaptation within the control architecture, e.g., in the outside loop as is the case

in the position-based approach, or the lowest level as is the case in the attitude approach.

The proportional-derivative control architecture in the attitude-based L1 adaptive

controller increases the coupling between the tuning parameters, which further compli-

cates the tuning process. Any resultant errors in roll and pitch attitudes subsequently
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correspond to relatively large errors in position. The outer-loop damping ratio was chosen

to dampen any steady-state oscillations, at the expense of poor transient performance.

The largest average tracking error among the L1 architectures of 0.403 m is the result

of the tuning difficulties encountered with the attitude-based architecture. As Table 7.1

shows, the position and translational velocity based L1 adaptive control architectures

have the lowest average tracking error at 0.380 m and and 0.364 m respectively. De-

spite the tuning difficulties, all three L1 architectures outperform the baseline nonlinear

controller in average tracking error.

7.2.2 Compensation of Mass Disturbance in Hover

To compare the disturbance rejection capability of each controller, a 63 g mass is added

to the aft-right landing gear leg 0.17 m from the geometric center in hover as shown

in Figure 7.2. A comparison of the time domain response to this disturbance for each

controller is shown in Figure 7.4.

Similar to the step input comparison presented above, the average position error is

computed according to (7.7) for 20 seconds after the fixed mass disturbance has been

applied. This quantifies the effectiveness of each controller in compensating for the mass

disturbance. The average position error of each controller is summarized in Table 7.1.

Among the L1 adaptive controllers, the position-based adaptive controller has the

largest average position error of 0.126 m. Especially in the recovery of the z-direction,

which reaches a maximum error of 0.467 m from the desired 1.5 m altitude. This is likely

due to the fact that the adaptation law is in the outside control loop. Any phase shift in

the low-pass filter and subsequent delayed response of the system contributes to the large

errors. The lower the L1 adaptive controller is situated in the control architecture, the

faster it can respond to sudden changes. This can be directly observed by the decreasing

position errors of 0.083 m for the translational velocity-based L1 controller, and 0.078 m

for the lowest level attitude based controller.

The ability for the baseline controller to compensate partially for the sudden mass

change indicates there is an adaptation of some sort occurring on the onboard controller.

A typical PID controller can be tuned to drive steady-state errors to zero, which is the

result of the integrator term in the control law. However, as indicated by [43], a PID

controller performance degrades under changing conditions, whereas the L1 adaptive

controller that was implemented in roll and pitch control only is able to compensate for

disturbances without any detrimental effects on performance. As indicated in Figure 7.4,

the position error is only able to partially compensate for the increased and offset mass.
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(a) Mass disturbance response during hover comparison in x direction.
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(b) Mass disturbance response during hover comparison in y direction.
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(c) Mass disturbance response during hover comparison in z direction.

Figure 7.4: Disturbance rejection performance comparison of the position-based L1

(blue), velocity-based L1 (purple), attitude-based L1 (yellow) and nonlinear controller
(green) in response to a sudden change in mass properties at time t = 0. The quadrotor
is required to maintain hover so the desired trajectory (red) is a constant.
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The adaptation that is present is also comparatively slow, especially in the x and y

directions. As a result, the baseline controller has the largest average position error of

0.233 m in the 20 second period after the clamp was attached.

7.3 Package Carrying Load Trajectory

The translational velocity-based L1 adaptive controller is used in demonstrating a quadro-

tor flight with an unknown package, because of its good trajectory tracking performance

and mass property disturbance rejection. Since the goal of this project is to demonstrate

high performance control in the presence of unknown mass properties, the design of an

elaborate package carrying mechanism was not undertaken. The package attachment to

the quadrotor was achieved using the Dual Lock reclosable fastener from 3M. At the ex-

pense of losing automated package retrieval and release capability, the main advantages

of this design are mechanical simplicity, low cost and ease of implementation.

The horizontal tracking performance of the quadrotor carrying an unknown package

following a simulated delivery trajectory is shown in Figure 7.5.
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Figure 7.5: Horizontal package delivery trajectory tracking performance of the nonlinear
controller(green), and the velocity based L1 adaptive controller (purple) carrying an
unknown payload. The desired feasible trajectory is indicated by the red curve.

This result demonstrates the successful control of the quadrotor under unknown mass

properties using the L1 adaptive controller, and meets the high-level objective specified

in Section 1.2.
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7.4 Closed-Loop L1 Output Feedback Combined It-

erative Learning Control

The consistency and disturbance rejection benefits of the L1 adaptive controller means

that it is a good candidate to combine it with other learning techniques that are sensitive

to inconsistency. The results presented in this section show the performance of the L1

adaptive output feedback in translational velocity from Section 6.2.1, combined with a

model-based iterative learning control (ILC) scheme developed by Karime Pereida of the

Dynamic Systems Lab. The combined architecture is shown in Figure 7.6, and details of

the ILC can be found in [44]. As in the above cases, the performance of this architecture

is compared to the combined proportional-derivative nonlinear controller within the ILC

framework.

K Gain
Low Pass
Filter

System

Output
Predictor

Adaptation
Law

Learning
Update

Memory

r2,j r1(t) u(t) y2(t)

ỹ(t)

σ̂(t)

−−

r2,j+1

y1(t)

−

Iterative Learning Controller

Extended L1 adaptive controller

Figure 7.6: Closed-loop L1 adaptive output feedback controller.

The motivation behind this combined architecture is to improve tracking performance

of a quadrotor following a repetitive trajectory under uncertainty and disturbances. The

ILC optimizes in the iteration domain allowing the performance to be improved using

data from the entire trajectory, as compared to time-domain methods that are only able

to learn from past data. For convergence, the ILC requires a system that is repeatable

and consistent, so any uncertainty or disturbances will affect the convergence of the ILC.

The embedded L1 adaptive controller ensures that the system from the perspective of the

ILC is repeatable and consistent. This means that the combined architecture can achieve

high tracking performance in the presence of uncertainty [44]. The results presented here

are from [44].
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The L1 adaptive control in an ILC framework (L1-ILC) is used to minimize the tra-

jectory tracking error of a quadrotor flying a three-dimensional trajectory under different

dynamic conditions. The multi-input multi-output implementation is obtained by using

3 × 3 diagonal transfer function matrices for the low-pass filter and first-order output

predictor. Each element of the three-dimensional signals and each diagonal element of

the transfer function matrices correspond to the x, y and z inertial directions respec-

tively. Since the transfer function matrices are diagonal, any coupling between the x and

y dynamics are compensated for by the controller.

To test the performance of the proposed approach under unknown, changing distur-

bances, we change the dynamic behavior of the quadrotor by adding a mass disturbance.

To create the mass disturbance a 50 g mass is suspended 55 cm below the back-left leg,

17 cm from the geometric center of the frame, creating a pendulum.

The performance of the proposed L1-ILC approach is compared to a pure ILC with

an underlying, non-adaptive proportional-derivative controller (PD-ILC). To quantify the

controller performance, the error in the system is defined as:

e =

∑N
i=1

√
(ex(i))2 + (ey(i))2 + (ez(i))2

N
, (7.8)

where ex(i) = r∗2,x(i)− y2,x(i), ey(i) = r∗2,y(i)− y2,y(i) and ex(i) = r∗2,z(i)− y2,z(i) are the

deviations from the desired trajectory in each axis. Three scenarios are considered to com-

pare the performance of the two control frameworks: learning convergence, repeatability

and performance under changing conditions. In all three scenarios the L1-ILC approach

shows higher performance compared to the PD-ILC approach. The performance im-

provement is due to the ability of the L1 adaptive controller to make the system behave

in a repeatable, predefined way, despite changes in the system dynamics. Consequently,

the performance achieved with the learned trajectories is generalizable to a system with

different dynamic properties (such as the suspended mass).

7.4.1 Learning Convergence

First, the convergence of the proposed L1-ILC framework is compared with the learning

performance of the PD-ILC approach. The quadrotor learns to track a desired trajectory

for ten iterations using each of the two frameworks: PD-ILC and L1-ILC. The errors

of this initial learning process are depicted in the first ten iterations of Fig. 7.7. The

proposed L1-ILC framework improves the trajectory tracking performance in only a few

iterations. The initial error is larger for the PD-ILC approach and continues to be larger
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until iteration eight when both frameworks achieve a similar performance.
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Figure 7.7: Repeatability of the learned trajectory at iteration 10 after a mass disturbance
has been applied to the system. The error in the PD-ILC approach increases dramatically
while the error in the L1-ILC approach remains close to the error before the disturbance.

After this initial learning process a mass disturbance is applied to the system. After

the disturbance, the learned trajectory (at iteration ten) is repeated for ten more iter-

ations with both L1-ILC and PD-ILC frameworks. The errors of this repeating process

are depicted in Fig. 7.7. After the disturbance, the PD-ILC framework has a mean error

of 0.413 m. Compared to an error of 0.127 m at iteration ten, this is a 323% increase

after the mass disturbance is applied. The L1-ILC approach has a mean error of 0.091

m with an average error at iteration ten of 0.089 m. The L1-ILC approach has only a

negligible increase in the error because the L1 adaptive controller is able to make the

system behave in a repeatable way, despite the disturbances applied to the system.

7.4.2 Repeatability

As shown above, the L1-ILC approach is able to generalize the learned trajectory to the

new situation with the added mass. To assess repeatability after a mass disturbance

has been applied to the system, we compiled a total of five 10-iteration repetitions of the

learned trajectory for each control framework. Fig. 7.8 shows the average error of the five

sets at each iteration along with their standard deviations. The system is more repeatable
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with the L1-ILC framework as the error and standard deviation are much smaller than

with the PD-ILC framework. To be more specific, the minimum standard deviation of

the PD-ILC approach (0.043 m) is almost twice the maximum standard deviation of the

L1-ILC approach (0.023 m).
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Figure 7.8: Mean of the error across five 10-iteration sets testing repeatability of the
learned trajectory after a mass disturbance has been applied to the system. The PD-ILC
approach displays a significantly larger standard deviation than the L1-ILC approach.

7.4.3 Performance under Changing Conditions

The ability of the system to continue to learn after a disturbance has been applied is

also explored. The errors while the system is learning without disturbance (first ten

iterations) and with a mass disturbance (last ten iterations) are shown in Fig. 7.9a. The

error increases significantly in the PD-ILC framework after the disturbance is applied,

see Table 7.2. This error rapidly decreases as the system learns; however, for some

applications, this behavior may not be acceptable. The error in the L1-ILC framework

does not change even after the mass disturbance has been applied (see Table 7.2).

The learning behavior is further explored by obtaining a total of five 10-iteration sets

of the system learning after a mass disturbance is applied to the system. The average of

the error and the standard deviation across the five sets are shown in Fig. 7.9b. Table 7.2

shows that the average error at iteration eleven for the PD-ILC approach is significantly
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Figure 7.9: (a) Learning behavior of the PD-ILC and L1-ILC frameworks after a mass
disturbance is applied to the system at the end of iteration ten. The error of the PD-ILC
framework in iteration eleven (after the disturbance) increases dramatically, compared
to iteration ten (before the disturbance); while the error of the L1-ILC framework in
iteration eleven is similar to the error in iteration ten. (b) Average error across five
sets of ten iterations of learning after a mass disturbance has been applied. The PD-
ILC approach displays a significantly larger standard deviation than that of the L1-ILC
approach.
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Framework Error at
iteration
10

Error at
iteration
11

Average
error
at iteration
11

Maximum
standard devi-
ation

PD-ILC 0.127 [m] 0.322 [m] 0.294 [m] 0.081 [m]
L1-ILC 0.089 [m] 0.083 [m] 0.078 [m] 0.018 [m]

Table 7.2: For the two controllers when the mass disturbance is applied after iteration
ten: errors at iteration 10 and iteration 11 for a single set and average error at iteration
11 and maximum standard deviation of the five ten-iteration sets.

higher than for the L1-ILC approach. The standard deviation is notably higher for the

PD-ILC approach than for the L1-ILC approach (see Table 7.2). The L1-ILC approach

has the same behavior before and after the application of the disturbance and is able to

reuse the learned trajectory at iteration ten.

The improved performance of the L1-ILC approach compared to the PD-ILC approach

in the repeatability and learning scenarios presented is from the ability of the L1 adaptive

controller to make the system behave in a repeatable, predefined way, despite changes

in the system dynamics. As mentioned above, a repeatable system allows the ILC to

improve its performance.

7.5 Continuity of the L1 Adaptive Control Tuning

Parameters

If a change in low-pass filter cutoff frequency and the output predictor eigenvalue produce

a continuous change in controller performance, then a learning scheme or optimization

algorithm can be used to optimize the controller performance. This has the potential of

further improving the tracking performance and possibly disturbance rejection without

the large effort required during the tuning process. Although the automatic tuning of

the L1 controller is beyond the scope of this project, the controller performance was

quantified for different cutoff frequency and output predictor eigenvalue combinations.

Using the translational velocity L1 adaptive controller from Section 6.2.1, the cutoff

frequency was varied from 1.0 to 2.0 rad/s in steps of 0.1 rad/s, and the output predictor

pole was varied from -4.2 to -1.5 with a step size of 0.3. For each parameter combination

pair, the cost function shown in equation 7.9 was used to quantify controller performance.

It was chosen to penalize both poor tracking performance and large control inputs from
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the L1 controller.

J(y,u) =
N∑
i=1

1

N

(
3‖rdes,i − yi‖2 + ‖ui‖2

)
. (7.9)

This cost function contains the average tracking error metric in (7.7), but also contains

a less weighted term to penalize large control inputs as well.

The cost function evaluated for each (ωx,y, mx,y) pair from experimental data is shown

in Figure 7.10. The minimum cost for tracking performance occurs around (ωx,y, mx,y) =

(1.8,−2.1).
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Figure 7.10: Contour plot of the cost function J(y, u), evaluated for different values of
ωx,y and mx,y.

The cost function is dominated by two high cost regions. For very low cutoff fre-

quencies, the tracking is slow due to the low-pass filter phase shift resulting in a high

penalty from a slow response. As cutoff frequency is increased, the response grows more

aggressive from passing increasingly higher frequency signals into the system until large

oscillations result in a high cost due to the large control inputs. The gradually changing

colours in the contour plot confirms the continuity of the cost function.



Chapter 8

Concluding Remarks and

Recommendations

8.1 Conclusion

The work presented here shows the complete derivation of a quadrotor dynamics model

in three dimensions. In the derivation, no assumptions are made on the center of gravity

location and the second moment of mass matrix preserving the generality of the mass

properties. Within the scope of this project, these mass properties represent the uncer-

tainty within the system. A complete nonlinear observability analysis was subsequently

conducted showing local weak observability of all of the unknown mass properties if the

quadrotor position, translational velocity, attitude, angular velocity and control inputs

can be measured.

The system with unknown mass properties was chosen to be controlled using an L1

adaptive controller. This control architecture achieves improved performance and guar-

anteed robustness compared to classical adaptive control techniques. This is achieved

due to its fast adaptation which is the result of the separation between adaptation and

robustness. Three adaptive control architectures were designed for use on the Parrot

AR.Drone, and were shown to outperform the standard nonlinear quadrotor controller

in both tracking performance and hover under mass uncertainty. The L1 adaptive con-

trol architecture was also shown to be successfully integrated into an iterative learning

control framework resulting in a quadrotor system capable of high performance trajec-

tory tracking under uncertainty and disturbances. The adaptive controller ensured the

system output remained consistent and repeatable, while the learning scheme learned

to compensate for systematic tracking errors in the iteration domain. Finally, the pay-
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load carrying task demonstrates the effectiveness of the L1 adaptive controller, and the

achievement of the high-level objective.

8.2 Future Work

As mentioned in Section 7.5, L1 design for optimal tracking can be achieved through on-

line learning methods due to the continuity of the cost function in the tuning parameters.

Future work to achieve this can be implemented by using the safe optimization algorithm

developed by [45]. Low-pass filter design can be parametrized by changing the design to

a finite impulse response filter, allowing optimization schemes to more precisely adjust

the frequency response of the filter.

The advantages of the L1 adaptive controller in maintaining system consistency and

repeatability has much broader applications. The L1 adaptive controller can therefore

also be extended to formation flight between UAVs, where any unmodelled interactions

between vehicles are compensated for. All experimental results shown in Section 7 were

conducted in the UTIAS indoor robotics lab. From these results, outdoor performance of

a quadrotor operating with the L1 adaptive controller is expected to outperform typical

PID or PD controllers in the presence of disturbances from wind or interactions between

other surroundings.

Finally, the results of the L1 and ILC combined control architecture in Section 7.4

show that even under changing dynamics or in the presence of disturbances, the initial

learned trajectory requires no further learning to maintain high performance after the

change in dynamics. This suggests that learned trajectories can be shared among dynam-

ically different systems, if the underlying controllers on these systems are L1 adaptive

controllers that share the same reference system. This means that the learning process,

which can be time-consuming and costly, can be avoided for additional systems required

to perform the same task.
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Appendix A

Nonlinear Observability Analysis

Script

The observability analysis of the system defined by (5.8) and (5.7) is analyzed using the

following script. After defining the system, it incrementally constructs the observability

matrix and calculates its rank. Since the higher order Lie derivatives are calculated

recursively, the rank of the incomplete observability matrix is calculated after each set

of Lie derivative orders, which reduces computational time. Once full rank has been

concluded, no further computations are necessary, since subsequent rows have no effect

on the full rank.

clear v a r i a b l e s

close a l l

disp ( ’new run ’ )

% de f ine symbol ic r e a l v a r i a b l e s

syms g L gamma real

syms x y z xdot ydot zdot phi theta p s i p q r m x CG y CG z CG Jxx Jxy Jxz Jyy Jyz Jzz real

% crea te a row vec tor o f v a r i a b l e s to check o b s e r v a b i l i t y o f

v a r s t o c h e c k = [m x CG y CG z CG Jxx Jxy Jxz Jyy Jyz Jzz ] ;

% crea te inve r s e i n e r t i a matrix

J = [ Jxx , Jxy , Jxz ; Jxy , Jyy , Jyz ; Jxz , Jyz , Jzz ] ;

% Define i n e r t i a l p o s i t i on and a t t i t u d e ( Euler ang l e s )

r b I = [ x ; y ; z ] ;

Theta = [ phi ; theta ; p s i ] ;

% Create CG o f f s e t vec to r and i t s cross matrix

r o f f = [ x CG ; y CG ; z CG ] ;

r o f f c r o s s = c ro s s mat r i x ( r o f f ) ;

% Create t r a n s l a t i o n a l and angular v e l o c i t y
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v BI B = [ xdot ; ydot ; zdot ] ;

om BI B = [ p ; q ; r ] ;

% Create angular v e l o c i t y cross matrix

om cross = c ro s s mat r i x ( om BI B ) ;

% Construct twain vec tor expressed in body−f i x e d frame with O B

nu = [ v BI B ; om BI B ] ;

% Create cross matrix

nu c ro s s = [ om cross c r o s s mat r i x ( v BI B ) ; zeros (3 ) om cross ] ;

% Create Mass operator

M = [m∗eye (3 ) −m∗ r o f f c r o s s ; m∗ r o f f c r o s s J ] ;

% Define contro l−a f f i n e matr ices

g1 = [ 0 0 1 0 −L gamma ] ’ ;

g2 = [ 0 0 1 L 0 −gamma ] ’ ;

g3 = [ 0 0 1 0 −L gamma ] ’ ;

g4 = [ 0 0 1 −L 0 −gamma ] ’ ;

%%

% Rotation matrix from i n e r t i a l to body frame = C BI

C IB = [ cos ( theta )∗ cos ( p s i ) , cos ( theta )∗ sin ( p s i ) , −sin ( theta ) ;

sin ( phi )∗ sin ( theta )∗ cos ( p s i )−cos ( phi )∗ sin ( p s i ) ,

sin ( phi )∗ sin ( theta )∗ sin ( p s i )+cos ( phi )∗ cos ( p s i ) ,

sin ( phi )∗ cos ( theta ) ;

cos ( phi )∗ sin ( theta )∗ cos ( p s i )+sin ( phi )∗ sin ( p s i ) ,

cos ( phi )∗ sin ( theta )∗ sin ( p s i )−sin ( phi )∗ cos ( p s i ) ,

cos ( phi )∗ cos ( theta ) ] ;

% Inverse i s i t s t ranspose s ince the ro t a t i on matrix i s or thogona l

C BI = C IB ’ ;

% Define Inverse Euler Angle Rates matrix

S inv = [ 1 sin ( phi )∗ tan ( theta ) cos ( phi )∗ tan ( theta ) ;

0 cos ( phi ) −sin ( phi ) ;

0 sin ( phi )∗ sec ( theta ) cos ( phi )∗ sec ( theta ) ] ;

% Construct e x t e rna l force−torque from g ra v i t y

F g B = C BI ∗ [ 0 ; 0 ; −m∗g ] ;

f g = [ F g B ; r o f f c r o s s ∗F g B ] ;

% Define the augmented s t a t e equation , f ( x , u)

f 0 = M\ nu c ro s s ∗M∗nu + M\ f g ;

f 0 = [ C IB∗v BI B ; S inv ∗om BI B ; f 0 ; zeros ( length ( v a r s t o c h e c k ) , 1 ) ] ;

f 1 = [ zeros ( 6 , 1 ) ; M\g1 ; zeros ( length ( v a r s t o c h e c k ) , 1 ) ] ;

f 2 = [ zeros ( 6 , 1 ) ; M\g2 ; zeros ( length ( v a r s t o c h e c k ) , 1 ) ] ;

f 3 = [ zeros ( 6 , 1 ) ; M\g3 ; zeros ( length ( v a r s t o c h e c k ) , 1 ) ] ;

f 4 = [ zeros ( 6 , 1 ) ; M\g4 ; zeros ( length ( v a r s t o c h e c k ) , 1 ) ] ;

% Define output equation , y = h( x )

h = [ r b I ; Theta ; nu ] ;



Appendix A. Nonlinear Observability Analysis Script 78

% Create row vec tor o f a l l s t a t e v a r i a b l e ( in c l ud ing augmented v a r i a b l e s )

% to take grad i en t with r e spec t to

v = [ h ’ , v a r s t o c h e c k ] ;

% Construct a matrix t ha t a l l ows Lie d e r v i v a t i v e s to be i t e r a t e d on f i ’ s

F = [ f0 f 1 f 2 f 3 f 4 ] ;

% I n i t i a l i z e the o b s e r v a b i l i t y matrix

O = sym( zeros ( 1 2 , 2 2 ) ) ;

% I n i t i a l i z e row counter o f the o b s e r v a b i l i t y matrix t ha t a l l ows index ing

% of add i t i ona l rows

row counter = 0 ;

% Construct o b s e r v a b i l i t y matrix row by row , exc lud ing any zero rows

for order = 0 : length ( v)−1

% Loop through each output

for output num = 1 : length (h)

% Loop through f i ’ s

for f = 1 : s ize (F , 2 )

fpr intf ( ’ Ca l cu l a t ing L f%dˆ%d h(%d ) : ’ , f −1, order , output num )

o b s e r v a b i l i t y r o w = gradient ( L i eDe r i va t i v e (h( output num ) ,F ( : , f ) , v , order ) , v ) ’ ;

% Check i f row i s zero

z e r o f l a g = 1 ;

for element = 1 : length ( o b s e r v a b i l i t y r o w )

i f o b s e r v a b i l i t y r o w ( element ) ˜= 0

z e r o f l a g = 0 ;

break

end

end

% I f the zero f l a g did not remain zero , add the row to the

% o b s e r v a b i l i t y matrix

i f not ( z e r o f l a g )

fpr intf ( ’ non−zero , adding to O \n ’ )

row counter = row counter + 1 ;

O( row counter , : ) = o b s e r v a b i l i t y r o w ;

else

fprintf ( ’ ze ro \n ’ )

end

end

end

% Break the loop i f f u l l rank has been reached

rank obs = double (rank (O) ) ;

i f rank obs == length ( v )

break

end

end

fprintf ( ’Number o f non−zero rows in the o b s e r v a b i l i t y matrix : %d\n\n ’ , s ize (O, 1 ) )

fpr intf ( ’ Length o f augmented s t a t e %d\n ’ , length ( v ) )

fpr intf ( ’Rank o f o b s e r v a b i l i t y matrix %d \n\n ’ , rank obs )
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The LieDerivative function is defined as follows:

function r e s u l t = L i eDer i va t i v e (h , f , v , order )

%LIEDERIVATIVE ca l c u l a t e s the Lie d e r i v a t i v e o f h wrt f o f order order with

%the grad i en t computed us ing e lements in v

i f order == 0

r e s u l t = h ;

return

end

r e s u l t = gradient ( L i eDe r i va t i v e (h , f , v , order −1) ,v ) ’∗ f ;

end

The cross matrix function is defined as follows:

function v e c t c r o s s = c ro s s mat r i x ( vect )

%CROSS c a l c u l a t e s cross matrix from 3 by 1 or 1 by 3 vec tor

i f length ( vect )˜=3

v e c t c r o s s = zeros ( 3 ) ;

return

end

v e c t c r o s s = [ 0 , −vect ( 3 ) , vect ( 2 ) ; vect ( 3 ) , 0 , −vect ( 1 ) ; −vect ( 2 ) , vect ( 1 ) , 0 ] ;

end
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