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Safe and Robust Quadrotor Maneuvers Based on Reach Control

Marijan Vukosavljev, Ivo Jansen, Mireille E. Broucke, and Angela P. Schoellig

Abstract—In this paper, we investigate the synthesis of piece-
wise affine feedback controllers to execute safe and robust
quadrocopter maneuvers. The methodology is based on formu-
lating the problem as a reach control problem on a polytopic
state space. Reach control has so far only been developed in
theory and has not been tested experimentally in a real system
before. We demonstrate that these theoretical tools can achieve
aggressive, albeit safe and robust, quadrocopter maneuvers
without the need for a predefined open-loop reference trajectory.
In a proof-of-concept demonstration, the reach controller is im-
plemented in one translational direction while the other degrees
of freedom are stabilized by separate controllers. Experimental
results on a quadrocopter show the effectiveness and robustness
of this control approach.

I. INTRODUCTION

This paper proposes a novel framework for control of
complex quadrocopter maneuvers that simultaneously impose
requirements of safety, fast response, and a desired sequence
of events. We apply the framework to a simple side-to-side
maneuver in order to expose the main features of the frame-
work. The framework is based on using hybrid systems, event-
based switching, and solving a collection of so-called reach
control problems (RCP). RCP has an extensive theoretical
development, see [10]-[13], [17], but is completely lacking
in experimental validation. Our primary goal is to illustrate,
for the first time ever on a real system, the various strengths
offered by the reach control approach. For our chosen maneu-
ver we demonstrate the ability of our approach to carry out
complex control specifications, and additionally show that it
outperforms a standard tracking approach, particularly in the
presence of unmodeled disturbances. Finally, the significance
of the method is the ability to produce a feedback controller
without the need to specify either a timed reference trajectory
for tracking, or a spacial path to stabilize to in closed-loop
(i.e. path following), as is required in the majority of the
literature.

A significant effort in recent years has been devoted to ag-
gressive manuevering, particularly of aerial vehicles. In [3], an
impressive collection of aggressive quadrocopter maneuvers
is featured. The typical approach is to use a cascaded set
of loop-shaping feedback controls to track given reference
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position and yaw trajectories. In [1], maneuvers are first
geometrically specified by splines, are then time parameter-
ized so that the resulting reference trajectory is feasible, and
are finally executed by tracking these references, achieving
high precision due to an iterative learning algorithm that
systematically rejects disturbances. While these methods can
provide high performance maneuvers, due to the open-loop
nature of the reference signals, any additional unaccounted
disturbances can quickly deteriorate performance.

The other common approach to quadrocopter control in-
volves path following, as in [6]-[8]. Under nominal condi-
tions, timed trajectory tracking and path following perform
comparably well. The difference is in how they respond
to offsets. Trajectory tracking generates transients when the
system tries to catch up to the reference; this may result in
severe distortion from the original maneuver. Path following
generates transients as the system converges to the nearest
point on the path; this method better preserves the original
maneuver but not its timing. We mention that point stabiliza-
tion is the simplest type of path following, but can also have
unpredictable transients if the system is too far away from
the desired point. A more practical variation is shown in [5],
where desired points are stabilized via LQR in succession,
determined by working backwards from the goal state.

The typical approaches to path following are demonstrated
in [6], [7], where small angle assumptions are imposed to
achieve path following using linear PD or PID control. In [8],
a path following approach using the full nonlinear geometric
theory with dynamic compensation allows one to follow a
prespecified Jordan curve along with a desired velocity and
yaw profile. This is a powerful method, but still requires the
design of the path itself, which may not be an easy task for
more complex maneuvers. Our reach control approach offers
similar benefits over timed trajectory tracking, but instead
requires one to specify only the desired states of operation as
polytopic regions in the state space and the overall direction
of motion. The controller synthesis then yields a closed-loop
system that effectively produces its own path that is by design
within the prespecified operational envelope.

A similar method to the reach control approach is [9],
incorporating the concepts of hybrid systems and guaran-
teed operational safety to achieve quadrocopter flips and
attain collision avoidance between multiple vehicles. Safety
is addressed via reachability analysis, based on numerically
solving a Hamilton-Jacobi equation. This formulation is for
nonlinear systems with disturbance inputs, which is more
general than the reach control approach, but it is considerably
more computationally involved. The reach control approach
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Fig. 1. The inertial and quadrocopter body-fixed frames O and V. The
quadrocopter is actuated by varying the thrusts Fj, ¢ € {1,2, 3,4} produced
by each motor. This results in changes to its body rotation rates, (p,q,r)
and vertical acceleration, which then causes a change to the quadrocopter’s
position and attitude.

works with a polytopic state space for affine systems, which
for our maneuver results in a design that can essentially
be computed by hand. Unfortunately both reach control and
numerical reachability analysis quickly become intractable as
the system dimensionality grows. While [9] includes success-
ful experimental testing, reach control has never been applied
on a real system before. This work presents a proof-of-concept
of the practical applicability of reach control.

II. QUADROCOPTER MODEL

The quadrocopter model is ubiquitous in the literature; see,
for example, [2], [3] or Chapter 4 of [4]; we refer the reader to
those references for details. The dynamics are described by
six degrees of freedom. The translational position (x,y, z)
is measured in the inertial coordinate system (O as shown
in Figure 1. The vehicle attitude is defined by the body-
fixed frame V and is represented by the ZY X -Euler angles,
yaw, pitch, and roll, (v, 8, ¢). The full state of the vehicle
additionally includes the translational and rotational velocities
of the body frame, (&,y, %) represented in O and (p,q,r)
represented in V), respectively.

We employ a controller architecture depicted in Figure 2.
We concentrate on the synthesis of the feedback controller for
the z-direction, while a standard, nonlinear tracking controller
(as, for example, proposed in [3]) is used for stabilizing the
y- and z-coordinates of the vehicle as well as the yaw. In
our control architecture (Figure 2), we assume that the full
state of the vehicle is measured. An onboard controller takes
desired pitch angle 6, roll angle ¢4, the angular body velocity
around the body’s z-axis rg, and the vertical velocity of the
vehicle z,4 as inputs and calculates the required motor forces
Fi 4 1€{1,2,3,4}.

We assume that the nonlinear controller successfully stabi-
lizes the vehicle at y4(t) = Ydes» 2d(t) = Zdes, and ¥g(t) = 0,
Ydess 2des € R, and provides the onboard controller inputs
@a(t), rq(t), and 24(t). The equations governing the z- and

E 24(t) = z4es | Nonlinear E falt), ralt), Gult) Onboard Fiq(t) .
VT -, ! Controller Vehicle
U (t) = 0 ) i
! vat) Controller :
' H x(t),y(t), 2(t)
' ! (1), u(t), 2(1)
i Reach ' (1), 0(t), d(t)
: Controller | ! (1), q(t), 7 (t)
Fig. 2. The control architecture.
z-motion of the vehicle are then given by
(t) = f(t)sin (6(£)) (D
Z(t) = f(t) cos (6(2)) — g, 2)

where g is the gravitational constant and f(t) is the collective
thrust normalized by the vehicle mass m,

OEES S0} 3)

with motor forces Fj;, i € {1,2, 3,4}, see Figures 1 and 2.
Since z(t) = z4es implies 2(t) = 0, equation (2) gives
f(t) =g/ cos(0(t)), and with (1) we have

#(t) = gtan (0(t)) := u(t) < O(t) = tan™? (u;t)) .4
If we can define an z-acceleration profile, then with u(t) =
Z(t) and (4) this will produce a desired pitch angle signal
04(t) for the onboard controller. The signal u(t) will be
constructed via the reach control and this will yield a feedback
u(t) = u(x(t), £(t)). The details are given in Section IV.

III. CONTROL SPECIFICATIONS

The primary objective is to transport a quadrocopter be-
tween two ends of a room repeatedly. For simplicity of
exposition, this side-to-side motion is along the z-axis of
the inertial frame O and the yaw angle, 1), is zero. This
maneuver is decomposed into two opposing discrete modes:
one in which the quadrocopter is moving from left to right,
referred to as the L2R; and one in which the quadrocopter is
moving from right to left, denoted by R2L. For each mode,
we define a threshold distance that must be exceeded in
order to transition to the opposite mode. During operation,
the boundaries of the room are to be strictly adhered to in
order to avoid collision. In addition, we specify a maximum
speed to ensure the behavior is not too aggressive. Finally, a
minimum speed is specified to encourage the quadrocopter to
move with reasonable speed throughout each mode. In the y-
and z-directions, the quadrocopter should remain stabilized at
some nominal values.

The control specifications can be formalized in terms of
the states of the system. Since this maneuver is executed in
the z-direction, we formulate these specifications in terms
of x and z. Let the middle of the room be at the origin
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Fig. 3. Desired maneuver envelope (in blue). The specifications (S1-3),
(L1-3), and (T1) are defined in Section III. The green lines represent the
corresponding crossing sets that define when the system switches from the
left-to-right to the right-to-left mode and vice versa.

of the inertial frame. We define a set of variables that
completely parameterize the maneuver envelope, see Figure
3. For simplicity, the maneuver is symmetric about the origin
so that the two modes are oddly symmetric. The distance from
the origin to a room boundary is d,,4;. The maximum speed
1S Umaz. The threshold distance as measured from the origin
iS dipres- The encouraged minimum speed iS vy,;,. Finally,
a distance parameter dg...; is defined to help describe how
quickly the quadrocopter should accelerate near the threshold
point.

a) Safety Specifications: To remain within the bound-
aries of the room, we require |z| < dpaz, see Figure 3.
The maximum speed limitation imposes |Z| < vpqq. For
a safe turnaround, we impose a deceleration requirement
close to the room’s boundaries. For compatibility with the
RCP approach we use linear inequalities. We define a safe,
minimum deceleration, a,,y, and obtain the following linear
inequalities: |z — &/asq¢| < dmasz, Where we choose agqf =
—Vmaz/ (Amaz — dthres + daceer) < 0, see Figure 3. For safety
to be ensured, all three inequalities must be simultaneously
satisfied at all times:

(S1) Position: |z| < dimaz-
(S2) Speed: || < vmaz-
(S3) Deceleration: |z — &/asqf| < dmaz-

b) Liveness Specifications: Next we describe the so-
called liveness specifications. Their purpose is to make the
maneuver more aggressive, so that around the middle of
the room the quadrocopter moves with sufficient velocity.
It is most easily visualized as a deleted region centered at
the origin, see Figure 3. There are many ways to construct
such a region. The only requirement is that it is contained
strictly within the safety region described above. Using our
parameters as defined in Figure 3, we first define the in-
equality |Z| > vsn, Which says the speed should be above
the minimum. Next we define | — &/ay| > dipres, and
|JJ + jj/afliv‘ > dthresv with Qi = _Umin/daccel < 0. These
inequalities describe how the quadrocopter should accelerate

from zero speed to the minimum speed and decelerate from
the minimum speed to zero speed, respectively. For liveness
to be ensured, any of the three inequalities must be satisfied
at all times:

(L1) Speed: |Z]| > vymin.

(L2) Acceleration: |z — &/ayp| > dipres-

(L3) Deceleration: |z + &/aip| > dipres-

¢) Desired Temporal Sequence: Finally we discuss the
desired temporal sequence. For the side-to-side motion to be
executed correctly, the system must transition to the opposite
mode only under the correct transition criteria; namely, it
reaches the specified threshold distance. More rigorously, we
define the right- and left-side crossing sets as

Bright = {(QT,ZE) | HAS [dth’l"857 dmam]7 T = O}; (5)
Bleft = {(IL,SC) | HAS [_dm,a:cv _dth'r‘es]; T = O} (6)

The sets are shown in Figure 3 (green lines). Also, in the
context of dynamical systems, we refer to the set of points
in the state space that comprise a given system’s trajectory in
time as its orbit. Assuming that the initial mode be L2R, the
system transitions to the R2L mode when the quadrocopter
orbit crosses Bisn:. Then the system transitions back to
the L2R mode when the quadrocopter orbit crosses Biey:.
This can be repeated indefinitely. The corresponding temporal
specification is:

(T1) The quadrocopter’s orbit must cross the sets By;4n: and
Biey: in exactly the following sequence: Byighe, Bieft,
Bright, Blefts ceee

d) Summary: Collecting all the above inequalities, we
can formally describe the region of the state space where the
state must reside in order to simultaneously meet the safety

and liveness requirements (blue shaded region in Figure 3.

Since the inequalities are linear, this defines a (non-convex)

polytope, denoted as P. For all the specifications to be

satisfied, we require the following logical statement to be true
at all times:

[(SD) A (S2) A(S3)] A [(L1) V (L2) V (L3)] A (TD). (7)
IV. REACH CONTROL CONCEPT

To satisfy the specifications from Section III, we use
the reach control approach, see [11], [17], in order to de-
termine a suitable 04(t) = tan~!(u(t)/g). We construct
u(t) = w(x(t),z(t)) as a feedback using the current z-
and z-measurement so that the closed-loop dynamics for the
nominal equations of motion in the (z—a)-plane (4) guarantee
safety, liveness, and the desired temporal sequence. From
Section III, the set P determines the allowable (x, ) states.
We partition P into a set of regions for which we each specify
a controller. Since P is a non-convex polytope, we employ a
triangulation of P into simplices, cf. Figure 5.

An n-dimensional simplex S = co{vg,...,v,} is the
convex hull of (n + 1) affinely independent points in R™.
For n = 2, as we consider it here, it is simply a triangle. A
facet of a simplex is a boundary face of dimension (n—1). A
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Fig. 4. Two-dimensional simplex and related terminology.

triangulation is a partition of a set P C R"™ into p simplices
and is denoted as T = {Si,...,Sp}, see [15]. Then T satisfies
the properties:

i T=&U...US, and
(ii) S;NS;,1 # j, is a lower dimensional simplex of both
S, and S; or the empty set Vi, j € {1,...,p}.

Once a triangulation of P has been specified, the next
step of the design is to identify a sequence of simplices to
be visited by trajectories in order to “play out” the desired
temporal sequence. Since the reduced nominal dynamics (4)
are that of a double integrator, it is clear that the drift vector
field mandates that the motion is clockwise on P.

Using the sequence of simplices, exit facets for each
simplex are designated. The trajectories starting in the given
simplex may only exit the simplex through the exit facets,
while the remaining facets act as restricted facets.

Finally, controllers are designed for each simplex based on
the reach control problem (RCP). The reach control problem
formulation, its theoretical developments, and conditions for
solvability are discussed in [10]-[13], [17]. The main purpose
of RCP is to guide trajectories of a dynamical system through
a specific region of the state space defined by safety and
performance requirements. Ultimately, the trajectories should
reach a target set of states in finite time without violating the
boundaries of the specified region.

Below we summarize the procedure for determining a
controller over an arbitrary simplex in our triangulation. For
the double integrator model, we have

é:As—&—Bu:[g (1)}84-[(1)]11, (8)
where s := (z, &), whose components are the z-position and
z-velocity of the quadrocopter, respectively. We consider an
arbitrary simplex and define Z3 = {0,1,2} to be the index
set for the three vertices of the simplex. The 2D coordinates
of each vertex are denoted as v; € R2, i € T3, see Figure 4.
For each of the vertices, v;, we must pick a corresponding
u; € R. In the sequel, we use the term control value to refer
to the control assignments u; specifically at the vertices v;
of P. Each facet, F;, of the simplex is indexed by the vertex
index that it does not contain, and each facet has an associated
normal vector h; to describe its orientation, see Figure 4. We

assume that there is at least one restricted facet, and index
the restricted facets using Z,, C Z3 .

To solve RCP over this simplex, we must pick the u; to
satisfy the so-called invariance conditions [17]; that is,

(Vi € Zo)(Vj € ZAi}) by - (Avi+ Bu;) 0. (9)

This essentially encodes that with an appropriately chosen
control at each vertex, the velocity vector at each vertex points
in the right direction so that trajectories leave the simplex
through an exit facet while avoiding crossing the restricted
facets. If the inequalities in (9) are satisfied for each u;, we
can construct an affine feedback to be used over the entire
simplex:

u(t) = Kcs(t) + ge. (10)

Upon choosing u; that solve (9), the controller gains K.
and g. are obtained using

-
T ) 1 Uug

{KC } =|vy 1 U1 (11)
Je vy 1 U

The final step is to check that the closed-loop system, $ =
(A + BK,.)s + Bg., contains no equilibrium in the simplex.
Generally, this complicates the usage of RCP, but for our
double integrator model, it is straightforward as equilibria can
only occur along the x-axis.

The resulting control law is a piecewise affine feedback
with switching between controllers occurring at the bound-
aries between contiguous simplices.

V. REACH CONTROLLER DESIGN

In this section, we present our complete design (including
numerical values) for the reach controllers on the polytope P.
To proceed, we fix the values of the motion parameters from
Section Il to: dypge = 2.5 M, dipres = 1.5 M, dyecer = 0.3 m,
VUmaz = 2 M/s, and v,,;, = 0.6 m/s.

A. Triangulation and Exit Facets

Our triangulation is shown in Figure 5. The vertices of
the triangulation are uniquely labeled as ©0;, ¢ € Z, :=
{1,...,16}, and their coordinates are chosen in terms of
the motion parameters. The simplices are uniquely labeled
as S;, 1 € Ty := {1,...,20}. The triangulation was naively
generated by manually partitioning P into simplices and using
intuition from a previous simulation design carried out in [16]
on a similar polytope also for a double integrator system.
Automated procedures for triangulating and solving RCP in
conjunction are considered in [14], but are unnecessarily
complicated for our 2D polytope P.

The exit facets are normally specified so that the complete
desired temporal sequence is enforced throughout P simul-
taneously; that is, the simplices above the xz-axis cause the
motion L2R and the simplices below cause the motion R2L.
However, for practical purposes, we follow an unconventional
approach and treat the discrete modes L2R and R2L individ-
ually, resulting in two separate closed-loop systems. Such a
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Fig. 5. The triangulation of P, also showing exit facets. Red dashed
lines represent the restricted facets of a given simplex, drawn inside of the
respective simplex. The blue shaded area represents 7. The orange shaded
area is guaranteeing the liveness of the system and must be avoided in
nominal operating conditions.

design increases the robustness of the system as it enables
a system to continue its L2R or R2L motion even under
severe disturbances, which may move the system outside of
‘P momentarily (for example, by increasing or decreasing
the velocity). In technical terms, this means that the desired
temporal sequence is preserved in the presence of unmodeled
disturbances.

For the L2R mode, the exit facets for all simplices in P
are chosen to cause the overall motion to repeatedly reach
and cross the set B,gn:. Then due to symmetry about the
origin, the behavior for the R2L mode is chosen to be oddly
symmetric of L2R. If the problem was not symmetric, we
would need separate controller designs for each mode defined
over P, including perhaps separate triangulations. But because
of symmetry, we only need one set of controllers defined over
P. We use odd symmetry on the L2R mode controllers to
yield the R2L. mode controllers. Referring to our triangulation
in Figure 5, for the L2R mode, the nominal sequence of
simplices is S1, Sa, ..., Ss, Sg, where in Sg, we switch to
the R2L mode and use the oddly reflected controller of S;
and so on. We ensure that the controllers give a continuous
control law at the transition points between modes, which are
at the sets Brign: and Bj.r¢. Given the symmetry, we focus
only on the L2R mode for the remainder of this section.

To aid the robustness of our design, two additional features
are implemented that are unconventional for reach control.
Firstly, we define controllers in the non-liveness region such
that if the state ends up in this region, the controllers defined
there continue to enforce the L2R motion. The non-liveness
region is triangulated into simplices S;, i € {17,18,19,20},
see the orange region in Figure 5. Secondly, by design several
simplices of our triangulation permit two exit facets. This
feature relaxes the associated invariance conditions (9). For
example, a trajectory in the L2R mode that has reached the
non-liveness region is guided back to the nominal path more

directly by including more exit facets.The restricted facets for
each simplex for the L2R mode are shown in Figure 5 by red
dashed lines.

B. Controller Design Procedure

With the triangulation and exit facets presented, we are
ready to construct the controllers on each simplex. For each
simplex S;, i@ € Z,, we identify the three corresponding
vertices v; = f)ij, j € Is, i; € I,, that form the simplex
along with the corresponding exit facets Z,.. We design the
three control values such that the invariance conditions (9)
are satisfied, and finally use (11) to obtain the feedback law
(10).

So far we have designed the controller on each simplex
completely independently. However, this may result in dis-
continuities when transitioning between simplices. We recall
that a discontinuous w(t) implies a discontinuous 6,4, see
(4), which translates into an infinite angular velocity and is
therefore undesirable for our onboard controller. To address
this problem, we match the control values at the vertices along
shared facets between contiguous simplices, which results in
a continuous control assignment. If the control values cannot
be matched, because otherwise one of the simplices would
fail to solve RCP, then the next best alternative is to minimize
the size of the discontinuity. Another choice left to the control
designer is the magnitude of the control values at the vertices,
where higher values result in more aggressive controls.

Designing reach controllers that are continuous between
simplices is tedious to carry out manually, but can be au-
tomated. We briefly outline our automated approach, which
was carried out in MATLAB. For each triangulation vertex v;,
1 € 1,, we define a quadratic program with linear inequality
constraints to obtain a control value 4, at ©; for each simplex
S, 15 € Z(0;), where I(9;) C I denotes the simplex indices
that share the vertex ©;. Our quadratic objective is to minimize
the sum of all the pairwise distances between the different
simplex control values at that vertex; ideally, the value of
the minimized objective function should be zero to ensure
continuity between contiguous simplices. However, this is not
always possible. The linear constraints on the control values
U;, i; € Z(0;), arise from the invariance conditions (9)
involving only the vertex ¥; on the corresponding simplices
S, This guarantees that upon completing this optimization
procedure separately for all the triangulation vertices, all of
the invariance conditions (9) associated with each simplex are
satisfied. Lastly, we included a lower and upper bound on the
control values for the quadratic program. These bounds define
the maximum allowable pitch angle, see (4).

C. Resulting Controller Design

The resulting control values ﬂij, ;€1 (9;), for our specific
example are listed in Table I. The actual feedback over each
simplex can be constructed using (11), and the corresponding
vertex and control values. A plot of the resulting closed-loop
dynamics for the L2R mode over P and the non-liveness
region is shown in Figure 6. As expected, trajectories above
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TABLE I
DETERMINED CONTROL VALUES

Vertex | Control value Vertex | Control value
01 3.1421 Vg —0.5383
V3 —1.5135 04 —3.1421
Vs —3.1421 06 —3.1421
o7 3.1421 08 3.1421
g 3.1421 10 3.1421
011 1.3844 V12 2.4170
013 1.0474 - -
014 0.3980 014 —1.3844
for S7, 817, 818, S19 for Sg, Sg, S10
15 3.1421 V16 3.1421
25¢
2 L N \
15/ \
1t
05}
2
g Or
=05}
i
-1.5+
2l
25 ‘ ‘ ‘ . . )
-3 -2 -1 0 1 2 3
z(m)
Fig. 6. The closed-loop vector field for the L2R mode, illustrated by the

direction of the blue arrows.

the x-axis that start in P remain inside P and are guided to
towards the set B;.;45+, while any other non-nominal trajectory
(starting in P below the z-axis or in the non-liveness region)
eventually recovers and crosses B;.;q5:. We note that for most
initial conditions in S;, i € {14,15, 16}, the trajectory would
actually first cross Bj.y; and then cross B,.i4n¢, violating the
desired temporal sequence. However, to justify this behavior,
these initial conditions are extremely non-nominal because
they correspond to the quadrocopter moving left near or
within the left threshold zone. As a result, avoiding crossing
Bie s is practically impossible under reasonable control effort.

We make some final remarks on the obtained control
values. For all vertices but 014, we were able to use the
same control value for adjacent simplex controllers, which
pleasantly yields continuous closed-loop dynamics among
contiguous simplices. Our optimization routine above pro-
vides a control value of 0 at 014, which yields an equilibrium
at this vertex. Instead, we manually introduced a (fairly small)
discontinuity at 014 to ensure that there is no equilibrium
while still satisfying the associated invariance conditions (9)
over the shared simplices. The price to pay is that the onboard
controller described in Section II may give an unpredictable
transient at the discontinuity, although this was not observed
to be an issue in our experiment described in Section VI. It is

Fig. 7. Our quadrocopter vehicle close to the wall of the room with the
motion capture camera system in the background.

easily seen that the discontinuity cannot be avoided except by
making the control value at 914 zero, which is not permissible
by the RCP framework. All other vertices on the x-axis have
nonzero control values. Moreover, we can easily check that
with our choice of control values, no equilibria appear in P,
which means that RCP is solved successfully on each simplex,
guaranteeing our complex control specifications. We also
note that the control values between v; and 0g and between
011 and 014 (for Sg,Sg,S19) are negatives of each other.
This yields a continuous transition between the controller
on Sg and Sy (which uses the oddly reflected controller
of &1) corresponding to the switch from the L2R to the
R2L mode. Lastly, the largest control value converts to a
desired pitch angle of 18 degrees, which we chose in order
to demonstrate a reasonably fast side-to-side maneuver. This
choice also resulted in larger controller gains in (10), which
made our controller less sensitive to attitude disturbances and
calibration offsets, as observed in our experiment.

VI. EXPERIMENTAL RESULTS

Our experimental platform is the Parrot AR.Drone 2.0 run-
ning firmware version 2.3.3. We interface with the AR.Drone
through ROS, an open-source robot operating system [18].
More precisely, we used ROS Hydro, installed on a 64-bit
12.04 Ubuntu version. In addition, we used the ROS ardrone
autonomy package [18], version 1.3.1. All experiments were
conducted with the indoor hull shown in Figure 7, which
protects the vehicle propellers.

We first demonstrate the successful execution of the de-
sired side-to-side motion based on our RCP approach under
nominal conditions, and compare it to the performance of a
standard trajectory tracking controller [2], [3], which guides
the vehicle along a predefined, timed side-to-side trajectory.
Then to illustrate the robustness of our method, we introduce
a disturbance not accounted for in the control design. We
show that our control strategy still transitions between the two
discrete modes correctly while the standard tracking control
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approach fails to do so. A video showing the experimental
results can be found at: http://tiny.cc/quadrotorRCPx.

The tracking controller for starting at the left side in the
L2R mode is based on tracking the following signal in the
x-direction:

xq(t) = 2co0s(0.65¢ + 7). (12)

The resulting orbit (x4(t),44(t)), which is an ellipse, fits
inside the polytope P for all time and executes the desired
temporal sequence. The switches between modes occur auto-
matically whenever the velocity 44 (¢) crosses 0. The standard
controller computes the desired pitch 64(t) based on the
desired position z4(t) and the measured state of the vehicle
and replaces the reach controller in Figure 2.

In the experiment, we lumped a sequence of actions that
would test the quadrocopter’s response to nominal and dis-
turbance conditions, see Figures 8 and 9 for the tracking
and RCP approaches, respectively. The following actions
were performed for both control methods: (i) nominal flight
consisting of a few cycles of the L2R and R2L modes, (ii)
introducing a disturbance by manual holding the vehicle, and
(iii) introducing a disturbance by pushing the vehicle. The
manual holding involved grabbing the quadrocopter at various
places during its flight, effectively reducing its velocity to
zero, while the manual pushing involved mildly pushing the
quadrocopter against its current direction of motion. During
these disturbances, the state is likely to enter the non-liveness
region, technically violating the control specifications (7);
during these instances, we monitor the system’s response of
returning to nominal behavior and its adherence to safety and
the desired temporal sequence.

We show the position z(t) over time for the tracking
and RCP approaches, see Figures 8 and 9, respectively. The
colors differentiate the cycles where the different actions
were executed, see the figure annotations. We highlight with
gray the threshold zones, defined by dipyes and dp,q. (see
Figure 3), on the left and right sides where the quadrocopter
may turn around; the sets Bjey; and B,;gn: are crossed in
these highlighted zones when the velocity is zero. We also
show the resulting orbit of the quadrocopter in the (x — &)-
plane for selected cycles. On the left we show a few cycles
of the nominal flight, and on the right we show cycles
corresponding to select disturbances, where the colors of the
orbits correspond to the colors in the above x(t) signal. For
the tracking approach, in Figure 8 we show the reference
signal as a blue dashed line. For the RCP approach, in the
polytopes of Figure 9 we show in gray the nominal vector
field as in Figure 6. We show the R2L mode below the z-
axis using odd symmetry of the L2R mode above the x-axis.

For the tracking method shown in Figure 8, the nominal
flight portion (shown in red) tracks the reference signal well
in time, and the corresponding nominal orbit shown on the
upper polytope closely matches the reference ellipse which
fits inside P. Together, these plots show that the trajectory
tracking approach meets all of the control specifications from
Section III under nominal flight. In contrast, we can see that
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Fig. 8. Experimental results of the tracking approach.

under the manual hold, in two of the three attempts (shown
in dark green and light green), the quadrocopter violated
the desired temporal sequence. The hold, which lasted about
5 seconds, allowed the reference trajectory to pass towards
the other side; upon release, the quadrotor simply followed
the reference and crossed Bj.r+ twice in a row. The second
manual push is shown in detail on the lower polytope (in olive
green): we can see that as the quadrocopter attempted to catch
up to the reference, the maximum speed limit was exceeded.
Likewise, after the second manual hold (in dark green), upon
release the quadrocopter sped up beyond the limit.

For the RCP method shown in Figure 9, the nominal flight
portion (shown in red) also satisfies the control specifications.
Interestingly, the orbit on the upper polytope shows a non-
trivial limit cycle, matching fairly closely to the background
vector field. In contrast to the tracking approach, it is clear
from the z(¢) plot that no matter which disturbance was pre-
sented, the desired temporal sequence was always maintained.
Furthermore, the safety constraints were always respected, as
can be seen in the various cycles on the lower polytope.

The main weakness of the tracking approach is that the
reference signal imposes an unnatural timing to the behavior
of the system. Under any disturbance of the types considered
here, upon removal of that disturbance the system attempts to
catch up to the reference. During this transient response, the

Preprint submitted to 54th IEEE Conference on Decision and Control.
Received March 24, 2015.



CONFIDENTIAL.

3. Manually pushed

apIs ST

Landed

£o
Y
-1
2,
) } b
.3 ‘ % Il Il L L L
0 20 40 60 80 100
£(s)
30
1. Nominal Flight
2 r
S ;
1- | S —
T RO AT T \
AL ~ S |
= SO
2+ & N\
-3 . I I | I )
-3 2 1 0 1 2 3
3 -
2. & 3. Manual Holds and Push
2 S
AN
SO = —_——l
1t <> ~ Ve ———
ST\ ;&\7
=0 W ‘\*\*j\ %
: S = L
b _—— o~
=222
~ = ~\
oL
-3 I I I | |

W
N
o
-
w

Fig. 9. Experimental results of the RCP approach.

safety constraints can be easily violated because the tracking
controller has no encoded information regarding safety. Sim-
ilarly, the desired temporal sequence can be violated under a
disturbance because the tracking signal, which is defined a
priori, cannot change its signal or remember which side the
quadrocopter last crossed. Rather than accommodating the
off-course quadrocopter, the tracking controller only forces
the quadrocopter to catch up as fast as the controller gains
permit without regard to anything else. In contrast, the RCP
approach puts at foremost the control specifications. Its feed-
back nature means that at any point in P union the non-
liveness region, the quadrocopter can respond intelligently to
return back to nominal behavior while respecting safety and
the desired temporal sequence after a disturbance is removed.
The compromise is that the reach control structure and design
are considerably more complex compared to a simple timed
trajectory, but that is the price to pay to have such a richly
detailed closed-loop vector field as shown in Figure 6.

VII. CONCLUSION

We succeeded in experimentally demonstrating the first
ever implementation of reach controllers on a real system.
The result is a logically complex quadrocopter maneuver. The
main advantages of the reach control approach are that it per-
mits the incorporation of safety constraints, different modes
of operation, aggressive speed of execution, and robustness

Limited circulation. For review only.

to unmodeled disturbances, as shown in our comparison
between the reach control and standard tracking approaches.
The side-to-side maneuver shown here was mainly chosen
to demonstrate the proof-of-concept. A first extension would
be to incorporate reach control also in the y-direction or, by
yawing the vehicle, use a hybrid-based framework to switch
between oriented side-to-side motions to achieve more com-
plex motions. Another extension is to explore the possibility
of eliminating the remaining standard tracking controllers
with appropriate reach controllers to be able to logically
control all the degrees of freedom of the quadrocopter.
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