
Deep Neural Networks as Add-on
Modules for Enhancing Robot
Performance in Impromptu Trajectory
Tracking

The International Journal of Robotics
Research
XX(X):1–19
c©The Author(s) 2018

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

Siqi Zhou1, Mohamed K. Helwa1,2, and Angela P. Schoellig1

Abstract
High-accuracy trajectory tracking is critical to many robotic applications, including search and rescue, advanced
manufacturing, and industrial inspection, to name a few. Yet the unmodeled dynamics and parametric uncertainties
of operating in such complex environments make it difficult to design controllers that are capable of accurately tracking
arbitrary, feasible trajectories from the first attempt (i.e., impromptu trajectory tracking). This paper proposes a platform-
independent, learning-based “add-on” module to enhance the tracking performance of black-box control systems in
impromptu tracking tasks. Our approach is to pre-cascade a deep neural network (DNN) to a stabilized baseline control
system, in order to establish an identity mapping from the desired output to the actual output. Previous research
involving quadrotors showed that, for 30 arbitrary hand-drawn trajectories, the DNN-enhancement control architecture
reduces tracking errors by 43% on average, as compared to the baseline controller. In this paper, we provide a
platform-independent formulation and practical design guidelines for the DNN-enhancement approach. In particular,
we: 1) characterize the underlying function of the DNN module; 2) identify necessary conditions for the approach to
be effective; 3) provide theoretical insights into the stability of the overall DNN-enhancement control architecture; 4)
derive a condition that supports data-efficient training of the DNN module; and 5) compare the novel theory-driven
DNN design with the prior trial-and-error design using detailed quadrotor experiments. We show that, as compared to
the prior trial-and-error design, the novel theory-driven design allows us to reduce the input dimension of the DNN by
two thirds while achieving similar tracking performance.

Keywords
Motion control, Learning and adaptive systems, Aerial robotics, Trajectory tracking, Neural networks

1 Introduction

As continued advancements in algorithms, actuation, and
sensor technology push robots into more complex environ-
ments, increasingly sophisticated methods for controlling
robot motion are needed. In particular, controllers that are
capable of high-accuracy trajectory tracking are becoming
increasingly important in robot applications where safety
and/or efficiency are essential; for example: in search and
rescue, where robots must operate in close proximity to
people (Liu and Nejat 2013); in advanced manufacturing,
where robot arms must efficiently follow pre-designed tra-
jectories to perform complex manipulation tasks (Brogårdh
2007); or in industrial inspection, where unmanned aerial
vehicles fly in close proximity to facilities to enable visual
inspection (Nikolic et al. 2013).

The trajectory tracking problem has been extensively
studied in the control literature. Among various techniques,
the proportional-integral-derivative (PID) controller is often
used in trajectory tracking applications. However, tuning
PID parameters is typically time-consuming, and the
performance of a PID controller can be conservative (Åström
and Hägglund 2004). Moreover, control theory shows that
a standard PID control architecture cannot achieve exact
tracking for arbitrary trajectories (Francis and Wonham
1976).

In addition to the PID controller, model-based techniques
such as Model Predictive Control (MPC) have been studied
for finding optimal control commands that lead to accurate
and agile robot motions (Liniger et al. 2015). Moreover,
inversion-based feedforward approaches have been widely
applied to achieve high-accuracy tracking (Hirschorn 1979;
Devasia et al. 1996). However, one general limitation of
model-based approaches is the reliance on a sufficiently
accurate dynamic model of the system, which is difficult to
obtain in practice. Adaptive control (Slotine and Li 1987)
and robust control (Spong 1992) strategies have been used to
address uncertainties in system parameters. Yet while these
approaches typically guarantee stability, they do not take past
experience into account, and the same errors are repeated
from trial to trial if the same reference is given.

As robot dynamics and operating environments become
ever more complex, researchers are increasingly turning to
learning-based approaches to address the resulting model

1University of Toronto Institute for Aerospace Studies, Canada.
2Electrical Power and Machines Department, Cairo University, Egypt.

Corresponding author:
Siqi Zhou, University of Toronto Institute for Aerospace Studies Dynamic
Systems Lab, 4925 Dufferin St., Toronto, Ontario, Canada, M3H 5T6.
Email: siqi.zhou@robotics.utias.utoronto.ca

Prepared using sagej.cls [Version: 2016/06/24 v1.10]

2 The International Journal of Robotics Research XX(X)

Baseline
Controller Plant

DNN
Module

Testing Phase

Training Phase (Offline)

-

Baseline Feedback Control System

-
DNN

Module

StorageStorage

selected
desired
output

reference actual
output

state

Fig. 1. The DNN-enhancement control architecture: During the
training phase (blue rectangle), a baseline system is treated as a
black-box and the baseline system input, output, and state data
are collected for training a DNN module. During the testing phase
(green rectangle), the DNN module, as an add-on component to
the baseline system, is pre-cascaded to the baseline system and
adjusts the reference signals to enhance the baseline system
performance.

uncertainties. These learning-based approaches have been
successfully applied to manipulators (Levine et al. 2015),
bipedal robots (Da et al. 2017), autonomous cars (Drews
et al. 2017), and unmanned aerial vehicles (Tang and
Kumar 2018; Bansal et al. 2016), to name a few. A
common learning-based approach that yields high-accuracy
tracking is iterative learning control (ILC). In ILC, the
tracking performance is improved by adjusting control
inputs or reference signals in repeated trials (Bristow et al.
2006; Schoellig et al. 2012; Tayebi 2004). In addition to
ILC, reinforcement learning (RL)-based approaches have
also been proposed to iteratively optimize the tracking
performance (Kiumarsi et al. 2014; Zhang et al. 2016a; Pane
et al. 2016). Apart from iterative approaches, there are also
various works on improving the tracking performance of
classical model-based controllers by learning the uncertain
or unknown system dynamics with techniques such as
Gaussian Processes (GPs) (Nguyen-Tuong and Peters
2008; Helwa et al. 2018), Neural Networks (NNs) (Yan
and Wang 2014; He et al. 2016), and Support Vector
Machines (SVMs) (Iplikci 2006). Alternatively, these
learning techniques have also been applied to improve the
tracking performance by approximating inverse dynamic
models in inversion-based feedforward approaches (Nguyen-
Tuong and Peters 2010; Schaal et al. 2002).

In this paper, we consider the impromptu tracking
problem. That is, we aim to achieve high-accuracy
tracking of arbitrary, feasible trajectories from the first
attempt. Motivated by the success of the learning-based
control approaches for robot control, we present a deep
neural network (DNN)-based approach for enhancing the
impromptu tracking control performance of black-box
systems. This paper extends our previous work (Li et al.
2017), in which a DNN add-on module was used to
improve the performance of quadrotors in tracking arbitrary,
hand-drawn trajectories. The proposed DNN-enhancement
architecture is illustrated in Fig. 1. During the training
phase, the input, output, and state of the baseline system
are recorded for training a DNN module. Then, during
the testing phase, the DNN module is pre-cascaded to the

baseline system to adapt the reference signals to establish
an identity mapping from the desired output to the actual
output. In (Li et al. 2017), experiments on 30 arbitrary,
hand-drawn trajectories show that the DNN-enhancement
control architecture effectively reduces the tracking error
of the quadrotor vehicle by 43% on average as compared
to the baseline controller. As compared with the other
learning-based tracking control approaches, the proposed
DNN-approach has the following advantages:

• Unlike the iterative learning methods (ILC approaches
and some RL-based approaches such as (Pane et al.
2016)), the proposed DNN approach can be directly
used for tracking arbitrary, feasible trajectories without
further adaptations during the testing phase, and
consequently, it satisfies the impromptu tracking
requirement.

• Compared to more common approaches (such as
forward or inverse dynamic learning) where the
learning component typically resides in the main
control loop, we use the DNN module as an add-
on block that is placed outside of the closed-loop
system to improve the tracking performance. This add-
on approach enables black-box control systems to be
improved retrospectively.

• As will be discussed in the following section, the
proposed approach is less prone to instability than
other inverse-based approaches because the DNN
loop can be run at a lower rate than the baseline
control loop (Li et al. 2017). Moreover, the proposed
architecture can potentially lead to better learning-
enhanced performance as the closed-loop system has
a more repeatable behaviour (Mueller et al. 2012).

While experiments from (Li et al. 2017) have shown
that the DNN approach shown in Fig. 1 is effective
for quadrotors, the DNN module was designed by trial-
and-error, and guidelines for systematically applying the
approach to other robotic platforms were not given. In
this work, we develop a platform-independent formulation
of the DNN approach. The proposed formulation includes
characterizing the underlying function learned by the DNN
module, identifying necessary conditions for the DNN
approach to be effective, and, with a practical incentive,
deriving a condition that allows the training of the DNN
module to be more efficient. In (Zhou et al. 2017) we
presented a preliminary version of the DNN add-on concept,
and discussed the application of this approach to minimum
phase systems (i.e., systems with stable inverse dynamics);
in (Zhou et al. 2018) application of the approach to
nonminimum phase systems (i.e., systems with unstable
inverse dynamics) is discussed. In the current paper we focus
on minimum phase systems, and extend the main theoretical
insights of (Zhou et al. 2017) from single-input-single-
output (SISO) systems to multi-input-multi-output (MIMO)
systems. We also provide a proof of the control system’s
overall stability, and present significantly more simulations
and experiments to support the theoretical extensions.

Note that, in the first work (Li et al. 2017), DNN is
chosen as the learning technique to construct the add-on
block. This design decision was motivated by the fact that the

Prepared using sagej.cls

Zhou et al. 3

amount of memory and computational cost of the forward
pass of the DNN is fixed as more data is collected. In
contrast to nonlinear regression methods such as GP, the
relatively fixed memory and computational cost allow the
DNN model to be implemented on robot platforms where
onboard computational resources are limited (Li et al. 2017).
Following (Li et al. 2017), we use DNN as the learning
technique in this work; however, the presented theoretical
insights can be potentially generalized to other nonlinear
regression techniques.

2 Related Work on NN-Based Inverse
Control

The DNN module in the proposed control architecture
(Fig. 1) aims to establish an identity mapping from the
desired output to the actual output (Li et al. 2017). In
the literature of NN-based control, common approaches
that have a similar objective include direct inverse control,
feedback-error learning control, and adaptive inverse
control.

In direct inverse control, an NN is trained to approximate
the inverse dynamics of the open-loop plant, and is pre-
cascaded to the plant as the controller to achieve exact
tracking (Hunt et al. 1992; Suprijono et al. 2015). Early
literature such as (Jordan and Rumelhart 1992; Kawato
1990) compared different approaches for training the
NN inverse model and discussed practical implementation
concerns. For example, (Jordan and Rumelhart 1992) pointed
out that an NN directly trained with the reversed input-output
data from the open-loop plant is not ‘goal-directed’ — the
training objective of minimizing the regression error of the
model output does not directly reflect the control objective of
minimizing the tracking error of the system. To address these
concerns, training schemes such as the distal teacher (Jordan
and Rumelhart 1992) have been proposed. However, apart
from these discussions, a fundamental drawback of the direct
inverse control approach is the lack of robustness against
disturbances in the system. This drawback is attributed to
the fact that the NN inverse model is often used as the only
controller of the system.

To address the issues with direct inverse control, (Kawato
1990) proposes a feedback-error learning scheme. This
approach employs a feedback control loop, where the input
command to the plant is the sum of the signal from the
feedback controller and feedforward signal from an NN-
based inverse model. In contrast with typical direct inverse
control, the error signal for training the NN is the output
of the feedback controller instead of the typical regression
errors based on the plant input-output data. Although
practical considerations such as the ‘goal-directness’ issue
and robustness issue are addressed in the feedback error
learning approach, the training of the NN requires a plant
in the loop, which may not be desired in the early training
phase.

Another inversion-based approach for trajectory tracking
problems is adaptive inverse control, in which the parameters
of an NN controller are updated online with guaranteed
stability (Chen and Khalil 1995; Ge and Zhang 2003;
Zhang et al. 2016b). A limitation of the adaptive-NN
approach is that the number of adaptive parameters, and

hence the online computational cost, can be large. Moreover,
good NN parameter initializations are typically needed for
convergence (Chen and Khalil 1995).

Overall, despite the similarity in the control objective,
there are fundamental differences between the proposed
DNN control architecture in Fig. 1 and the common NN-
based inverse control architectures. One of the differences
is that the proposed DNN control architecture modifies
the reference of a stabilized closed-loop system, while
the common NN-based inverse control approaches directly
modify the input to the open-loop plant. From a practical
perspective, this difference has two potential benefits: (i) By
introducing the DNN as an outer loop that runs at a lower
rate as compared to the baseline system, the overall approach
is less prone to stability issues (Li et al. 2017). (ii) Since
the closed-loop system partially compensates non-repeated
disturbances, the response of the closed-loop system is
more repeatable than that of the open-loop plant (Mueller
et al. 2012). Thus, learning to adapt the reference of a
closed-loop system can be potentially more effective for
achieving good tracking performance. In contrast to adaptive
inverse control (in which high-accuracy tracking control and
stability of the plant are simultaneously achieved by the
designed NN parameter update laws), the proposed DNN
approach achieves stabilization through the design of the
baseline controller, and tracking performance is enhanced
separately by the pre-cascaded DNN module. This approach
of decoupling the stabilization and tracking performance
enhancement problems can greatly simplify the DNN design
and training in practical applications. We furthermore
investigate the effectiveness of the proposed DNN approach
for the problem of impromptu tracking, and verify this
experimentally by testing whether quadrotors are able to
accurately fly arbitrary, hand-drawn trajectories from the first
attempt. Although the NN-based inverse control approaches
in the literature provide theoretical foundations for designing
high-accuracy tracking controllers, their ability to track
arbitrary, feasible trajectories has not been thoroughly
demonstrated in experiments.

3 Problem Formulation

Our objective is to enhance black-box control systems
to achieve high-accuracy, impromptu tracking. In previous
work (Li et al. 2017), with quadrotors as the test platform, a
DNN-enhancement control architecture (Fig. 1) is proposed
to establish an identity mapping from the desired output
yd to the actual output y. In this work, we aim to provide
a platform-independent formulation of the proposed DNN-
enhancement control architecture (Li et al. 2017). This
formulation includes:

(O1) identifying the underlying function that should be
represented by the DNN module in order to establish
an identity mapping from yd to y;

(O2) identifying necessary conditions for the approach to be
effective;

(O3) deriving guidelines for systematically selecting the
inputs and outputs of the DNN module;

Prepared using sagej.cls

4 The International Journal of Robotics Research XX(X)

(O4) analyzing the stability of the DNN-enhanced system in
the presence of regression errors; and

(O5) characterizing a condition that allows for further
improving data efficiency of the DNN training.

In the following discussion, we first consider linear time
invariant (LTI) multi-input-multi-output (MIMO) baseline
systems represented by the following state space model

x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k),
(1)

where k ∈ Z≥0 denotes the discrete-time index, x ∈ Rn is
the system state, u ∈ Rm is the system input, y ∈ Rm is the
system output, and A, B, and C are constant matrices of
appropriate dimensions. After presenting the insights from
the linear system formulation, we then extend the discussion
to nonlinear MIMO baseline systems represented by

x(k + 1) = f(x(k)) + g(x(k))u(k),

y(k) = h(x(k)),
(2)

where f(·), g(·), and h(·) are matrices of smooth functions
with appropriate dimensions. Note that, in the discussion of
this work, we focus on square MIMO systems having the
same number of inputs and outputs. This is not a restrictive
formulation for tracking applications, since systems (1) and
(2) typically represent baseline closed-loop systems, and
each output in y has a corresponding reference input in u.

In deriving the theoretical insights for this paper, we make
the following assumptions:

(A1) the baseline system is input-to-state stable (Jiang
and Wang 2001). For the nonlinear system (2), we
additionally assume that the state can be bounded by

||x||∞ ≤ L1||u||∞ + L2||x0||+ L3, (3)

where || · ||∞ denotes the infinity norm, x0 ∈ Rn is the
initial state, and L1, L2, and L3 are constant, positive
scalars;

(A2) at any instant k, a preview of n future time steps of the
desired trajectory (i.e., {yd(k), yd(k + 1), ..., yd(k +
n)}) is available, where n is the system order;

(A3) the DNN module has a feedforward architecture and
globally Lipschitz activation functions.

Note that assumptions (A1)-(A3) are not restrictive.
Assumption (A1) on the stability of the baseline closed-
loop system can be achieved by proper controller designs
with well-developed control techniques even in the absence
of a detailed or highly-accurate dynamic model of the
system. The inequality (3) in Assumption (A1) holds for
input-to-state stable linear systems; for nonlinear systems,
this is an additional assumption that we use to provide
a theoretical guarantee on stability of the overall control
system. For assumption (A2), a preview of n steps of
the desired trajectory is usually available in practice,
and does not prevent combinations with online trajectory
generation algorithms. For assumption (A3), although we
use feedforward neural networks (FNNs) in this work,

the proposed approach can be potentially adapted for
use with other nonlinear regression techniques (e.g., GPs,
recurrent neural networks). The globally Lipschitz condition
in assumption (A3) holds for the commonly-used activation
functions such as the rectified linear units (ReLU), sigmoid,
and hyperbolic tangent.

4 Theoretical Insights
In this section we provide four theoretical insights to
achieve the objectives (O1)-(O5) stated in Sec. 3. We
begin our discussion with a background on the inversion
of dynamic systems in Sec. 4.1. We then build on this
conceptual overview in Sec. 4.2 to derive the underlying
function to be modeled by the DNN module to establish an
identity mapping between the desired and actual outputs, and
identify conditions that are necessary for the proposed DNN
approach to be effective. Building on the insight regarding
the underlying function modeled by the DNN module, we
provide guidelines for systematically selecting the inputs and
outputs of the DNN module in Sec. 4.3, provide a proof
of stability of the overall control system in the presence of
DNN regression errors in Sec. 4.4, and derive a condition
that allows us to further improve the data-efficiency of the
DNN training in Sec. 4.5.

4.1 Background on System Inversion
Starting with the DNN-enhancement control architecture in
Fig. 1, (Li et al. 2017) initially designed a DNN module
with yd(k) and x(k) as input and u(k) as output to enhance
the tracking performance of the quadrotor baseline control
system. The experiments of (Li et al. 2017) show that the
DNN module is able to enhance the tracking performance
of the baseline system only after yd(k) in the DNN
input is replaced by certain future desired outputs {yd(k +
∆1), yd(k + ∆2), ..., yd(k + ∆L)} with ∆1,∆2, ...,∆L >
0 selected based on trial-and-error. As will be shown in
Sec. 4.2, this experimental observation can be explained by
associating the DNN module with the inverse dynamics of
the baseline system.

In order to facilitate the following discussions, in this
subsection, we state the formal definition of the vector
relative degree (Jang et al. 1994; Isidori 1995), and discuss
its connection to the system inverse. In the discussions below,
we use h ◦ f to denote the composition of the functions h
and f , and f i to denote the i-th composition of the function
f with f0

(
x(k)

)
= x(k) and f i

(
x(k)

)
= f ◦ f i−1

(
x(k)

)
.

Definition 4.1. Vector Relative Degree. The nonlinear
MIMO system (2) has a vector relative degree (r1, r2, ..., rm)
at an operating point (x0, u0) if

(i) ∂
∂uj

hi ◦ fp
(
f(x) + g(x)u

)
= 0, ∀i = {1, 2, ...,m},

∀p = {1, 2, ..., ri − 2}, ∀j = {1, 2, ...,m} for every
point (x, u) in the neighbourhood of (x0, u0), where
uj is the j-th element of the input u, and hi is the i-th
element of the vector function h; and

(ii) the decoupling matrix Dn(x, u) ∈ Rm×m with ele-
ments [Dn(x, u)]ij = ∂

∂uj
hi ◦ fri−1

(
f(x) + g(x)u

)
has full rank at the operating point (x0, u0).

Prepared using sagej.cls

Zhou et al. 5

Note that, from the first condition (i) of Definition. 4.1, if
we focus on an output dimension yi, the relative degree ri
can be interpreted as the number of sample delays between
changing any of the inputs uj , j = 1, · · · ,m, and changing
the output yi. Given that both (i) and (ii) of Definition. 4.1
are satisfied, the relative degree ri associates the value of
an output yi at time step k + ri with a non-zero input u
applied at time step k. The decoupling matrixDn(x, u) in the
second condition (ii) of Definition. 4.1 is the collection of the
Jacobian of yi(k + ri) with respect to the input u; the non-
singularity condition requires that the outputs y(k + r) =
[y1(k + r1) · · · ym(k + rm)]T are influenced by the input
u(k) in non-repeated (linearly independent) ways.

Remark 4.1. Vector Relative Degree for Linear Systems.
As a the special case of Definition. 4.1, the linear MIMO
system (1) has a vector relative degree (r1, r2, ..., rm) if

(i) CiApBj = 0, ∀i = {1, 2, ...,m}, ∀p = {1, 2, ..., ri −
2}, ∀j = {1, 2, ...,m}, where Ci is the i-th row of the
matrix C and Bj is the j-th column of the matrix B,
and

(ii) the decoupling matrix Dl ∈ Rm×m with elements
[Dl]ij = CiA

ri−1Bj has full rank.

Note that, from Definition 4.1, for MIMO systems with
a well-defined vector relative degree, one may relate the
future output y(k + r) to the current state x(k) and input
u(k). Based on this concept, in the following subsections we
provide a formal formulation of the DNN-based approach
proposed in (Li et al. 2017), develop theoretical insights
for systematically designing the DNN module, and provide
comments on its practical implementation.

4.2 Underlying Function Modeled by the DNN
Module

In this subsection we show that, given the system
representations in Eqn. (1) and Eqn. (2), an identity mapping
from the desired output yd to the actual output y is
achieved if the DNN module learns the output equation of
the inverse dynamics of the baseline system. Due to this
association with inverse dynamics, a necessary condition
for the proposed approach to be effective is that the
baseline system has stable inverse dynamics. For simplicity,
we will start our discussion with the linear system (1)
and then extend the results to the nonlinear system (2).
Note that although we start our discussion with known
system models, we will later demonstrate that implementing
the proposed DNN-enhancement approach requires only
minimal knowledge about the baseline system (e.g., the order
and relative degree). This required knowledge can typically
be determined from simple dynamic models or quick step
response experiments.

By applying the definition of the vector relative degree in
Remark 4.1 to the linear system (1), we can relate the input
u and the output y of the baseline system by

yi(k + ri) = CiA
rix(k) + CiA

ri−1Bu(k), (4)

or in an augmented form,

y(k + r) = Clx(k) +Dlu(k), (5)

where y(k + r) = [y1(k + r1) · · · ym(k + rm)]T , Cl =
[(C1A

r1)T · · · (CmA
rm)T]T , and Dl is the decoupling

matrix of system (1).
Let yd(k + r) = [y1,d(k + r1) · · · ym,d(k + rm)]T be

the desired output corresponding to y(k + r). Since the
decoupling matrix Dl has full rank by condition (ii) of the
vector relative degree definition in Remark 4.1, it can be
shown that if we choose the following control law

u(k) = D−1l (−Clx(k) + yd(k + r)) , (6)

then y(k + r) = yd(k + r), or exact tracking, is achieved.
Thus, for the proposed DNN-enhancement control archi-
tecture in Fig. 1 and system (1), the DNN module should
be trained to approximate Eqn. (6) to establish an identity
mapping between yd and y. If we consider yd as the input
and u as the output, Eqn. (6) is in fact the output equation of
the inverse dynamics of system (1).

Note that the first condition (i) in Remark 4.1 implies that
the relative degree ri associated with the output dimension
i is the smallest integer such that CiAri−1Bj 6= 0 for any
input dimension j. As briefly noted in Sec. 4.1, the relative
degree ri is the number of sample delays between applying
an input u to the system and first seeing its effect in
the particular output yi. This inherent delay from input to
output is a well-known fact for discrete-time linear systems.
By training the DNN module to approximate Eqn. (6),
the inherent delay of the system is compensated by the
preview of the future desired output yd(k + r). In practice,
at a particular time k, a preview of r steps of the desired
trajectory (where r ≤ n) is not challenging to satisfy with
online or offline trajectory generation algorithms; the non-
causality in Eqn. (6) is thus not an issue in practical
applications.

We next generalize the previous discussion to nonlinear
systems. By assuming the system (2) has a well-defined
vector relative degree, and applying Definition 4.1, we can
relate the input u and output y of the nonlinear MIMO
system (2) by

yi(k + ri) = hi ◦ fri−1
(
f(x(k)) + g(x(k))u(k)

)
, (7)

or in an augmented form

y(k + r) = h ◦ fr−1
(
f(x(k)) + g(x(k))u(k)

)
, (8)

where h ◦ fr−1 is a vector of composition functions with
the i-th element being hi ◦ fri−1. As discussed in (Sun and
Wang 2001; Jang et al. 1994), by assuming y(k + r) is
affine in the input u(k), the decoupling matrix Dn(x, u) is
independent of u and Eqn. (8) becomes

y(k + r) = h ◦ fr
(
x(k)

)
+Dn

(
x(k)

)
u(k), (9)

where h ◦ fr is a composite function with the i-th element
being hi ◦ fri . This special case holds for nonlinear
mechanical systems such as robot manipulators (Jang et al.
1994). Since the decoupling matrix Dn has full rank by
the second condition (ii) in Definition 4.1, exact tracking
(i.e., y(k + r) = yd(k + r)) can be achieved by choosing the
control law

u(k) =
[
Dn

(
x(k)

)]−1 (−h ◦ fr(x(k)
)

+ yd(k + r)
)
,

(10)

Prepared using sagej.cls

6 The International Journal of Robotics Research XX(X)

for the affine case in Eqn. (9), and it is reasonable to assume
that

u(k) = F (x(k), yd(k + r)) (11)

for the general case in Eqn. (8), where F : Rn × Rm 7→ Rm
is a vector of nonlinear functions.

Based on the above results, we now present our insight on
the underlying function modeled by the DNN module, and
describe the conditions that are necessary for the learning-
based approach to be effective:

Insight 4.1. Underlying Function and Necessary Condi-
tions. Consider the DNN-enhancement control architec-
ture in Fig. 1. In order to estabilsh an identity mapping
between the desired output yd and the actual output y, the
DNN module should approximate the output equation of the
baseline system’s inverse dynamics. Due to the association
with inverse dynamics, two necessary conditions for the
learning approach to be effective are: (i) the baseline system
has a well-defined (vector) relative degree; and (ii) the
baseline system has stable zero dynamics.

By inspecting the control laws in Eqn. (6) and Eqn. (11),
it can be seen that the ideal control law that leads to exact
tracking is dependent on the current x(k) and the future
desired output yd(k + r) for either the linear or nonlinear
case, where r is the vector relative degree. In practice,
when training the DNN module to approximate the control
law for achieving exact tracking, we do not require a
detailed dynamic model of the system. Instead, we need
only identify the vector relative degree r of the baseline
system. Experimentally, for the linear system (1) and the
special case of the nonlinear system (2) where y(k + r) is
affine in u(k), one can identify the vector relative degree
of the baseline system through m step response experiments
detailed as follows. In each of them experiments, the system
is initialized at an equilibrium point, and one element of the
input, uj , is activated. Without loss of generality, we assume
the equilibrium is the origin. After the m experiments,
one may determine the minimum number of time delays
between the output yi and the inputs uj for all j; the
minimum number of time delays for the output dimension
yi is the estimated relative degree ri associated with the
particular output dimension. After estimating the relative
degree for each output dimension, it remains to check the
non-singularity condition (ii) in Definition 4.1. From the
m experiments, one may construct a matrix D̃, where the
j-th column of D̃ is [y1(r1) · · · ym(rm)]T from the j-th
experiment. By inspecting Eqn. (5) and Eqn. (9), it can be
shown that the non-singularity condition (ii) in Definition 4.1
can be examined from the rank of D̃.

The stability of the zero dynamics of the linear system (1)
is equivalent to the stability of the system’s inverse dynamics,
and is characterized by the zeros of the system transfer
function. In practice, for linear systems, we may infer
the stability of zero dynamics from characteristics of
the system’s step responses such as undershoot and zero
crossings (Hoagg and Bernstein 2007). The zero dynamics of
the nonlinear system (2) is the system’s invariant dynamics
when the input u(k) is chosen such that y(k) = 0 for all k.
For nonlinear systems, achieving stable zero dynamics is a
necessary but not sufficient condition for achieving stable
inverse dynamics (Sussmann 1990). Hence, a necessary

condition for applying the proposed DNN-learning approach
to either the linear system (1) or the nonlinear system (2) is
that the baseline system has stable zero dynamics.

4.3 DNN Input Selection

In this subsection, we identify the necessary and sufficient
inputs of the DNN module to compute the reference u(k) of
the baseline system (1) and (2) to achieve exact tracking. By
designating the output of the DNN module as O = {u(k)},
we can determine the appropriate DNN input I for either the
linear or the nonlinear case based on the following insight.

Insight 4.2. DNN Input Selection. In order to establish an
identity mapping from yd to y, the necessary and sufficient
input of the DNN add-on module is I = {x(k), yd(k + r)},
where yd(k + r) = [y1,d(k + r1) · · · ym,d(k + rm)]T and
r = (r1, ..., rm) is the vector relative degree of the system.

Insight 4.2 directly follows from the fact that the DNN
should approximate the baseline system inverse to achieve
unity mapping between yd and y and from Eqn. (6) and
Eqn. (11) of the system inverse.

The implementation of Insight 4.2 requires knowledge
or estimation of the full state of the system x. In many
robotics applications, linearization techniques are used for
the baseline system controller designs, and this often leads to
decoupled linear dynamics. Some examples include ground
vehicles in which the dynamics in the 2-dimensional position
space can be converted to decoupled integrators with the
point-ahead linearization technique (Giesbrecht et al. 2009),
and fully-actuated manipulators in which the dynamics in the
joint space can be turned into decoupled double integrators
with feedback linearization (Helwa and Schoellig 2016). In
cases where the full state of the system is not available, but
where the closed-loop dynamics can be approximated as a
decoupled MIMO linear system, we can derive an alternative
DNN input selection.

In deriving the alternative input selection, we first
equivalently represent system (1) by Y (z) = H(z)U(z),
where

H(z) = C(zI −A)−1B, (12)

and U(z) and Y (z) are the z-transform of the input and
output of the baseline system, respectively. To show the main
idea, we first consider the special case of a SISO linear
system (i.e., m = 1). Without loss of generality, we assume
that the SISO system is represented by a transfer function of
the following form:

H(z) =
Y (z)

U(z)
=
βn−rz

n−r + βn−r−1z
n−r−1 + · · ·+ β0

zn + αn−1zn−1 + · · ·+ α0
,

(13)

where αi and βi are scalar constants, and r and n are the
relative degree and degree of the system respectively. By
calculating the inverse system of Eqn. (13) and applying
inverse z-transformation, it can be shown that the reference

Prepared using sagej.cls

Zhou et al. 7

u(k) for achieving exact tracking is

u(k) =
1

βn−r
yd(k + r) +

αn−1
βn−r

yd(k + r − 1) + · · ·

+
α0

βn−r
yd(k − n+ r)− βn−r−1

βn−r
u(k − 1)

− βn−r−2
βn−r

u(k − 2)− · · · − β0
βn−r

u(k − n+ r).

(14)
Based on Eqn. (14), we can alternatively select DNN
input for a SISO linear baseline system to be I = {yd(k −
n+ r : k + r), u(k − n+ r : k − 1)}, where the column ‘:’
abbreviates consecutive discrete-time indexes.

The transfer matrix H(z) of a decoupled MIMO linear
system (1) is a diagonal matrix; the dynamics between
each input-output pair (ui, yi) can be considered separately,
where i ∈ {1, ...,m}. As outlined in Sec. (4.2), one can
execute m experiments to identify the relative degree ri
for each output yi. Similar to the SISO scenario discussed
above, in the case of the decoupled MIMO linear system,
we can consider each reference dimension separately
and train m networks with the input of each network
being Ii = {yd,i(k − n+ ri : k + ri), ui(k − n+ ri : k −
1)} and output being O = {ui(k)}, where ri is the relative
degree corresponding to the i-th output dimension, and yd,i
denotes the i-th desired output dimension.

Insight 4.3. Alternative Input Selection for Decoupled
MIMO Linear Systems. Based on the transfer function
formulation, we can derive an alternative, sufficient input
selection of the DNN module for a decoupled MIMO
linear systems. For this case, we propose using a DNN
module with m independent networks – one for each of the
baseline system reference dimensions. The input to the i-th
network in the DNN module is Ii = {yd,i(k − n+ ri : k +
ri), ui(k − n+ ri : k − 1)}, where ri is the relative degree
corresponding to the output dimension yi.

In comparison with the input selection based on the state
space representation (Insight 4.2), the implementation of the
alternative input for the linear systems does not require the
estimation of the full state x(k) of the system and instead
only requires the identification of the order of the system n,
which (for robots such as multi-link manipulators) can be
determined from the laws of physics. Note, however, that this
transfer function approach is derived for decoupled linear
systems; the state space approach is applicable to more
general cases. When the state of the system is available,
applying the state space approach has additional advantages.
One advantage of the state space approach is the current
state feedback to the DNN module. This additional feedback
from the baseline system can help compensate for the initial
errors and disturbances along the trajectory. Moreover, the
input selection based on the state space approach typically
leads to a DNN with a lower input dimension than the
transfer function approach. As an example, for a SISO linear
system, the dimension of the DNN inputs derived from the
transfer function and the state space approaches are (2n−
r + 1) and (n+ 1), respectively. This reduced DNN input
dimension implies that the amount of data required to cover
the operational space is potentially less, and thus the DNN

training can be made more efficient by using the state space
approach.

4.4 Stability
In this subsection, we restrict our discussion to minimum
phase systems (i.e., systems with stable inverse dynamics),
and prove the stability of the overall DNN-enhancement
control system in the presence of DNN modeling errors:

||u(k)− û(k)|| 6= 0, (15)

where u(k) corresponds to the exact inverse in Eqn. (11)
(Eqn. (6) for the linear system case) and û(k) corresponds
to the reference outputted by the DNN module trained
based on the system input-output data. Note that, in the
ideal case, where the DNN models the inverse dynamics
exactly, the response from the desired output to the actual
output is the identity mapping, and the overall system is
input-to-state stable. However, in the presence of modeling
errors, due to the state feedback connection to the DNN
module (see Fig. 1), the stability of the overall system
needs to be assessed. In this subsection, we show that under
Assumptions (A1) and (A3), the DNN-enhanced system with
the proposed input selection as in Insight 4.2 is input-to-
state stable if the regression error of the DNN module is
sufficiently small.

By assumption (A3), the DNN module has a feedforward
architecture, and the activation functions are globally
Lipschitz; since the DNN is a composite of linear
combinations of Lipschitz functions, the output of the
DNN module, û, is globally Lipschitz in its inputs, x
and yd. Moreover, the reference corresponding to the exact
inverse u(k) of the system is bounded by assumption. As a
result of the global Lipschitz condition of the DNN module
and the boundedness of u, an upper bound on the modeling
error can be expressed as follows:

||u− û||∞ ≤ L4||x||∞ + L5||yd||∞ + L6, (16)

where L4, L5, and L6 are positive, constant scalars.

Lemma 4.1. Stability. Consider the DNN-enhancement
control architecture (Fig. 1) and the case where the baseline
system is minimum phase. Under assumptions (A1) and (A3),
the overall DNN-enhanced system is input-to-state stable if
L1L4 < 1, where L1 and L4 are constant scalars defined in
Eqn. (3) and Eqn. (16), respectively.

Proof. By assumption (A1), the baseline system is input-to-
state stable, and with û as the system input, the state of the
system is bounded by

||x||∞ ≤ L1||û||∞ + L2||x0||+ L3. (17)

By combining the bound on the regression error in Eqn. (16)
and the bound on state in Eqn. (17), the following is obtained:

||x||∞ ≤ L1||u− û||∞ + L1||u||∞ + L2||x0||+ L3 (18)
≤ L1L4||x||∞ + L1L5||yd||∞ + L7, (19)

where L7 = L1L6 + L1||u||∞ + L2||x0||+ L3. Based on
Eqn. (19), if

L4 <
1

L1
, (20)

Prepared using sagej.cls

8 The International Journal of Robotics Research XX(X)

is satisfied, then the state of the system is bounded by

||x||∞ ≤
L1L5||yd||∞ + L7

1− L1L4
, (21)

which is bounded by a constant for bounded input yd. Thus,
if L4 <

1
L1

, then the DNN-enhanced system is input-to-state
stable. �

Note that, by examining Eqn. (17) and Eqn. (16), L1 is
a constant characterizing the maximum possible gain of the
baseline system, while L4 is a constant associated with the
regression error of the DNN model. Hence, the condition
in Eqn. (20) implies that if the regression error of the
DNN module is sufficiently small, then the overall DNN-
enhancement control architecture is input-to-state stable.
One can notice the similarity between condition (20) and
the well-known small gain theorem in robust control (Francis
and Khargonekar 1995).

Also note that the globally Lipschitz activation function
assumption in Assumption (A3) is sufficient to show (16)
but not necessary; condition (16), and hence the proof of the
lemma, may be satisfied in other scenarios.

4.5 Difference Learning Scheme for Improving
the Training Efficiency

In this subsection, we derive a condition that allows us to
further improve the data-efficiency of the proposed DNN-
enhancement approach. This discussion is motivated by the
DNN design in (Li et al. 2017), where the position terms
in the DNN input and output are taken relative to the
current desired and actual positions in order to simplify
the training process. The basic idea of this difference
learning scheme is that with the relative positions (instead
of the absolute positions), the function modeled by the
DNN becomes invariant under spatial translations, which
reduces the amount of data needed to cover the operation
space. Based on the theoretical formulations presented in the
previous subsections, we derive in this section a necessary
condition for the effectiveness of the difference learning
scheme. This necessary condition will be further illustrated
with quadrotor experiments in Sec. 6.

In order to motivate this insight on the difference learning
scheme, we first focus our discussion on a SISO linear
system represented by the transfer function representation
in Eqn. (13). Recall that, for system (13), the control
law for achieving exact tracking is in Eqn. (14), and the
corresponding DNN input-output selection for learning the
system inverse is I = {yd(k − n+ r : k + r), u(k − n+
r : k − 1)} and O = {u(k)}, where ‘:’ is used to abbreviate
consecutive time indexes. With the difference learning
scheme, we aim to train a DNN that depends only on a
set of relative terms, which we denote by ∆yd(k + p) :=
yd(k + p)− yd(k), where k is the current time index and
p ∈ {−n+ r, ..., r}, and ∆u(k + p) := u(k + p)− yd(k),
where p ∈ {−n+ r, ..., 0}.
Lemma 4.2. Difference Learning for SISO Linear
Systems. Consider a SISO linear baseline system (13)
and the DNN-enhancement control architecture in Fig. 1.
A difference learning scheme can be applied to improve the
data efficiency of the DNN module if and only if the baseline
system has a unity DC gain.

Proof. Starting from the control law in Eqn. (14), it
can be shown that by subtracting yd(k) on both sides
of the equation, and adding and subtracting 1

βn−r
yd(k),

1
βn−r

∑n−r−1
i=0 βiyd(k) and 1

βn−r

∑n−1
i=0 αiyd(k) on the

right-hand side, Eqn. (14) can be written as

∆u(k) =
1

βn−r
∆yd(k + r) +

αn−1
βn−r

∆yd(k + r − 1) + · · ·

+
α0

βn−r
∆yd(k − n+ r)− βn−r−1

βn−r
∆u(k − 1)

− βn−r−2
βn−r

∆u(k − 2)− · · · − β0
βn−r

∆u(k − n+ r)

+
1

βn−r

(
1−

n−r∑
i=0

βi +

n−1∑
i=0

αi

)
yd(k)︸ ︷︷ ︸

,s(yd(k))

.

(22)
In the above expression, the only non-relative
time-dependent term is the last term s(yd(k)) =

1
βn−r

(
1−

∑n−r
i=0 βi +

∑n−1
i=0 αi

)
yd(k) on the right-

hand side. Thus, one may express the control law for
achieving exact tracking in terms of the relative terms ∆yd

and ∆u (and hence apply the difference learning scheme) if
and only if s

(
yd(k)

)
= 0. For arbitrary yd(k), the condition

s
(
yd(k)

)
= 0 is equivalent to∑n−r

i=0 βi

1 +
∑n−1
i=0 αi

= 1. (23)

For system (13), the condition in Eqn. (23) is equivalent to
the condition that system (13) has a unity DC gain, i.e., it
achieves zero steady state errors for step inputs. �

We prove the same result for the MIMO state space
formulation for the special case of a position/velocity-like
system.

Definition 4.2. Position/Velocity-Like System. The
position/velocity-like system (1) has the following properties:
(i) the output of the system y is the first m elements of the
state vector (i.e., x1, ..., xm); and (ii) for step inputs, the
remaining elements of the state vector (i.e., xm+1, ..., xn) are
zero at the steady state.

Examples of position/velocity-like systems include but is
not limited to mechanical systems with a position-velocity
state space (e.g., industrial manipulators). Similar to the
SISO transfer function scenario, we identify a necessary con-
dition that allows us to express the control law in Eqn. (6) in
relative terms ∆x(k) = x(k)− [yd(k)T 0 · · · 0]T , ∆yd(k +
r) = yd(k + r)− yd(k), and ∆u(k) = u(k)− yd(k). In
particular, we prove the following lemma by contradiction.

Lemma 4.3. Difference Learning for MIMO Linear
Systems. Consider a position/velocity-like MIMO system
and the DNN-enhancement control architecture in Fig. 1. A
DNN design based on the state space approach (Insight 4.2)
and the difference learning scheme is able to achieve exact
tracking only if the baseline system has zero steady state
errors for step inputs.

Proof. Suppose by the way of contradiction that the DNN-
based approach achieves exact tracking for arbitrary feasible

Prepared using sagej.cls

Zhou et al. 9

trajectories and the baseline system does not achieve zero
steady state error for an arbitrary step input u(k) = a, where
a ∈ Rm is a constant vector. Hence, we have

yss = Kuss = Ka, (24)

whereK ∈ Rm×m is a constant non-zero matrix characteriz-
ing the DC gains of the system, and K 6= Im by assumption,
where Im denotes the identity matrix. Note that, when K
is a zero matrix, the system has zero DC gain; it can
be easily shown that the mapping {∆x(k),∆yd(k + r)} →
{∆u} is one-to-many and cannot be represented by the DNN
module (Jordan and Rumelhart 1992). Next, for the case
where K is non-zero, by assumption, the DNN module is
able to achieve exact tracking yss = yd(k) for an arbitrary
step input yd(k) = b, where b ∈ Rm is a constant vector.
With the difference learning scheme, the inputs to the DNN
module are ∆x and ∆yd and the output is ∆u. When exact
tracking is achieved, ∆x = 0 and ∆yd = 0, while ∆u = c,
where c ∈ Rm is a constant corresponding to the bias of the
DNN model (i.e., the output of the DNN model when the
inputs are zero). At the steady state, the reference of the
baseline system is uss = b+ c. From Eqn. (24), the system
output at the steady state is yss = K(b+ c). Since exact
tracking is achieved by assumption, yss = b and

Kc = (Im −K)b. (25)

Since K is non-zero and K 6= Im by assumption, Eqn. (25)
implies that the bias of the DNN, c, is correlated with the
step input vector b. For a typical feedforward DNN, the bias
c is a fixed vector determined from the training algorithm.
The dependency of the bias c on the system desired output
yd(k) = b leads to a contradiction. Thus, a DNN module
trained with the difference learning scheme cannot achieve
exact tracking for a baseline system for which the steady
state error for step inputs is not zero. �

Note that, in the above discussion, the input and output
of the DNN module are taken relative to the current desired
output yd(k). In practice, the input and output of the DNN
module can be alternatively taken relative to the current
actual output y(k) to additionally compensate for initial
tracking errors or disturbances.

Based on the above theoretical results for linear systems,
we present the following important insight.

Insight 4.4. Necessary Condition for Applying the
Difference Learning Scheme. In order to reduce the
amount of training data, a difference learning scheme can
be applied to the input and output selection of the DNN
module. However, as shown in the theoretical analysis for
the linear system formulations, for the DNN approach with
the difference learning scheme to be effective, the baseline
system controller needs to be designed such that the system
response has zero or sufficiently small steady-state errors for
step inputs.

The insight above is motivated from the linear system
formulations. Since nonlinear systems can be approximated
by a set of piecewise linear/affine systems with arbitrary
accuracy (Helwa and Caines 2015), it is reasonable to expect
that the necessary condition is also required for the nonlinear
system (2). In Sec. 6, we verify this necessary condition for
nonlinear systems with quadrotor experiments.

5 Simulation
In this section, we illustrate Insights 4.1-4.3 by considering
two linear MIMO baseline closed-loop systems represented
by the following state space equations:

x(k + 1) =

0.2 1 0
0 0.5 0
0 0 0.6

x(k) +

0 0
1 0
0 0.5

u(k)

y(k) =

[
0.35 0.35 0

0 0 0.5

]
x(k),

(26)

x(k + 1) =

0.2 1 0
0 0.5 0
0 0 0.6

x(k) +

0 0
1 0
0 0.5

u(k)

y(k) =

[
−0.35 0.35 0

0 0 0.5

]
x(k).

(27)
Note that both system (26) and system (27) are third-order
systems with 3 stable poles at {0.2, 0.5, 0.6} and have a
vector relative degree of (1, 1). The only difference between
these systems is the location of zero∗. System (26) has a
stable (minimum phase) zero at −0.8, while system (27) has
an unstable (nonminimum phase) zero at 1.2.

Upon introducing the DNN architecture and training in
Sec. 5.1, we first follow the state space approach to select the
input of the DNN module and show the necessity of stability
of the baseline system zero dynamics (Insight 4.1 and
Insight 4.2) in Sec. 5.2. After verifying the first two insights,
we illustrate in Sec. 5.3 the efficacy of the alternative
DNN input selection derived from the transfer function
formulation (Insight 4.3). Note that, for this simulation study
and with known system matrices (A, B, C), we can compute
Eqn. (6) and use it as the ground truth to assess the proposed
DNN approach.

5.1 DNN Architecture and Training
For comparison purposes, the DNN architecture and training
trajectories are identical for all simulation cases presented
in this section. Matlab’s Neural Network Toolbox is used
for implementing the DNN modules. The DNNs are a
fully-connected feedforward networks with two hidden
layers; each hidden layer consists of 20 hyperbolic tangent
activation units. The training trajectories are 25 sinusoidal
trajectories with different combinations of amplitudes and
frequencies; the amplitudes range between 1 and 5, and the
frequencies range between 0.024 Hz and 1.25 Hz.

The responses of the baseline system (x(k), y(k), u(k))
are recorded at 70 Hz for constructing the training dataset,
which consists of labeled input-output pairs (I, O). In the
first set of simulations, the state space approach (Insight 4.2)
is examined. For both system (26) and system (27), the
input and output of the DNN module are selected as Iss =

∗Both system (26) and system (27) are controllable and observable and
are thus minimal state space realizations. The zeros of the MIMO systems
are frequencies at which the system matrix of the MIMO systems or the
equivalent transfer matrices H(z) of the systems drop rank (see (Dahleh
et al. 2004) for more details). The locations of zeros (and poles) of the
systems can be verified with the Matlab command pzmap.

Prepared using sagej.cls

10 The International Journal of Robotics Research XX(X)

-4

-2

0

2

u 1
References of the Minimum Phase System (SS Approach)

Exact Inverse from Eqn. (6) Reference from DNN

0 5 10 15 20 25 30
Time (s)

-4

-2

0

u 2

(a) References u of the minimum phase system (26) with the
state space approach (Insight 4.2). The RMS modeling error of
the DNN module is approximately 7.8× 10−5.

-4

-2

0

2

y 1

Outputs of the Minimum Phase System (SS Approach)

Desired Baseline With DNN

0 5 10 15 20 25 30
Time (s)

-4

-2

0

y 2

(b) Outputs y of the minimum phase system (26). The RMS
tracking errors of the baseline system and the DNN-enhanced
system are approximately 1.0 and 2.5× 10−5, respectively.

Fig. 2. The references and outputs of the minimum
phase closed-loop system (26) for a desired trajectory
with yd,1(t) = sin

(
4π
33
t
)
+ cos

(
4π
41
t
)
− 1 and yd,2(t) =

sin
(
4π
23
t
)
+ cos

(
4π
21
t
)
− 1. From (a), the DNN module design

based on Insight 4.2 is able to approximate the system’s exact
inverse equation (Eqn. (6)) with high accuracy; from (b), the
reference computed by the DNN module is able to compensate
for the errors in the baseline system response and approximately
achieve exact tracking.

{x(k), yd,1(k + 1), yd,2(k + 1)} and O = {u(k)}, where
yd,i denotes the i-th element of yd. In the second set of
simulations, we focus on the minimum phase system (26).
Based on the transfer function approach (Insight 4.3), the
input and output of the DNN module are Itf = {yd,1(k −
2 : k + 1), yd,2(k − 2 : k + 1), u(k − 2 : k − 1)} and O =
{u(k)}, where ‘:’ abbreviates consecutive discrete-time
indexes. Note that, in the construction of the training dataset,
the data pairs (I, O) are randomly sampled from the 25
training trajectories with balanced proportions to prevent the
model from overfitting a particular frequency.

The Levenberg-Marquardt algorithm is used for training
the weight and bias parameters of the DNN module. In
the first set of simulations, the training objective is to
minimize the mean squared error between the targets O and
the DNN outputs. For the second set of simulations, we
additionally include an L2 regularization term in the training
objective function to help the training algorithm to phase
out any unnecessary dimensions in the DNN input Itf ; the
regularization constant is set to 0.005. In the training of each
DNN module, 70% of the data is used for optimizing the
model parameters and the rest is used for model validations.

-20

0

20

u 1

References of the Nonminimum Phase System (SS Approach)

Exact Inverse from Eqn. (6) Reference from DNN

0 5 10 15 20 25 30
Time (s)

-10

0

10

u 2

(a) References u of the nonminimum phase system (27) with the
state space approach (Insight 4.2). The RMS modeling error of
the DNN module is approximately 14.5.

-2

0

2

4

y 1

Outputs of the Nonminimum Phase System (SS Approach)

Desired Baseline With DNN

0 5 10 15 20 25 30
Time (s)

-4

-2

0
y 2

(b) Outputs y of the nonminimum phase system (27). The RMS
tracking errors of the baseline system and the DNN-enhanced
system are approximately 2.0 and 4.6, respectively.

Fig. 3. The reference and outputs of the nonminimum phase
closed-loop system (27) for the desired trajectory shown in
Fig. 2. Due to the inherent instability of the nonminimum
phase system, the reference u for achieving exact tracking is
unbounded (Hoagg and Bernstein 2007). From (a), the DNN
module consequently cannot effectively model the exact inverse
of system (27); from (b), when the necessary condition of
achieving stable zero dynamics in Insight 4.1 is violated, the DNN
inverse learning approach cannot be directly applied to enhance
the tracking performance of the baseline system.

The generalizability of the DNN modules is further verified
by testing the tracking performance of the overall DNN-
enhanced system on test trajectories that differ from the
training trajectories.

5.2 Simulation 1: Illustrations of Underlying
Function and Necessary Condition

In this subsection, we illustrate Insight 4.1 and Insight 4.2
by using the state space approach and comparing the
DNN-enhanced performance of the minimum phase sys-
tem (26) and the nonminimum phase system (27). For
this simulation illustration, the systems’ performances are
compared on a test trajectory that differs from those in
training: yd,1(t) = sin

(
4π
33 t
)

+ cos
(
4π
41 t
)
− 1 and yd,2(t) =

sin
(
4π
23 t
)

+ cos
(
4π
21 t
)
− 1.

The references and outputs of the DNN-enhanced tracking
for system (26) and system (27) are shown in Fig. 2 and
Fig. 3, respectively. It can be seen from Fig. 2a that, by
selecting the DNN input as I = {x(k), yd(k + r)}, the DNN
is able to effectively generalize the training data collected
from the minimum phase system (26), and outputs references

Prepared using sagej.cls

Zhou et al. 11

-4

-2

0

2

u 1
References of the Minimum Phase System (TF Approach)

Exact Inverse from Eqn. (6) Reference from DNN

0 5 10 15 20 25 30
Time (s)

-4

-2

0

u 2

(a) References u of the minimum phase system (26) with the
transfer function approach (Insight 4.3). The RMS modeling error
of the DNN module is approximately 1.2× 10−2.

-4

-2

0

2

y 1

Outputs of the Minimum Phase System (TF Approach)

Desired Baseline With DNN

0 5 10 15 20 25 30
Time (s)

-4

-2

0

y 2

(b) Outputs y of the minimum phase system (26). The RMS
tracking errors of the baseline system and the DNN-enhanced
system are approximately 1.0 and 4.2× 10−3, respectively.

Fig. 4. The references and outputs of the minimum phase
closed-loop system (26) for the desired trajectory shown in
Fig. 2. From (a), the DNN module design based on the transfer
function approach (Insight 4.3) is an equivalent approximation
of the exact inverse equation (Eqn. (6)); from (b), as with the
state space approach (Fig. 2b), exact tracking is approximately
achieved with the DNN module design based on the alternative
transfer function formulation.

(blue solid line) that coincide with the reference computed
based on the exact inverse in Eqn. (6) (red dashed line). With
Eqn. (6) as the ground truth, the RMS modeling error of the
DNN module is approximately 7.8× 10−5. From Fig. 2b,
we see that the reference computed by the DNN module
compensates for the magnitude errors in the baseline system
response (grey dotted line), and leads to approximately
exact tracking (blue solid line and red dashed line). On this
particular test trajectory, the addition of the DNN module
reduces the RMS tracking error from approximately 1.0
to approximately 2.5× 10−5. In this simulated setting, the
performance of the proposed DNN approach is only limited
by the modeling accuracies and numerical precisions. In
contrast to the minimum phase case, the reference for
achieving exact tracking is unbounded in the nonminimum
phase system case (27) due to the inherent instabilities of
the system inverse dynamics (Hoagg and Bernstein 2007). In
the nonminimum phase case reflected in Fig. 3, though with
the same architecture and training, the DNN module cannot
effectively model the exact inverse in Eqn. (6) (Fig. 3a)
and leads to worse performance as compared to the baseline
system (Fig. 3b).

5.3 Simulation 2: Illustrations of the Transfer
Function Approach

In the previous subsection, we showed the effectiveness of
the state space approach for designing the DNN module to
enhance the tracking performance of the minimum phase
system (26). In this subsection, we provide a brief discussion
on a DNN design based on the equivalent transfer function
formulation (Insight 4.3).

Fig. 4 shows the references and outputs of the system (26)
with the DNN design based on Insight 4.3. From Fig. 4a,
we can see that similar to the state space approach, the
DNN module design based on the transfer function approach
(blue solid line) is able to approximate the reference from
the exact inverse equation (Eqn. (6)) (red dashed line).
For this particular test trajectory, the RMS modeling error
of the DNN is approximately 1.2× 10−2. Consequently,
as shown in Fig. 4b, the output of the DNN-enhanced
system (blue solid line) also coincides with the desired
trajectory (red dashed line). The RMS tracking error of
the DNN-enhanced system is approximately 4.2× 10−3.
This simulation example shows that the transfer function
approach and the state space approach can be equivalently
used to enhance the tracking performance of the minimum
phase system (26).

6 Quadrotor Experiments

This section presents the results of quadrotor experiments
designed to verify the theoretical insights derived in Sec. 4.
In order to test the effectiveness the DNN module design
based on the theoretical insights, we adopt the fly-as-you-
draw application setup from (Li et al. 2017), where visitors
are invited to draw desired trajectories on a mobile device,
and the desired trajectories are tracked by a quadrotor
vehicle. A demonstration video of the experiments is
available at http://tiny.cc/impromptuTracking
(Extension 1), and the hand drawings used for evaluating the
proposed DNN-enhancement trajectory tracking approach
are shown in Fig. 5.

In the following discussion, we first introduce the
experiment setup, the control architecture, and the DNN
architecture and training procedures in Sec. 6.1. In Sec. 6.2
we verify the proposed DNN input-output design and
demonstrate the generalizability of the DNN module on
the same 30 test trajectories. Upon verifying the proposed
DNN input-output design, in Sec. 6.3 we show that the
performance of the proposed approach can be pushed further
by improving the representativeness of the DNN training
dataset. This section is concluded with illustrations of the
improved training data efficiency of the difference-learning
scheme in Sec. 6.4. The training data and testing results
presented in the following subsections can be found in
Extension 2.

Note that, for the convenience of the discussion, we denote
the desired trajectory with a subscript d, the references of the
baseline system with a subscript r, and the measured states
of the quadrotor with a subscript a.

Prepared using sagej.cls

http://tiny.cc/impromptuTracking

12 The International Journal of Robotics Research XX(X)

Traj. 1 Traj. 2 Traj. 3 Traj. 4 Traj. 5 Traj. 6 Traj. 7 Traj. 8 Traj. 9 Traj. 10

Traj. 11 Traj. 12 Traj. 13 Traj. 14 Traj. 15 Traj. 16 Traj. 17 Traj. 18 Traj. 19 Traj. 20

Traj. 21 Traj. 22 Traj. 23 Traj. 24 Traj. 25 Traj. 26 Traj. 27 Traj. 28 Traj. 29 Traj. 30

Fig. 5. Illustrations of 30 hand-drawn trajectories for testing the DNN-enhancement approach (Li et al. 2017).

6.1 Experimental Setup
6.1.1 Overview: The objective of the experiments is to
design a control system such that the center of mass
of a quadrotor vehicle pa(k) tracks desired trajectories
pd(k) generated based on arbitrary hand-drawings with high
accuracy from the first attempt. In the experiments, we use
Parrot AR.Drone 2.0 as the testing platform and implement
the control algorithm in the Robot Operating System (ROS)
environment. The trajectory generation algorithm is adopted
from the fly-as-you-draw application (Li et al. 2017). The
estimation of the states of the quadrotor are provided by a
Vicon motion capture system running at 200 Hz.

The 3-dimensional root-mean-square (RMS) position
tracking error is used as the measure for evaluating the
tracking performance of the quadrotor on a particular
trajectory:

etraj =

(
1

N

N∑
k=1

||pd(k)− pa(k)||2
) 1

2

, (28)

where N is the number of time steps for which the trajectory
is defined.

6.1.2 Control Architecture: The quadrotor vehicle has
12 states: translational positions p = (x, y, z), transla-
tional velocities v = (ẋ, ẏ, ż), attitudes θ = (φ, θ, ψ), and
rotational velocities ω = (p, q, r). The baseline controller
of the quadrotor vehicle consists of (i) an off-board
position controller that receives the reference positions
and velocities (pr and vr) and outputs the desired roll
angle, pitch angle, yaw rate and z-velocity commands
(φcmd, θcmd, rcmd, and żcmd) at 70 Hz; and (ii) an on-board
attitude controller that adjusts motor thrusts based on the
roll angle, pitch angle, yaw rate and z-velocity commands
at 200 Hz. Of particular interest is the off-board position
controller, which consists of a nonlinear transformation and
PD control; from the internal model principle, it is known
that this type of controller cannot be tuned to achieve perfect
tracking for arbitrary desired reference frequencies (Francis
and Wonham 1976). We aim to enhance the baseline position
controller with our proposed DNN add-on module, which
models the output of the inverse dynamics of the baseline
control system. In the experiments, we introduce a DNN
module design based on Insight 4.2 to adjust the position
reference pr and the velocity reference vr sent to the
baseline controller, and compare the tracking performance
of the DNN-enhanced controller against that of the baseline

controller. Note that, as in previous work (Li et al. 2017) and
for the robustness of implementation against instability, the
DNN-loop in the experiments runs at 7 Hz, which is 10 times
slower than the baseline controller.

6.1.3 Neural Network Architecture and Training: For
comparison purposes, the DNN modules used in the
experiments have the same architecture and training
procedure as in (Li et al. 2017). The DNN modules are
composed of fully connected FNNs with four hidden layers
of 128 ReLU neurons; the python TensorFlow library is used
for implementing the DNN module. The training dataset
is a set of labeled input-output pairs constructed from the
input-output response data of the baseline system on one
or more multiple training trajectories (details of the DNN
module input-output selections are discussed in Sec. 6.2).
The sampling rate of the baseline system for constructing
the training dataset is consistent with the update rate of the
DNN module, which is selected to be 7 Hz. Of all the training
data collected from the baseline system, 90% is selected
for training and the remaining is used for validation. The
training loss function is the squared error between the DNN
output and the labeled output in the training dataset. Adam
optimizer (Kingma and Ba 2014) is used for optimizing the
weight parameters of the DNN. A dropout rate of 0.5 is
used to improve the generalizability of the DNN to unseen
inputs (Srivastava et al. 2014).

6.2 Experiment 1: DNN Input-Output Design

Through experimental trial-and-error, (Li et al. 2017)
found that a DNN module with input I1 = {pd(k +
4)− pa(k),pd(k + 6)− pa(k), va(k), vd(k + 4), vd(k +
6), θa(k), θd(k + 4), θd(k + 6), ωa(k), ωd(k + 4),
ωd(k + 6), z̈a(k), z̈d(k + 4), z̈d(k + 6)} and output O1 =
{pr(k)− pd(k), vr(k)− vd(k)} can effectively improve
the performance of the baseline system for tracking arbitrary
hand-drawn trajectories; on the 30 hand-drawn trajectories
shown in Fig. 5, the average RMS error reduction achieved
by the DNN module is approximately 43%. In order to verify
Insight 4.2, we repeat the 30 test trajectories from (Li et al.
2017) with a DNN module design based on the proposed
input-output selection and compare the improved tracking
performance with that achieved in (Li et al. 2017). Note
that we repeated the experiments in (Li et al. 2017) on the
quadrotors used for this work for comparability.

Prepared using sagej.cls

Zhou et al. 13

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x (m)

0.5

1

1.5

z
(m

)
Path in the xz-Plane

Desired With DNN - 36 Inputs (Li et al. 2017)

Baseline With DNN - 12 Inputs (Proposed)

Fig. 6. A comparison of the tracking performance enhance-
ments between the DNN module from (Li et al. 2017) and the
DNN module design based on Insight 4.2 for a hand-drawn test
trajectory (Traj. 24 in Fig. 5). On this test trajectory, the RMS
tracking error of the baseline system is approximately 0.41 m.
The RMS tracking errors of the baseline system enhanced by the
DNN module from (Li et al. 2017) and the proposed DNN module
design based on Insight 4.2 are 0.23 m and 0.14 m respectively,
which correspond to 45% and 67% error reductions.

-2

-1

0

1

2

x
(m

)

Trajectories in the x- and z-Direction
Desired With DNN - 36 Inputs (Li et al. 2017)
Baseline With DNN - 12 Inputs (Proposed)

0 5 10 15 20

Time (s)

0

0.5

1

1.5

2

z
(m

)

Fig. 7. A comparison of the x- and z-position trajectories for a
hand-drawn test trajectory (corresponding to Fig. 6). From the
plots, the DNN module from (Li et al. 2017) and the DNN module
trained based on Insight 4.2 both tend to correct the delays
and magnitude errors of the baseline system response. When
compared to the DNN from (Li et al. 2017), the proposed DNN
design based on Insight 4.2 has two thirds fewer inputs while
achieving better performance enhancements.

In order to apply our insights, we first performed simple
step response experiments and identified the following
properties of the baseline system:

(P1) the responses of the baseline system are approximately
decoupled in the x-, y-, and z-direction;

(P2) the relative degrees of the baseline system in the x-,
y-, and z- direction are 4, 4, and 3, respectively; and

(P3) zero steady state error for step inputs is achieved in the
three directions.

Given properties (P1)-(P3), we assume decoupled dynam-
ics in the x-, y-, and z-direction and apply Insight 4.2
with the difference learning scheme to obtain the fol-
lowing input-output selection of the DNN module:
I2 = {xd(k + 4)− xa(k), yd(k + 4)− ya(k), zd(k + 3)−
za(k), ẋd(k + 3)− ẋa(k), ẏd(k + 3)− ẏa(k), żd(k + 2)−

0

0.2

0.4

0.6

x
er

ro
r

(m
)

Tracking Error in the x- and z-Direction

With DNN - 36 Inputs (Li et al. 2017) Baseline
With DNN - 12 Inputs (Proposed)

0 5 10 15 20

Time (s)

0

0.2

0.4

0.6

z
er

ro
r

(m
)

Fig. 8. The tracking errors of the x- and z-position (|x(k)−
xd(k)| and |z(k)− zd(k)|) corresponding to Fig. 7. The DNN
module from (Li et al. 2017) and the DNN module trained based
on Insight 4.2 both effectively reduce the peak tracking errors
of the baseline system. The peak errors for the baseline system
in the x- and z-direction are approximately 0.62 m and 0.21 m,
respectively. For the DNN design from (Li et al. 2017), the
peak tracking errors in the x- and z-direction are reduced to
approximately 0.27 m and 0.09 m, while for the proposed DNN,
the peak tracking errors in the x- and z-direction are reduced to
approximately 0.21 m and 0.15 m.

ża(k),θa(k),ωa(k)} and O2 = {pr(k)− pa(k), vr(k)−
va(k)}.

We note two differences between the DNN from (Li et al.
2017) and the proposed DNN design based on Insight 4.2.
The first is the DNN input selection. In comparison with the
DNN from (Li et al. 2017), which has 36 inputs (#I1 =
36, where # denotes cardinality), the DNN design based
on Insight 4.2 has only 12 inputs (#I2 = 12). Based on
the inverse-dynamics formulation, the input selection I2
represents the necessary and sufficient inputs that allow
the DNN add-on module to achieve enhanced tracking
performance. Another difference is in the application of the
difference learning scheme for the two DNN designs. In
particular, for the DNN design from (Li et al. 2017), the
position elements in the input I1 are taken relative to the
actual output values (subscripted with a), and the position
elements in the output O1 are taken relative to the desired
output values (subscripted with d). For the proposed DNN
design based on Insight 4.2, the relative terms in the input
I2 and output O2 are consistently taken with respect to the
actual values (subscripted with a). Based on the theoretical
discussions of Insight 4.4, we expect the consistency of the
relative terms in the proposed design would further improve
the capability of the DNN module in correcting for any
deviations from the desired trajectories.

We first present the performance comparison between the
DNN from (Li et al. 2017) and the proposed DNN on one of
the test trajectories (Figs. 6, 7, and 8). We then summarize the
comparison between the two DNN designs on the 30 hand-
drawn trajectories (Fig. 9). Note that, for the experiments, the
DNN modules are trained on a 400-second 3-dimensional
sinusoidal trajectory similar to that used in (Li et al. 2017)
(Extension 2a).

From Fig. 6 and Fig. 7, it can be seen that both the DNN
from (Li et al. 2017) (green solid line) and the DNN design
based on Insight 4.2 (blue solid line) are able to reduce the

Prepared using sagej.cls

14 The International Journal of Robotics Research XX(X)

Trajectory Tracking Performance Comparison on 30 Hand-Drawn Test Trajectories

58
%

45
% 45

%

62
%

32
%

68
%

50
%

50
%

50
%

44
%

50
%

60
%

45
%

59
%

46
%

53
%

58
%

57
% 48

%

36
%

44
%

64
%

44
%

45
%

40
%

42
%

35
%

43
%

50
%

45
%

50
%

64
% 62

%

64
%

48
%

55
%

57
%

63
%

59
%

66
%

57
%

61
% 58

% 49
%

50
%

57
% 46

% 25
%

49
%

48
% 44

%

61
%

39
%

67
%

55
%

71
%

43
%

60
%

45
%

56
%

0.34

0.17

0.15

Tra
j. 1

Tra
j. 2

Tra
j. 3

Tra
j. 4

Tra
j. 5

Tra
j. 6

Tra
j. 7

Tra
j. 8

Tra
j. 9

Tra
j. 1

0

Tra
j. 1

1

Tra
j. 1

2

Tra
j. 1

3

Tra
j. 1

4

Tra
j. 1

5

Tra
j. 1

6

Tra
j. 1

7

Tra
j. 1

8

Tra
j. 1

9

Tra
j. 2

0

Tra
j. 2

1

Tra
j. 2

2

Tra
j. 2

3

Tra
j. 2

4

Tra
j. 2

5

Tra
j. 2

6

Tra
j. 2

7

Tra
j. 2

8

Tra
j. 2

9

Tra
j. 3

0

Test Trajectory Index

0

0.1

0.2

0.3

0.4

0.5

0.6

R
M

S
 T

ra
ck

in
g

E
rr

or
 (

m
)

Baseline With DNN - 36 Inputs (Li et al. 2017) With DNN - 12 Inputs (Proposed)

Fig. 9. Comparisons of the tracking performance enhancements between the DNN module from (Li et al. 2017) (with 36 inputs)
and the proposed DNN module design based on Insight 4.2 (with 12 inputs). In the two sets of experiments, the percentage of
the RMS tracking error reductions achieved by the DNN module are indicated above the corresponding bars; the mean RMS error
over the 30 trajectories are indicated by the horizontal dashed lines. Note that, for comparability, we repeated the 30 impromptu
tracking experiments from (Li et al. 2017) on the same quadrotor vehicles and training datasets used for testing the proposed DNN
design. From the plot, despite having two thirds fewer inputs, the proposed DNN design based on Insight 4.2 yields a performance
comparable to the DNN from (Li et al. 2017). On the 30 test trajectories, the average RMS error reduction is 49% for the DNN from (Li
et al. 2017) and 54% for the proposed DNN design based on Insight 4.2.

time delays and magnitude errors of the baseline system
tracking response (grey dotted line) and lead to quadrotor
tracking paths that are closer to the desired hand-drawing
(red dashed line). On this test trajectory, the RMS tracking
error reduction achieved by the DNN from (Li et al. 2017)
and the proposed DNN are 45% and 67%, respectively. The
trajectory tracking error comparison depicted in Fig. 8 shows
that the proposed DNN design based on Insight 4.2 achieves
similar error reductions to the DNN design from (Li et al.
2017) while having far fewer inputs.

Fig. 9 (Extension 2b) summarizes the performance
comparison between the two DNN modules on the 30 hand-
drawn test trajectories studied in (Li et al. 2017) (see Fig. 5).
The plot shows that the proposed DNN module design
based on Insight 4.2 (blue bars) leads to similar tracking
performance as the DNN module from (Li et al. 2017) (green
bars). On the 30 test trajectories, the mean RMS error of the
baseline system enhanced by the DNN from (Li et al. 2017)
is approximately 0.17 m, and that of the baseline system
enhanced by the proposed DNN is approximately 0.15 m.
The corresponding average tracking error reduction achieved
by the DNN from (Li et al. 2017) and that design based on
Insight 4.2 are 49% and 54%, respectively.

From this set of experiments, we verify Insight 4.2 on
the proposed DNN input selection. Although the input
dimension is reduced by two thirds as compared with the
DNN from (Li et al. 2017), the DNN module design based
on the derived theoretical insight can effectively enhance the
quadrotor’s baseline system performance. The comparison
with the results from (Li et al. 2017) further proves the
generalizability of the proposed DNN for tracking arbitrary
untrained trajectories impromptu.

6.3 Experiment 2: DNN Training Dataset
In the previous set of experiments, the performance of the
DNN from (Li et al. 2017) and the proposed DNN are
compared on the basis of training on 400-second sinusoidal
trajectories. These trajectories have gradually increasing

amplitudes but fixed frequencies in the x-, y-, and z-
direction (Li et al. 2017). In this subsection, we show that the
performance enhancement achievable by the proposed DNN
design can be further improved with a richer training dataset.
In particular, we compare two training datasets constructed
from the baseline system responses to different training
trajectories (Extension 2a):

• Training Dataset 1 based on a 400-second sinusoidal
training trajectory, and

• Training Dataset 2 based on the 400-second sinusoidal
training trajectory from Training Dataset 1 and 30
additional hand-drawn trajectories.

Note that the 30 hand-drawn trajectories in Train-
ing Dataset 2 are different from the 30 trajectories (Fig. 5)
for evaluating the performance of the DNNs.

Visualizations of the training datasets in the DNN input
space are shown in Fig. 10. Note that, when comparing
Training Dataset 1 and Training Dataset 2, the additional data
points corresponding to the drawing trajectories are reflected
from the denser cores around the origins in each of the plots
on the right. It is expected that the additional data would
reduce the generalization errors of the DNN module when it
is applied for impromptu tracking of hand-drawn trajectories.

Fig. 11 (Extension 2b) shows the performance comparison
of three DNN-enhanced systems on the 30 test hand-drawn
trajectories (Fig. 5). From the previous subsection, we
show that, on average, the DNN with the proposed inputs
(middle histogram in Fig. 11) leads to better performance
as compared with the DNN from (Li et al. 2017) (top
histogram in Fig. 11). When comparing the proposed DNN
trained with Training Dataset 1 (middle histogram in Fig. 11)
and Training Dataset 2 (bottom histogram in Fig. 11),
we see that the inclusion of the additional hand-drawn
trajectories in training further improves the performance
of the DNN-enhanced system in tracking arbitrary hand-
drawn trajectories. Overall, the proposed DNN trained with
Training Dataset 2 increases the average RMS tracking error

Prepared using sagej.cls

Zhou et al. 15

-0.5

0.5

1

DNN Input 2 (m
)

0

0

D
N

N
 In

pu
t 3

 (
m

)

0.5

DNN Input 1 (m)0

Training Dataset 1

-0.5
-0.5

-1

0.5

-0.5

0.5

1

DNN Input 2 (m
)

0

0

D
N

N
 In

pu
t 3

 (
m

)

0.5

DNN Input 1 (m)0

Training Dataset 2

-0.5
-0.5

-1

0.5

1.5

-0.4

1

0.5

-0.2

1.5

DNN Input 5 (m
/s)

0
1

D
N

N
 In

pu
t 6

 (
m

/s
)

0

0.5-0.5

DNN Input 4 (m/s)0

0.2

-1 -0.5
-1

-1.5 -1.5

0.4

1.5

-0.4

1

0.5

-0.2

1.5

DNN Input 5 (m
/s)

0
1

D
N

N
 In

pu
t 6

 (
m

/s
)

0

0.5-0.5

DNN Input 4 (m/s)0

0.2

-1 -0.5
-1

-1.5 -1.5

0.4

-0.3

-0.2

0.2

0.1

-0.1

DNN Input 8 (rad)

0
0.2

D
N

N
 In

pu
t 9

 (
ra

d)

0

0.1-0.1

DNN Input 7 (rad)0
-0.2 -0.1

0.1

-0.2
-0.3 -0.3

0.2

-0.3

-0.2

0.2

0.1

-0.1

DNN Input 8 (rad)

0
0.2

D
N

N
 In

pu
t 9

 (
ra

d)

0

0.1-0.1

DNN Input 7 (rad)0
-0.2 -0.1

0.1

-0.2
-0.3 -0.3

0.2

0.5

-0.5

0.5

0

DNN Input 11 (rad/s)

0

D
N

N
 In

pu
t 1

2
(r

ad
/s

)

DNN Input 10 (rad/s)
0

0.5

-0.5 -0.5

0.5

-0.5

0.5

0

DNN Input 11 (rad/s)

0

D
N

N
 In

pu
t 1

2
(r

ad
/s

)

DNN Input 10 (rad/s)
0

0.5

-0.5 -0.5

Fig. 10. Visualizations of two training datasets in the DNN
input space defined by I2. The plots on the left correspond
to Training Dataset 1 (400-second sinusoidal training trajectory)
and the plots on the right correspond to Training Dataset 2 (the
400-second sinusoidal trajectory with 30 additional hand-drawn
trajectories). Note that, for the second training dataset, the 30
hand-drawn trajectories used for training are different from the 30
trajectories (Fig. 5) used for evaluating the tracking performance.

reduction by 8% as compared with the proposed DNN
trained with Training Dataset 1.

6.4 Experiment 3: Difference Learning
In Sec. 6.4, we showed in theory that, when applying the
difference learning scheme to improve the data efficiency
of the DNN training, the baseline system needs to achieve
zero steady state error for step inputs. In this subsection, we
first illustrate the necessity of the condition by applying the
difference learning scheme to DNN modules to enhance (i)
the original baseline system where zero steady state error
for step inputs is achieved, and (ii) a modified baseline
system where the necessary condition is not achieved. In
the experiment, the modified baseline system is obtained

Distributions of RMS Tracking Error Percent Reductions

18 25 32 39 46 53 60 67 74 81 88

RMS Tracking Error Reduction (%)

0

5

10

15

C
ou

nt

Mean = 49%

18 25 32 39 46 53 60 67 74 81 88

RMS Tracking Error Reduction (%)

0

5

10

15

C
ou

nt

Mean = 54%

18 25 32 39 46 53 60 67 74 81 88

RMS Tracking Error Reduction (%)

0

5

10

15

C
ou

nt

Mean = 62%

(a) DNN trained on 400-s sinusoidal trajectory (Li et al. 2017)

Distributions of RMS Tracking Error Percent Reductions

18 25 32 39 46 53 60 67 74 81 88

RMS Tracking Error Reduction (%)

0

5

10

15

C
ou

nt

Mean = 49%

18 25 32 39 46 53 60 67 74 81 88

RMS Tracking Error Reduction (%)

0

5

10

15

C
ou

nt

Mean = 54%

18 25 32 39 46 53 60 67 74 81 88

RMS Tracking Error Reduction (%)

0

5

10

15

C
ou

nt

Mean = 62%(b) Proposed DNN trained on 400-s sinusoidal trajectory

Distributions of RMS Tracking Error Percent Reductions

18 25 32 39 46 53 60 67 74 81 88

RMS Tracking Error Reduction (%)

0

5

10

15

C
ou

nt

Mean = 49%

18 25 32 39 46 53 60 67 74 81 88

RMS Tracking Error Reduction (%)

0

5

10

15

C
ou

nt

Mean = 54%

18 25 32 39 46 53 60 67 74 81 88

RMS Tracking Error Reduction (%)

0

5

10

15

C
ou

nt

Mean = 62%

(c) Proposed DNN trained on 400-s sinusoidal trajectory and 30
hand-drawn trajectories

Fig. 11. A comparison of the tracking error reduction achieved
by (a) the DNN used in (Li et al. 2017) and trained on a 400-
second sinusoidal trajectory, (b) the proposed DNN designed
based on Insight 4.2 and trained on the 400-second sinusoidal
trajectory, and (c) the proposed DNN designed based on
Insight 4.2 and trained on the 400-second sinusoidal trajectory
and 30 additional hand-drawn trajectories. Note that, for the
last case (c), the 30 additional hand-drawn trajectories used
for training are different from the 30 test trajectories. The mean
percent error reduction for each distribution is indicated by the
vertical dashed line.

by multiplying the reference signals zr sent to the original
baseline system by a factor of 0.5. The baseline and DNN-
enhanced tracking performance for the two systems are
shown in Fig. 12 (Extension 2c). The plots show that for the
original baseline system (bottom panel), where zero steady
state error for step inputs is achieved, the DNN with the
difference learning scheme is able to effectively enhance the
tracking performance of the baseline system. However, as
expected from Insight 4.4, for the modified baseline system
(top panel), where the zero steady state error condition is
not satisfied, the DNN trained with the difference learning
scheme only partially compensates for the magnitude error
and the bias of the modified baseline system.

Having demonstrated the necessary condition for applying
the difference learning scheme, and in order to determine
how much the training data efficiency can be improved, we
next compare a DNN trained with the difference learning
scheme and a DNN trained without it. Fig. 13 (Extension 2c)
shows a comparison of the DNN modules trained with
(blue) and without (red) the difference learning scheme
for enhancing the tracking performance of the quadrotor
baseline system where zero steady state error for step inputs
is achieved. In the plot, the RMS tracking errors of the

Prepared using sagej.cls

16 The International Journal of Robotics Research XX(X)

0

1

2

z
(m

)

Position Trajectory in the z-Direction
S

ys
te

m
 w

ith
 N

on
-Z

er
o

S
te

ad
y

S
ta

te
 E

rr
or

fo
r

S
te

p
In

pu
ts

Desired Baseline With DNN

0 5 10 15 20 25 30
Time (s)

0

1

2

z
(m

)

S
ys

te
m

 w
ith

 A
pp

ro
xi

m
at

el
y

Z
er

o
S

te
ad

y
S

ta
te

 E
rr

or
fo

r
S

te
p

In
pu

ts

Fig. 12. A comparison of the difference learning scheme as
applied on: (i) a baseline system for which zero steady state error
for step inputs is not achieved (top); and (ii) a baseline system
for which zero steady state error for step inputs is achieved
(bottom). When the necessary condition of having a baseline
system that achieves zero steady state error for step inputs is
not satisfied (see Insight 4.4), the DNN trained with the difference
learning scheme cannot effectively compensate for the errors of
the baseline system response.

DNN-enhanced systems are compared as the amount of
training data varies. Note that, in order to prevent overfitting,
the training datasets are randomly sampled from a large
training dataset (Training Dataset 2). Here, we use Traj. 24
(Fig. 5) as the test trajectory for evaluating the performance
of the DNN-enhanced systems. The plot depicted in Fig. 13
shows that for the DNN without the difference learning
scheme (red), the RMS tracking increases quickly as the
amount of training data reduces. In contrast, the performance
of the DNN trained with the difference learning scheme
(blue) drops more gradually as the amount of training data
decreases. The DNN trained with the difference learning
scheme reaches the best observed performance of the DNN
without the difference learning scheme (grey dotted line),
with approximately 15 times less data.

7 Discussion
In Sec. 6, we showed that the proposed DNN approach can
effectively enhance the impromptu tracking performance of
classical controllers. In the proposed approach, the design of
the DNN module relies only on the input, output, and state
data of the baseline system, as well as basic properties of the
system (e.g., the vector relative degree) that can be identified
from a set of simple step response experiments. Without
requiring a dynamic model as a prior, the DNN approach
can be used to complement black-box control systems —
a possible step towards addressing the issue of uncertain or
unmodeled dynamics that limit the performance of classical
model-based control design approaches.

Despite its advantages, the proposed approach has
limitations that require further investigation. The first relates
to its applicability to systems with hybrid dynamics, where
hybrid control strategies are often applied (Antsaklis 2000).
In our formulation, we represent the baseline system by
Eqn. (1) and Eqn. (2). For hybrid systems such as bipedal

0.5 1 5 20 100

Percentage of Training Dataset 2 (%)

0.1

0.2

0.3

0.4

0.5

R
M

S
 T

ra
ck

in
g

E
rr

or
 o

n
T

ra
j.

24
 (

m
) RMS Tracking Error vs. Amount of Training Data

Baseline

with difference learning
without difference learning

Fig. 13. A comparison of the RMS tracking error versus the
amount of data for training the DNNs with (blue) and without
(red) the difference learning scheme. The horizontal axis shows
the proportion of randomly selected data from Training Dataset 2
described in Sec. 6.3; the vertical axis shows the RMS error on
Traj. 24 with the DNN-enhanced system (see Fig. 5). The plot
shows that the DNN trained with the difference learning scheme
is able to reach the best observed performance of the DNN
trained without the difference learning scheme (indicated by the
grey dotted line) with approximately 15 times less training data.
Note that the RMS tracking error corresponding to the baseline
system is shown as a grey dashed line for reference.

robots or quadrotors with load suspension, however, multiple
dynamic equations defined on different regions of the state
space must be considered. One trivial approach is to apply
the current results to each individual dynamic system and
train a set of independent DNN modules to enhance the
tracking performance. Accounting for transitions across the
boundaries of the dynamic regions is an open question.
The hierarchical structure in some typical hybrid control
approaches (e.g., supervisory control) naturally encourages
a hierarchical learning structure for dealing with this class of
systems capturing more complex dynamics.

The second limitation is the transparency of the DNN
training. In the simulations and experiments, we trained
the DNN modules with datasets that sufficiently cover the
operation space. Although we showed that the amount
of training data can be significantly reduced by applying
the difference learning scheme to the DNN module
design, the sufficiency of the training dataset, and hence
the performance of the DNN module, are not known
prior to the tests on the physical setup. One promising
direction for examining the data sufficiency is to introduce
probabilistic learning to the current DNN-enhancement
control framework. Many researchers are investigating
approaches that provide uncertainty estimations to deep
learning (e.g., (Gal and Ghahramani 2016; Depeweg
et al. 2018)). As noted in (Depeweg et al. 2018), these
approaches can be naturally combined with the active
learning framework (MacKay 1992) to guide training data
collection. The probabilistic framework and guided data
collection can potentially provide indications of insufficient
training and further increase training efficiency.

8 Conclusions

This paper presents theoretical and experimental studies
of a DNN-based approach for enhancing the tracking

Prepared using sagej.cls

Zhou et al. 17

performance of black-box control systems for arbitrary
feasible trajectories. We considered a MIMO, possibly
nonlinear, system as our starting point. In order to achieve
an identity mapping from the desired output to the actual
output, we established that the DNN module in the proposed
control architecture should approximate the output equation
of the inverse dynamics of the baseline system. Due to the
association with system inversion, the effectiveness of the
proposed approach relies on two necessary conditions that
the baseline system has (i) a well-defined vector relative
degree and (ii) stable zero dynamics. Second, for the systems
satisfying these two necessary conditions, we identified
the necessary and sufficient inputs of the DNN module.
Third, we verified the insights by repeating the quadrotor
experiments in (Li et al. 2017). In particular, we showed
that with the proposed DNN input selection, the DNN input
dimension is reduced by two thirds while achieving similar
or better performance on the 30 hand-drawn trajectories
in (Li et al. 2017). By using a richer training dataset, we
showed that the proposed DNN module reduced RMS error
by approximately 62% on the average of the 30 testing hand-
drawn trajectories. Fourth, using an argument similar to the
small gain theorem, we proved that, for systems with stable
zero dynamics, the overall DNN-enhanced control system is
input-to-state stable if the DNN modeling error is sufficiently
small. Fifth, we explored via both theory and experiments
the effectiveness of the difference learning scheme for
improving the efficiency of the training of the DNNs in the
proposed approach. In particular, we derived a necessary
condition for the effectiveness of the difference learning
approach, and verified this condition via experiments. For
the quadrotor impromptu tracking experiments, we showed
that the DNN trained with the difference learning scheme is
able to achieve comparable tracking performance of a DNN
module trained without the difference learning scheme with
approximately 15 times less data.

Acknowledgements

We would like to thank Qiyang Li, Jingxing Qian, Zining Zhu,
and Xuchan Bao for their contributions to the fly-as-you-draw
application. We would also like to thank Hallie Siegel for her
valuable comments in the preparation of this manuscript.

Funding

This research was supported by the Alfred P. Sloan Foundation’s
Sloan Research Fellowship, the Ontario Ministry of Research
and Innovation’s Early Researcher Award, the Ontario Centres
of Excellence’s OCE/SOSCIP TalentEdge Project 27901, as
well as the Discovery Grant, Research Tools and Instruments
Grant, and Alexander Graham Bell Canada Graduate Scholarship
from the Natural Sciences and Engineering Research Council of
Canada (NSERC).

Declaration of conflicting interests

The authors declare that there is no conflict of interest.

References

Antsaklis PJ (2000) A brief introduction to the theory and
applications of hybrid systems. In: Proc. of the IEEE Special

Issue on Hybrid Systems: Theory and Applications. pp. 879–
887.

Åström K and Hägglund T (2004) Revisiting the Ziegler–Nichols
step response method for PID control. Journal of Process
Control 14(6): 635–650.

Bansal S, Akametalu AK, Jiang FJ, Laine F and Tomlin CJ (2016)
Learning quadrotor dynamics using neural network for flight
control. In: Proc. of the IEEE Conf. on Decision and Control
(CDC). pp. 4653–4660.

Bristow DA, Tharayil M and Alleyne AG (2006) A survey of
iterative learning control. IEEE Control Systems 26(3): 96–
114.

Brogårdh T (2007) Present and future robot control development
— An industrial perspective. Annual Reviews in Control 31(1):
69–79.

Chen FC and Khalil HK (1995) Adaptive control of a class of
nonlinear discrete-time systems using neural networks. IEEE
Trans. on Automatic Control 40(5): 791–801.

Da X, Hartley R and Grizzle JW (2017) Supervised learning
for stabilizing underactuated bipedal robot locomotion, with
outdoor experiments on the wave field. In: Proc. of the IEEE
International Conf. on Robotics and Automation (ICRA). pp.
3476–3483.

Dahleh M, Dahleh MA and Verghese G (2004) Lectures on
Dynamic Systems and Control. Department of Electrical
Engineering and Computer Science, Massachuasetts Institute
of Technology.

Depeweg S, Hernandez-Lobato JM, Doshi-Velez F and Udluft S
(2018) Decomposition of uncertainty in Bayesian deep learning
for efficient and risk-sensitive learning. In: Proc. of the
International Conf. on Machine Learning (ICML). pp. 1184–
1193.

Devasia S, Chen D and Paden B (1996) Nonlinear inversion-based
output tracking. IEEE Trans. on Automatic Control 41(7): 930–
942.

Drews P, Williams G, Goldfain B, Theodorou EA and Rehg
JM (2017) Aggressive deep driving: Combining convolutional
neural networks and model predictive control. In: Proc. of the
Conf. on Robot Learning (CoRL). pp. 133–142.

Francis B and Khargonekar P (1995) Robust Control Theory. The
IMA volumes in mathematics and its applications. Springer.
ISBN 9780387944432.

Francis BA and Wonham WM (1976) The internal model principle
of control theory. Automatica 12(5): 457–465.

Gal Y and Ghahramani Z (2016) Dropout as a Bayesian
approximation: Representing model uncertainty in deep
learning. In: Proc. of the International Conf. on Machine
Learning (ICML). pp. 1050–1059.

Ge SS and Zhang J (2003) Neural-network control of nonaffine
nonlinear system with zero dynamics by state and output
feedback. IEEE Trans. on Neural Networks 14(4): 900–918.

Giesbrecht JL, Goi HK, Barfoot TD and Francis BA (2009)
A vision-based robotic follower vehicle. In: SPIE 7332,
Unmanned Systems Technology XI. pp. 73321O1–73321O12.

He W, Chen Y and Yin Z (2016) Adaptive neural network control
of an uncertain robot with full-state constraints. IEEE Trans.
on Cybernetics 46(3): 620–629.

Helwa MK and Caines PE (2015) Epsilon controllability of
nonlinear systems on polytopes. In: Proc. of the IEEE Conf.
on Decision and Control (CDC). pp. 252–257.

Prepared using sagej.cls

18 The International Journal of Robotics Research XX(X)

Helwa MK, Heins A and Schoellig AP (2018) Provably robust
learning-based approach for high-accuracy tracking control of
Lagrangian systems. arXiv preprint arXiv:1804.01031 .

Helwa MK and Schoellig AP (2016) On the construction of safe
controllable regions for affine systems with applications to
robotics. In: Proc. of the IEEE Conf. on Decision and Control
(CDC). pp. 3000–3005.

Hirschorn R (1979) Invertibility of multivariable nonlinear control
systems. IEEE Trans. on Automatic Control 24(6): 855–865.

Hoagg JB and Bernstein DS (2007) Nonminimum-phase zeros —
much to do about nothing — classical control revisited Part II.
Control Systems 27(3): 45–57.

Hunt KJ, Sbarbaro D, Żbikowski R and Gawthrop PJ (1992) Neural
networks for control systems — A survey. Automatica 28(6):
1083–1112.

Iplikci S (2006) Support Vector Machines-based generalized
predictive control. International Journal of Robust and
Nonlinear Control 16(17): 843–862.

Isidori A (1995) Nonlinear Control Systems, 3rd edition. Springer.
Jang TJ, Ahn HS and Choi CH (1994) Iterative learning control

for discrete-time nonlinear systems. International Journal of
Systems Science 25(7): 1179–1189.

Jiang ZP and Wang Y (2001) Input-to-state stability for discrete-
time nonlinear systems. Automatica 37(6): 857–869.

Jordan MI and Rumelhart DE (1992) Forward models: Supervised
learning with a distal teacher. Cognitive Science 16(3): 307–
354.

Kawato M (1990) Feedback-error-learning neural network for
supervised motor learning. In: Advanced Neural Computers.
Elsevier, pp. 365–372.

Kingma DP and Ba J (2014) Adam: A method for stochastic
optimization. arXiv preprint:1412.6980 .

Kiumarsi B, Lewis FL, Modares H, Karimpour A and Naghibi-
Sistani MB (2014) Reinforcement Q-learning for optimal
tracking control of linear discrete-time systems with unknown
dynamics. Automatica 50(4): 1167–1175.

Levine S, Wagener N and Abbeel P (2015) Learning contact-rich
manipulation skills with guided policy search. In: Proc. of the
IEEE International Conf. on Robotics and Automation (ICRA).
pp. 156–163.

Li Q, Qian J, Zhu Z, Bao X, Helwa MK and Schoellig AP (2017)
Deep neural networks for improved, impromptu trajectory
tracking of quadrotors. In: Proc. of the IEEE International
Conf. on Robotics and Automation (ICRA). pp. 5183–5189.

Liniger A, Domahidi A and Morari M (2015) Optimization-based
autonomous racing of 1:43 scale RC cars. Optimal Control
Applications and Methods 36(5): 628–647.

Liu Y and Nejat G (2013) Robotic urban search and rescue: A
survey from the control perspective. Journal of Intelligent &
Robotic Systems 72(2): 147–165.

MacKay DJ (1992) Information-based objective functions for active
data selection. Neural Computation 4(4): 590–604.

Mueller FL, Schoellig AP and D’Andrea R (2012) Iterative learning
of feed-forward corrections for high-performance tracking. In:
Proc. of the IEEE International Conf. on Intelligent Robots and
Systems (IROS). pp. 3276–3281.

Nguyen-Tuong D and Peters J (2008) Local Gaussian Process
regression for real-time model-based robot control. In: Proc. of
the IEEE International Conf. on Intelligent Robots and Systems

(IROS). pp. 380–385.
Nguyen-Tuong D and Peters J (2010) Using model knowledge for

learning inverse dynamics. In: Proc. of the IEEE International
Conf. on Robotics and Automation (ICRA). pp. 2677–2682.

Nikolic J, Burri M, Rehder J, Leutenegger S, Huerzeler C and
Siegwart R (2013) A UAV system for inspection of industrial
facilities. In: Proc. of the IEEE Aerospace Conf. pp. 1–8.

Pane YP, Nageshrao SP and Babuška R (2016) Actor-critic
reinforcement learning for tracking control in robotics. In:
Proc. of the IEEE Conf. on Decision and Control (CDC). pp.
5819–5826.

Schaal S, Atkeson CG and Vijayakumar S (2002) Scalable
techniques from nonparametric statistics for real time robot
learning. Applied Intelligence 17(1): 49–60.

Schoellig AP, Mueller FL and D’Andrea R (2012) Optimization-
based iterative learning for precise quadrocopter trajectory
tracking. Autonomous Robots 33(1-2): 103–127.

Slotine JJE and Li W (1987) On the adaptive control of robot
manipulators. International Journal of Robotics Research 6(3):
49–59.

Spong MW (1992) On the robust control of robot manipulators.
IEEE Trans. on Automatic Control 37(11): 1782–1786.

Srivastava N, Hinton G, Krizhevsky A, Sutskever I and
Salakhutdinov R (2014) Dropout: A simple way to prevent
neural networks from overfitting. Journal of Machine Learning
Research 15: 1929–1958.

Sun M and Wang D (2001) Analysis of nonlinear discrete-time
systems with higher-order iterative learning control. Dynamics
and Control 11(1): 81–96.

Suprijono H, Wahab W and Kusumoputro B (2015) Optimized
direct inverse control to control altitude of a small helicopter.
In: MATEC Web of Conferences, volume 34. EDP Sciences.

Sussmann H (1990) Limitations on the stabilizability of globally-
minimum-phase systems. IEEE Trans. on Automatic Control
35(1): 117–119.

Tang S and Kumar V (2018) Autonomous flight. Annual Review of
Control, Robotics, and Autonomous Systems 1(1): 29–52. DOI:
10.1146/annurev-control-060117-105149.

Tayebi A (2004) Adaptive iterative learning control for robot
manipulators. Automatica 40(7): 1195–1203.

Yan Z and Wang J (2014) Robust model predictive control of
nonlinear systems with unmodeled dynamics and bounded
uncertainties based on neural networks. IEEE Trans. on Neural
Networks and Learning Systems 25(3): 457–469.

Zhang T, Kahn G, Levine S and Abbeel P (2016a) Learning deep
control policies for autonomous aerial vehicles with MPC-
guided policy search. In: Proc. of the IEEE International Conf.
on Robotics and Automation (ICRA). pp. 528–535.

Zhang Y, Tao G and Chen M (2016b) Adaptive neural network
based control of noncanonical nonlinear systems. IEEE Trans.
on Neural Networks and Learning Systems 27(9): 1864–1877.

Zhou S, Helwa MK and Schoellig AP (2017) Design of deep neural
networks as add-on blocks for improving impromptu trajectory
tracking. In: Proc. of the IEEE Conf. on Decision and Control
(CDC). pp. 5201–5207.

Zhou S, Helwa MK and Schoellig AP (2018) An inversion-based
learning approach for improving impromptu trajectory tracking
of robots with non-minimum phase dynamics. IEEE Robotics
and Automation Letters (RA-L) 3(3): 1663–1670.

Prepared using sagej.cls

Zhou et al. 19

Appendix A: Index to Multimedia Extensions

Table 1. Index to Multimedia Extensions

Extension Media
Type Description

1 Video Impromptu tracking experiment
2 Data a. Training data

b. Testing results on 30 trajectories
c. Difference learning scheme

Prepared using sagej.cls

