Feed-Forward Parameter Identification for Precise Periodic Quadrocopter Motions

Angela P. Schoellig, Clemens Wiltsche, Raffaello D’Andrea

Institute for Dynamic Systems and Control
ETH Zürich, Switzerland
LET‘S DANCE
... DANCE IN THE AIR

VISION Dance performance of multiple aerial robots

Angela Schoellig - ETH Zurich
ACTORS
Type: Quadrocopter
Size: Ø 3 feet
Weight: 1 pound
Flight time: 15 minutes

STAGE
Name: Flying Machine Arena
Size: 33 x 33 x 33 feet
Protection: Nets, Padded floor

Angela Schoellig - ETH Zurich
TESTBED

• cameras provide position and attitude
• off-board computer run controller
• communication via radio module
VIDEO: https://youtu.be/DrHlgxf0oQw?list=PLD6AAACCBFFE64AC5

Dancing Quadrocopters
IDSC, ETH Zurich

Rise Up
FOCUS

Music is pre-processed. **Motion** is pre-programmed.

USER INTERFACE

Music Analysis
Extract temporal structure of the music piece

Choreography Design
Create dance-like motions
- Periodic motions
- Collision-free transitions
- Aerobatic motions

Vehicle Control
Guide vehicle on desired trajectory
- Trajectory following
- Motion-music synchronization

Feasibility Check
Is the choreography doable?
FOCUS

Music is pre-processed. **Motion** is pre-programmed.

User Interface

Music Analysis
Extract temporal structure of the music piece

Choreography Design
Create dance-like motions
- **Periodic motions**
- Collision-free transitions
- Aerobatic motions

Feasibility Check
Is the choreography doable?

Vehicle Control
Guide vehicle on desired trajectory
- Trajectory following
- Motion-music synchronization

Periodic motions = Basic elements of a rhythmic performance

Angela Schoellig - ETH Zurich

How? Rely on same trajectory following controller, adapt the parameter of the feed-forward input.

Desired periodic motion:

\[
\begin{bmatrix}
 x_d(t) \\
 y_d(t) \\
 z_d(t)
\end{bmatrix} =
\begin{bmatrix}
 \delta_x^d \\
 \delta_y^d \\
 \delta_z^d
\end{bmatrix} +
\begin{bmatrix}
 A_{d}^x \cos(\omega_d^x t + \theta_d^x) \\
 A_{d}^y \cos(\omega_d^y t + \theta_d^y) \\
 A_{d}^z \cos(\omega_d^z t + \theta_d^z)
\end{bmatrix}
\]

Reference Signal

Desired position, velocity, acceleration

Trajectory Following Controller

Adaptation

Measured position and attitude
Side-to-side motion.

\[
\begin{bmatrix}
x_d(t) \\
y_d(t) \\
z_d(t)
\end{bmatrix} = \begin{bmatrix} A_d \cos(\omega_d t + \theta_d) \\ 0 \\ 0 \end{bmatrix}
\]

Nominal model.

\[
\ddot{x}(t) = f(t) \sin \phi(t) \\
\ddot{z}(t) = f(t) \cos \phi(t) - g \\
\dot{\phi}(t) = u(t)
\]

Control. Feedback linearization

- Constant height

\[
f(t) \approx \frac{g}{\cos \phi(t)}
\]

- Translational dynamics

\[
\ddot{x}(t) = g \tan \phi(t) \quad \rightarrow \quad \ddot{x}(t) = \ddot{u}(t), \quad \ddot{u}(t) = \frac{g}{\cos^2 \phi(t)} u(t)
\]

Design linear controller
EXPERIMENT > 1D example

Reference Signal

\[
\begin{bmatrix}
 x_d(t) \\
 y_d(t) \\
 z_d(t)
\end{bmatrix} =
\begin{bmatrix}
 A_d \cos(\omega_d t + \theta_d) \\
 0 \\
 0
\end{bmatrix}
\]

Controller

Result *Constant phase shift and amplitude amplification*

Desired trajectory
Actual motion
1) **Online correction:**

\[
A_c(t) = A_d + A_b(t), \quad A_b(t) = k_A \int_0^t A_{err}(\tau)d\tau, \\
\theta_c(t) = \theta_d + \theta_b(t), \quad \theta_b(t) = k_\theta \int_0^t \theta_{err}(\tau)d\tau
\]

2) **Offline and online correction:**

\[
A_c(t) = \alpha_{b,\infty}A_d + A_b(t), \quad \alpha_{b,\infty} = (A_d + A_{b,\infty})/A_d \\
\theta_c(t) = \theta_d + \theta_{b,\infty}(t) + \theta_b(t)
\]
RESULTS > 1D example

ONLINE CORRECTION

OFFLINE AND ONLINE CORRECTION

IMPROVED TRANSIENT BEHAVIOR

Desired trajectory
Actual motion
Result Linear behavior.

Steady-state correction terms for *various amplitudes*.

Steady-state correction terms do not depend on motion amplitude.

Angela Schoellig - ETH Zurich
SUMMARY > 1D example

Achieved high-performance tracking without incurring transients by

1. Offline identification of steady-state correction terms
 - linear behavior: correction terms only depend on motion frequency
 - prior to flight
 - reduces transient behavior

2. Online correction for small non-repetitive errors
Decoupled directions.
The correction values $\alpha_{b,\infty}^i$, $\theta_{b,\infty}^i$ in each direction i are independent of the other directions.

Linear system behavior.
The correction values of one direction i depend only on the frequency of the motion component in this direction ω_d^i.

Symmetry.
The corrections in x- and y-direction are identical.
3D MOTIONS > verification

Circle in 3D
executed multiple times,
same amplitude

Various 3D periodic motions
circles, swing motions, spirals, ...

COMPARABLE VARIANCES
REDUCED IDENTIFICATION SCHEME

Strategy Perform one 3D motion over the relevant frequency range

Result Using parameters from reduced identification

![Graph showing error in x over time with and without corrections for Circle 3D, Swing 3D, and Horizontal Circle motions.](image-url)
REDUCED IDENTIFICATION

Strategy Perform one 3D motion over the relevant frequency range

Result Using parameters from reduced identification
GOAL Precise tracking of periodic trajectories without transients.

APPROACH *Practicing prior to demonstration.*

- Adaptation of feed-forward parameters
- *A priori* parameter identification through a small set of motions: one motion per frequency is enough!
LET’S DANCE

video: https://youtu.be/7r281vgfotg?list=PLD6AAACCBFFE64AC5

Dance of the Quadrocopters
Armageddon

Angela Schoellig - ETH Zurich
More:

www.FlyingMachineArena.org
Feed-Forward Parameter Identification for Precise Periodic Quadrocopter Motions

Angela P. Schoellig, Clemens Wiltsche, Raffaello D’Andrea
Institute for Dynamic Systems and Control
ETH Zürich, Switzerland