
Sensitivity of Joint Estimation in

Multi-Agent Iterative Learning Control
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Abstract: We consider a group of agents that simultaneously learn the same task, and revisit
a previously developed algorithm, where agents share their information and learn jointly. We
have already shown that, as compared to an independent learning model that disregards the
information of the other agents, and when assuming similarity between the agents, a joint
algorithm improves the learning performance of an individual agent. We now revisit the joint
learning algorithm to determine its sensitivity to the underlying assumption of similarity
between agents. We note that an incorrect assumption about the agents’ degree of similarity
degrades the performance of the joint learning scheme. The degradation is particularly acute
if we assume that the agents are more similar than they are in reality; in this case, a joint
learning scheme can result in a poorer performance than the independent learning algorithm.
In the worst case (when we assume that the agents are identical, but they are, in reality, not)
the joint learning does not even converge to the correct value. We conclude that, when applying
the joint algorithm, it is crucial not to overestimate the similarity of the agents; otherwise, a
learning scheme that is independent of the similarity assumption is preferable.

Keywords: Agents, learning control, estimation, Kalman filters, sensitivity analysis.

1. INTRODUCTION

In most cases, multi-agent learning aims towards improv-
ing the joint performance of a group of agents that solve
a complex or distributed task together. Through inter-
action and collaboration, the agents are able to jointly
approach the common task and learn to work together
in order to achieve the global objectives, cf. Panait and
Luke [2005]. Reinforcement learning is a powerful tool to
solve such cooperative problems. Here, agents are generally
categorized to be either homogeneous or heterogeneous,
see e.g. Schaerf et al. [1994], Matarić [1997]. Though the
robustness of such learning schemes to parameter varia-
tions was suggested in recent publications (see Mannor
and Shamma [2007], Morimoto and Doya [2005]), it has
yet to be studied in detail.

In this paper, we focus on the potential for an individ-
ual agent to improve its performance when conducting a
task alongside a group of similar agents conducting the
same task. We extend the work in Schöllig et al. [2010] 1 ,
where the learning performance of an individual agent is
analyzed and compared for two scenarios: (i) the agent
learns independently, disregarding the information of the
other agents, and (ii) the agent has access to the knowledge
of the other agents and optimally takes this information
into account when learning the desired task. An iterative
learning control (ILC) scheme was used to approach this
problem (see Bien and Xu [1998], Bristow et al. [2006]
for an introduction to ILC). ILC has been viewed as a

1 Paper and additional material may be found on the project
webpage: www.idsc.ethz.ch/Downloads/multiagentILC.
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Fig. 1. Independent (left) vs. joint (right) estimation and
learning.

two-step process of first identifying the unknown repet-
itive disturbances that corrupt the agent’s performance
and later compensating for the disturbances by adapting
the input, cf. Phan and Longman [2002], Norrlöf [2004],
Schöllig and D’Andrea [2009]. This scheme allowed us to
reduce the previous question to an estimation problem,
and we were able to show that, when assuming similarity
between the agents, a joint estimation scheme that exploits
the information of all agents is always beneficial.

The results in Schöllig et al. [2010] were obtained under the
assumption that we know the degree of similarity between
the agents; the goal of this work is to study the sensitivity
of joint estimation to the underlying similarity assump-
tion. We analyze the effects of an assumption error on
the joint estimation result in order to determine whether
it is possible that an incorrect assumption regarding the
agents’ similarity cause the joint estimation scheme to
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perform more poorly than the independent estimation
scheme.

The paper is organized as follows: Sec. 2 recalls the
dynamic equations that define the multi-agent iterative
learning problem as previously derived in Schöllig et al.
[2010], and introduces the parameter which defines the
similarity between agents. Sec. 3 solves the estimation
problem under the assumption that the degree of similarity
between the agents is not known precisely. Using the
results from Sec. 3 as a basis, the sensitivity of the joint
estimation scheme to the assumption errors is studied in
Sec. 4. To help readers visualize the analytical results
derived herein, we present several numerical examples in
Sec. 5. The work is summarized in Sec. 6. Proofs are
presented in Appendix A, with additional files available
at www.idsc.ethz.ch/Downloads/multiagentILC.

2. PROBLEM STATEMENT

We extend the work in Schöllig et al. [2010], where we
considered a group of N agents that simultaneously and
repeatedly perform the same task. The execution of the
task is corrupted by an unknown, repetitive disturbance
that is constant across iterations. In this context, we as-
sume that the agents are similar in the sense that they
have the same nominal dynamics and share a common
iteration-independent, repetitive disturbance component.
In addition, process noise acts on the agent’s dynamics,
and varies from trial to trial. Our goal is to improve the
agents’ performance by estimating the repetitive distur-
bance from past measurements; once the disturbance is
known, an adapted input trajectory can be created to
compensate for it.

2.1 Agent Dynamics

The dynamics of an agent i ∈ I = {1, 2, . . . , N} during a
single execution of the task are represented in the lifted
domain, cf. Phan and Longman [1988], Tousain et al.
[2001], Bamieh et al. [1991]. A given discrete-time input
signal

ui
j =

(
ui(0), ui(1), . . . , ui(T )

)
(1)

at iteration j ∈ {1, 2, . . . } is mapped to the corresponding
lifted states xi via a constant matrix F , which represents
the nominal dynamics of the agents,

xi
j = Fui

j + di + ξij , (2)

In this context, (T + 1) samples represent a single run.
The vector di represents the repetitive disturbance and
ξij accounts for the trial-uncorrelated process noise. The

vectors xi
j and ui are defined as the deviation from the

desired task trajectory and the corresponding nominal
input, see for example Schöllig and D’Andrea [2009]. The
agents’ output yij (also defined as the deviation from the
nominal output) is corrupted by measurement noise and
similarly represented in the lifted domain,

yij = xi
j + µi

j . (3)

Differences between the agents are captured in the distur-
bance vector di, which is composed of a common part d0

identical for all agents, and an individual part di,ind,

di = d0 + di,ind ∀ i ∈ I . (4)

For a more detailed introduction to the lifted system
representation refer to Bristow et al. [2006], Hätönen et al.
[2006], Barton and Alleyne [2008], Butcher et al. [2008]

In the above context, the goal of the iterative learning
algorithm is to reduce xi

j (that is, the deviation from the
desired task trajectory) with an increasing number of iter-
ations j. In Schöllig et al. [2010], we showed that the learn-
ing problem can be divided into two steps: (i) estimating
the disturbance vector di based on all measurements from
previous iterations, and (ii) determining an appropriate
open-loop input for the next trial that compensates for the
disturbance, see Fig. 1. We saw that the characteristics of
a joint learning scheme can be studied by focusing on the
estimation problem; compensating input for each agent is
found by solving an optimization problem for each agent
once the disturbance estimate of di is updated, cf. Fig. 1.

2.2 Simplified Model

Focusing on the estimation problem, we consider a con-
densed form of the above multi-agent system representa-
tion (2)-(3),

xi
j = di + ξij (5)

yij = xi
j + µi

j , (6)

which features the key noise and disturbance character-
istics, but omits the known part Fui

j , without loss of
generality. Equations (5) and (6) are summarized by

yij = di + υi
j , (7)

where υi
j = ξij+µi

j captures both process and measurement
noise.

Moreover, assuming both identical noise characteristics
and independence of the single entries in the vectors di

and υi
j , the problem reduces to the scalar case,

yij = d0 + di,ind + υi
j , (8)

where all variables are scalar-valued. The probability dis-
tributions are given by

d0 ∼ N (0, α)

di,ind ∼ N (0, β)

υi
j ∼ N (0, 1) , α, β ≥ 0 ,

(9)

where all quantities, υi
j , i ∈ I, j ∈ {1, 2, . . . }, di,ind, i ∈

I, and d0, are assumed to be mutually independent. The
notation N (0, α) represents a normal distribution with
mean 0 and variance α. Note that in (9), the variance of the
individual disturbance di,ind is assumed to be identical for
all agents i ∈ I. Without loss of generality, the variances
are normalized such that the variance of υi

j is 1. For
the variances of the process and measurement noise, this
means

ξij ∼ N (0, λ)

µi
j ∼ N (0, 1− λ) , 0 ≤ λ ≤ 1

(10)

assuming independence between ξij and µi
j . A value λ = 1

represents the case of encountering only process noise,
whereas λ = 0 reflects the case where the noise is due
to measurement only.
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2.3 Similarity Assumption

In our previous work Schöllig et al. [2010], we assumed that
the variances of the individual and common disturbance,
α and β, are known. In reality, however, these values
are difficult to determine. While the sum (α + β) may
be approximated with reasonable accuracy (it indicates
the magnitude of the agent’s disturbance di, or more
precisely, the probability of having larger values for di), a
prior partitioning of the disturbance di into an individual
and a common component is almost impossible. In other
words, when facing a real multi-agent learning problem,
the determined ratio between α and β, is subject to error.

For the subsequent analysis, we assume that the sum,

γ = α+ β, (11)

is known precisely. With respect to the partitioning of di

into the individual and common disturbance component,
we distinguish between the nominal values,

ᾱ = ǭ γ and β̄ = (1− ǭ) γ, (12)

and the real variances α and β, defined analogously by
ǫ, where 0 ≤ ǭ, ǫ ≤ 1. The nominal values represent our
assumption on the individual and common disturbance
component. The real ratio ǫ of the multi-agent system is
unknown. The assumption error δ defines the difference
between the real disturbance ratio and our assumed par-
titioning,

δ = ǫ− ǭ . (13)

Below we study the effects of the assumption error δ on the
performance of the joint learning algorithm. Our goal is to
determine the degree to which joint estimation is affected
by incorrect assumptions of similarity between agents.

3. ESTIMATION PROBLEM

Analogously to Schöllig et al. [2010], we consider two
limiting approaches when solving the estimation problem:
(I) independent estimation, and (II) joint estimation, see
Fig. 1.

In the case of independent estimation (I), each agent i
individually estimates its disturbance di, taking only its
own measurements yij , j ∈ {1, 2, . . . }, into account.

In the joint case (II), every agent has access to the
measurements of all other agents. Based on this global
knowledge, we can design a joint estimation scheme
that exploits the measurements of all agents and pro-
vides estimates di for every agent i ∈ I. A vector D,
which reflects the estimation objective in this case, is
defined as:D = (d0, d1, . . . , dN ) ∈ R

(N+1). The measure-
ments of all agents in the jth trial are combined in
Yj = (y1j , y

2
j , . . . , y

N
j ), and analogously, the noise vector

is Vj = (υ1
j , υ

2
j , . . . , υ

N
j ). Based on this representation, the

joint estimation problem can be formulated as a Kalman
filter problem, cf. Chui and Chen [1998], Verhaegen and
Verdult [2007]:

Dj = Dj−1 ∀ j ≥ 1

Yj = HDj + Vj ,
(14)

where H = [0, I ] is a matrix with zeros in the first col-
umn, concatenated with an identity matrix of appropriate
dimensions. The Kalman filter returns an unbiased state

estimate D̂j for j ≥ 1 that minimizes the error covariance
matrix

Sj = E
[
(Dj − D̂j)(Dj − D̂j)

T
]
, (15)

of trial j, taking measurements Ym, 1 ≤ m ≤ j, into
account. E [·] denotes the expected value.

The recursive algorithm is based on the stochastic charac-
teristics of the noise terms υi

j , defined by (9), and relies
on a given initial covariance matrix S0, which reflects the
characteristics of the disturbances di. The initial distur-
bance estimate is obtained from (9),

D̂0 = (0, 0, . . . , 0) , (16)

and the initial covariance S0 = [ s
(k,l)
0 ], k, l ∈ K =

{0, 1, . . . , N} is given by

S0 = E
[
D0D

T
0

]
(17)

and with (4),

s
(k,l)
0 = E

[
dkdl

]
= E

[ (
d0 + dk,ind

) (
d0 + dl,ind

) ]
, (18)

where d0,ind = 0.

When solving the filter equations, we distinguish between
the real variance values of the system denoted by α, β and
the nominal values ᾱ, β̄ that represent our assumption on
the individual and common disturbance component, see
Sec. 2.3. The Kalman filter derivation below is based on
the nominal values ᾱ, β̄. The real values α, β are unknown
and difficult to identify a priori. Note that in Schöllig
et al. [2010], we derived the estimation problem under the
assumption α = ᾱ and β = β̄.

The Kalman filter proceeds in two steps:

Step 1 The Kalman gains Kj are calculated prior to the
experiment based on the nominal values ᾱ, β̄ by solving
the filter equations

Qj = HSj−1H
T + I

Kj = Sj−1H
TQ−1

j

Sj = (I −KjH)Sj−1

(19)

with initial covariance S0, see (17) and (18). Recalling
the mutual independence of d0 and di,ind for all i ∈ I,
the initial covariance is given by

s
(k,l)
0 =

{
ᾱ+ β̄ for k = l ≥ 1
ᾱ otherwise .

(20)

A closed-form representation of Kj that depends only
on ᾱ, β̄, N and j was derived in Schöllig et al. [2010].
The values are explicitly stated in (A.3) and (A.4) (in
terms of γ and ǭ) and are used to derive the results in
Sec. 4.

Step 2 The disturbance estimate is updated in each iter-
ation j based on the measurement Yj ,

D̂j = D̂j−1 +Kj

(
Yj −HD̂j−1

)
, (21)

where D̂0 is given by (16).

Important to note is that the independent estimation
problem (I) is simply a special case of the cooperative
framework (II) with N = 1. We compare the performance
of both estimation schemes via the variance of the distur-
bance estimate.
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3.1 Variance of Disturbance Estimate

We determine the variance of the disturbance estimate
when applying the above Kalman filter equations to the
real system. The covariance matrix of the real system is

denoted by Pj = [ p
(k,l)
j ], k, l ∈ K. A recursive equation

for calculating Pj is derived from (21),

Pj = (I −KjH)Pj−1 (I −KjH)
T
+KjK

T
j (22)

where Kj represent the Kalman gains calculated from the
nominal covariance matrices Sj , based on the assumed
variance values ᾱ, β̄. The initial covariance matrix P0 is
defined analogously to S0, see (20), but is based on the
unknown system variances α, β,

p
(k,l)
0 =

{
α+ β for k = l ≥ 1
α otherwise .

(23)

In brief, the estimation algorithm is run based on our
assumed variance values ᾱ, β̄ and yields the Kalman gain
Kj used in (21); to determine the variance of the estimate
when running the estimation on the real system, we have
to take the real variance parameters α, β into account, via
(23) and (21). This step is artificial, since the real values
are not known; however, it allows us to study the effects
of incorrect variance assumptions on the estimation result,
see Sec. 4. In the ideal case when ᾱ = α and β̄ = β, Sj = Pj

for all j ∈ {1, 2, . . . }. This scenario was studied in Schöllig
et al. [2010].

When we compare the performance of the independent (I)
and the joint (II) estimation, we use the variance of an
individual’s disturbance estimate, which in both cases is
given by

E
[
(di − d̂ i

j)
2
]
= p

(i,i)
j = p

(1,1)
j , ∀ i ∈ I, (24)

where D̂j = [ d̂ i
j ], i ∈ I, and Pj = [ p

(k,l)
j ], k, l ∈ K.

The variance is identical for all agents, since the same
assumptions on the dynamics (8) and the initial noise
characteristics (9) hold for every agent. The variance of
an individual’s disturbance (24) is a measure for the
effectiveness of the disturbance compensation, since in the
general ILC framework, cf. (2)-(3), the input update rule is

based on the current estimate d̂ i
j . See for example Schöllig

and D’Andrea [2009].

Below, we distinguish between the individual disturbance
variance (24) in the cases of joint and independent es-
timation, where the latter is given when evaluating the
disturbance variance for N = 1, i.e.

p
(1,1)
j

∣∣
N=1

. (25)

Thus, the initial question can be reformulated: To what
degree does joint estimation benefit the individual learning
of an agent? How does an incorrect assumption on the
initial variances affect the learning performance?

3.2 Performance Index

The performance of independent (I) vs. joint (II) estima-
tion is analyzed through the variance of the state estimate.
As mentioned in Section 2.1, the goal of ILC is to reduce
the value xi

j , cf. (5). This is best achieved if the variance

in the estimate of xi
j is small; in other words, the variance

of the state estimate can be used as a measure of learning
performance, see Schöllig et al. [2010].

Given (5) and (9), the best estimate of the state x̂i
j at

iteration j is equal to the current disturbance estimate,

x̂i
j = d̂ i

j , (26)

since the noise ξij has zero mean. Recalling the noise
characteristics (9) and the previous assumption of mutual
independence between di and ξij , we obtain the variance of
state estimate from the sum of the variance of the estimate
d̂ i
j and the variance of ξij . That is, with (24) and (10),

E
[
(xi

j − x̂i
j)

2
]
= E

[
(di + ξij − d̂ i

j)
2
]

= p
(1,1)
j + λ .

(27)

We introduce the performance index as the ratio of the
state variance in the independent case vs. the joint case,

R =
p
(1,1)
j

∣∣
N=1

+ λ

p
(1,1)
j + λ

, (28)

using the notation of (25). Given this definition, a value
R > 1 indicates that the joint estimation scheme is more
beneficial than an independent estimation, while a value
R < 1 means that the independent estimation yields a
better performance. The larger the value R, the more
beneficial the joint estimation algorithm.

In Sec. 4, we analyze the independent and joint estimation
schemes for their sensitivity to inaccurate disturbance
assumptions, cf. (9). In this context, the performance index
(28) allows us to compare the performance of the two
estimation schemes and to determine in which cases a joint
estimation is more beneficial.

4. SENSITIVITY ANALYSIS

In our previous work Schöllig et al. [2010], we studied in-
dependent and joint estimation under the assumption that
the variances of the individual and common disturbance, α
and β, are known. These values were used when solving for
the Kalman gainsKj . They also served as initial conditions
when calculating the variance of the disturbance estimate
(23) in each iteration j.

Below, the effects of incorrect variance assumptions on the
performance of the estimation algorithm are studied for
both independent and joint estimation, and compared with
the result derived in Schöllig et al. [2010]. This analysis
allows us to deduce rules on how to choose ᾱ and β̄ in
order to achieve robustness to assumption errors.

4.1 Variance of Disturbance Estimate

We derive the individual’s disturbance variance p
(1,1)
j given

the assumptions in Sec. 2.3. In this context, we introduce
the notation ∗(·) to represent a respective quantity assum-
ing perfect knowledge, i.e.

ǭ := ǫ . (29)

The ideal value of the individual’s disturbance variance
was derived in Schöllig et al. [2010],
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∗p
(1,1)
j =

α+ β + jβ2 + jNαβ

(1 + jβ) (1 + jβ + jNα)
, (30)

under the assumption that the disturbance characteristics
of di,ind and d0 are known, i.e. δ = 0. For the following
sensitivity analysis, we express (30) in terms of the total
disturbance variance γ, see (11), and the disturbance ratio
ǫ,

∗p
(1,1)
j =

γ + jγ2 (1− ǫ) (1 + ǫ (N − 1))

mj(γ, ǫ) nj(γ, ǫ,N)
, (31)

:= fj (γ, ǫ,N) (32)

where
mj(γ, ǫ) = 1 + jγ (1− ǫ)

nj(γ, ǫ,N) = 1 + jγ (1 + ǫ (N − 1)) .
(33)

The variance ∗p
(1,1)
j serves as reference value for deter-

mining the robustness of the joint estimation scheme to
an incorrect similarity assumption, ǭ 6= ǫ.

We derive an analytical expression for the variance of an
agent’s disturbance estimate for the general case, where ǫ
is not assumed to be known.

Proposition 1. The variance of an agent’s disturbance es-
timate can be expressed in terms of the combined variance
γ, the nominal disturbance ratio ǭ, the assumption error
δ, the number of agents N, and the iteration j,

p
(1,1)
j = fj (γ, ǭ, N)− δ gj (γ, ǭ, N) , (34)

where

gj(γ, ǭ, N) =
jγ2ǭ (N − 1) (2 + jγ (2 + ǭ (N − 2)))

mj(γ, ǭ) 2 nj(γ, ǭ, N) 2
(35)

and fj (γ, ǭ, N) , mj(γ, ǭ), nj(γ, ǭ, N) are defined by (32)
and (33). Recalling (13), the assumption error is bounded
by

−ǭ ≤ δ ≤ 1− ǭ . (36)

The result is obtained by first solving the Kalman filter
equations (19) for the Kalman gain Kj , given the initial
conditions (20). Finally, the recursive equation (22) yields
the above result, given the starting values (23). A more
detailed proof is found in the Appendix A.

The goal of the following analysis is to compare a real
scenario (where ǭ 6= ǫ) to an ideal case, where we have
perfect system knowledge (ǭ = ǫ).

Independent Estimation If every agent estimates its
disturbance di independently, a partitioning of di into
a common part and an individual part, cf. (4), is not
necessary. Consequently, an incorrect assumption ǭ 6= ǫ
has no effect on the disturbance estimate; that is,

p
(1,1)
j

∣∣
N=1

= ∗p
(1,1)
j

∣∣
N=1

. (37)

This is also reflected by the equations (34)-(35) and (31)-
(32), where

gj (γ, ǭ, 1) = 0 (38)

and
fj (γ, ǭ, 1) = fj (γ, ǫ, 1) =

γ

1 + jγ
(39)

depends only on the sum γ, which is assumed to be known
precisely, γ = α+ β = ᾱ+ β̄, see (11).

In the limit case when j → ∞, the variance of the
disturbance estimate approaches zero monotonically,

lim
j→∞

p
(1,1)
j

∣∣
N=1

= 0 with
∂ p

(1,1)
j

∣∣
N=1

∂j
≤ 0 . (40)

Fig. 2 illustrates the evolution of the variance p
(1,1)
j

∣∣
N=1

for the example introduced in Sec. 5.

Joint Estimation If N agents jointly estimate their dis-
turbance di, the assumption on the disturbance partition-
ing is crucial to the estimation performance. We compare

the variance p
(1,1)
j with the ideal value by using the relation

ǫ = ǭ+δ in (31) and subtracting (31) from (34). This yields

∗p
(1,1)
j < p

(1,1)
j , (41)

for N > 1 and ǭ 6= ǫ. The performance of the joint
estimation algorithm when assuming perfect knowledge
is better (i.e. results in a smaller variance) than in the
realistic scenario, where the disturbance partitioning is not
accurately known.

When analyzing (34), (35) with respect to the assumption
error δ, we obtain

∂ p
(1,1)
j

∂δ
≤ 0 ,

∂ p
(1,1)
j

∂ ǫ
≤ 0 . (42)

For a given ratio ǭ, the performance of the joint estimation
scheme improves (i.e. smaller variance) if the real ratio
ǫ increases. In other words, no matter how wrong our
assumption on the disturbance partitioning ǭ is, the joint
estimation scheme becomes more effective if the agents
show an increasing similarity in reality (and as long as
ǭ 6= 0). However, if the nominal ratio is chosen to be zero
(ǭ = 0, assuming the agents are completely different), the
joint variance (34) corresponds to the individual variance
(39) and is not improved by the agent’s actual similarity,
see Fig. 2.

An interesting next step is to study the limit behavior
of the disturbance variance for j → ∞. We first consider
fj (γ, ǭ, N) in (34) and state

lim
j→∞

fj (γ, ǭ, N) = 0 with
∂ fj (γ, ǭ, N)

∂j
≤ 0 . (43)

The function fj (γ, ǫ,N) also defines the perfect variance
and its limit, cf. (30), and hence,

lim
j→∞

∗p
(1,1)
j = 0 with

∂ ∗p
(1,1)
j

∂j
≤ 0 . (44)

This means that, in the perfect knowledge case, the dis-
turbance is accurately estimated after a large number
of iterations. We keep this in mind when analyzing the

limit behavior of the variance p
(1,1)
j . Two cases are distin-

guished:

(1) If we assume that the agents are not perfectly identi-
cal, that is ǭ 6= 1, the variance converges to zero,

lim
j→∞

p
(1,1)
j = 0 . (45)

The joint estimation algorithm provides an increas-
ingly accurate estimate of the disturbance with each
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additional iteration. Even if our assumption is wrong,
and δ 6= 0, the estimation algorithm provides us with
the correct disturbance estimate in the limit case
when the number of iterations approaches infinity. 2

(2) If we assume that the agents are identical, ǭ = 1, the
limit behavior for j → ∞ is

lim
j→∞

p
(1,1)
j = −δ γ

N − 1

N
:= ℓ(γ, δ,N) , (46)

where −1 ≤ δ ≤ 0, cf. (36). The variance of the
disturbance estimate has a finite, non-zero limit value
(if δ 6= 0, which is equivalent to saying ǫ 6= 1). In other
words, when we assume the agents are identical and
they are (in fact) not, the joint estimation scheme
does not provide an accurate estimate, even after a
large number of iterations. The variance in the limit
j → ∞ depends on the total disturbance level γ,
the number of agents N , and the assumption error
δ, where

∂ ℓ(γ, δ,N)

∂ N
≥ 0,

∂ ℓ(γ, δ,N)

∂ δ
≤ 0,

∂ ℓ(γ, δ,N)

∂ γ
≥ 0 .

(47)
The limiting variance grows with an increasing num-
ber of agents, an increasing difference | δ | between
the assumed and real ratio (note that δ ≤ 0), and
an increasing overall disturbance level. When ǫ = 0
(meaning that the agents, in reality, have no common
disturbance component), the difference between the
assumed and real ratio is largest, δ = −1, and

lim
N→∞

ℓ(γ,−1, N) = γ . (48)

Based on the above results, first conclusions can be drawn
on how our assumption on the agents’ similarity affects the
joint estimate, and on how to choose the nominal ratio ǭ:

• Generally, an incorrect assumption about the agents’
similarity (ǭ 6= ǫ) decreases the accuracy of the
disturbance estimate and increases the variance of the
disturbance estimate, cf. (41).

• In the worst case, the variance does not approach zero
in the limit when the number of iterations goes to
infinity. This happens if we assume that the agents
are perfectly identical, ǭ = 1, but they are, in fact,
not. In this case, the limit value of the variance for
j → ∞ increases with the number of agents and
with an increasing total disturbance. The variance
is worst if the agents share no common disturbance
component in the real scenario, ǫ = 0 or δ = −1.
To assure that the variance converges to zero for any
ratio ǫ, we must choose ǭ 6= 1.

• As shown in (42), the joint estimation scheme is more
beneficial if the agents are more similar in reality.
This is independent of the assumed value and holds
for all ǭ 6= 0. Hence, if we want to benefit from this
characteristic of the joint estimation scheme, and if
we expect a certain degree of similarity between the
agents, the ratio ǭ should not be set to zero.

Fig. 2 summarizes the characteristics derived above: the
perfect knowledge case results in the smallest variance
values and, in the limit case, variances approach zero

2 Mathematica files including the presented results are available at
www.idsc.ethz.ch/Downloads/multiagentILC.

except for the case ǭ = 1, where the limit value is obtained
from (46), cf. Sec. 5.

Thus far we have compared the disturbance estimate p
(1,1)
j

with the perfect value ∗p
(1,1)
j . What remains is to compare

the independent and joint estimation schemes given an
insufficient knowledge ǭ 6= ǫ. In the following section, we
attempt to determine whether, in light of our new findings,
the joint estimation continues to perform better than the
independent estimation.

4.2 Performance Index

We introduced the performance index R as the ratio of the
state variance in the independent case vs. the joint case,
see Sec. 3.2 and Schöllig et al. [2010]. As shown in Schöllig
et al. [2010], in the nominal case, assuming the real values
α, β are known, joint estimation is always beneficial and
yields a performance index

1 ≤ ∗R =
∗p

(1,1)
j

∣∣
N=1

+ λ

∗p
(1,1)
j + λ

. (49)

When the number of iterations increases, the performance
index shows the following limit behavior,

lim
j→∞

∗R =

{
N for ǫ = 1 and λ = 0 ,

1 otherwise.
(50)

If the agents are not identical (ǫ 6= 1), the performance
index ∗R converges to one. The same limit behavior is
observed if process noise acts on the system, λ 6= 0. Only
if (i) the agents are identical, and (ii) noise is due to
measurement only, is the limit value of the performance
index equal to N , see Schöllig et al. [2010] for a detailed
analysis.

From Sec. 4.1 we know that a mismatch between the
real disturbance characteristics and the nominal values
does not affect the independent estimate, see (37), but
it does corrupt the disturbance estimate when jointly
estimating, see (41). In this context, it is interesting to ask:
Is it possible that the performance index becomes smaller
than one, meaning that the individual estimation performs
better than the joint estimation? Taking into account the
disturbance variances derived in Sec. 4.1, we answer this
question below.

First, we compare the performance index in the ideal
case, where ǭ = ǫ, with the performance index R of
the realistic scenario, ǭ 6= ǫ. Given the definition of the
performance index in (28) and the derived characteristics
of the disturbance variance, cf. (37) and (41), we conclude
that

R < ∗R . (51)

The ideal performance index represents an upper bound
to R and, recalling (49), is larger or equal to one.

Second, before studying the evolution of R with j, we focus
on the limiting behavior of performance index R as j → ∞.
Taking into account the limit values of the disturbance
variance derived in Sec. 4.1 and explicitly stated in (40),
(45) and (46), the following statement is derived:

Lemma 2. As j → ∞, the performance index R, defined
by (28) and (34), shows two distinct limiting behaviors:
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(1) If ǭ 6= 1, the performance index converges to one,

lim
j→∞

R = 1 (52)

for all possible valuesN, j > 1, γ ≥ 0, and ǫ, λ ∈ [0, 1],
where 0 ≤ ǭ < 1.

(2) If ǭ = 1, the limit behavior for j → ∞ is

lim
j→∞

R =
λN

λN − δγ (N − 1)

:= ℓR (γ,N, δ, λ) ≤ 1 ,

(53)

for all possible values N, j > 1, γ > 0, and λ ∈ [0, 1],
where −1 ≤ δ < 0.
Since

∂ ℓR
∂ N

≤ 0 and
∂ ℓR
∂ δ

≥ 0, (54)

the limit value ℓR reaches its minimum for δ = −1 ⇔
ǫ = 0, and N → ∞. In this case,

lim
N→∞

ℓR(γ,N,−1, λ) =
λ

λ+ γ
. (55)

Interpretation of the result. If we assume the agents
are not identical, ǭ 6= 1, the joint estimation algorithm
converges and provides us with an accurate disturbance
estimate for j → ∞, cf. (45) and (52). In other words, with
respect to the convergence of the disturbance variance, the
joint estimation scheme is robust to assumption errors as
long as ǭ 6= 1. If we choose ǭ = 1 and δ 6= 0, however,
we lose this property, cf. (46) and (55). That is, under
the assumption that all agents are identical, the joint
estimation algorithm is highly sensitive to assumption
errors. In the case of pure measurement noise λ = 0,
(53) is zero. Note that the case, λ = 0 and ǭ = 1, yields
the best performance improvement in the ideal case, see
(50), but is the most sensitive to assumption errors. In
brief, when building upon a joint estimation scheme, the
disturbance ratio ǭ should not be set to one. Moreover, we
have shown that the performance index can be less than
one (see statement (2) in Lemma 2). In these cases, an
independent estimation is preferable.

The above result guarantees that we eventually obtain
a precise estimate of the disturbance, but it does not
provide insight into the transient performance of the
joint estimation scheme as compared to an independent
algorithm.

As a last step, we perform a more detailed analysis
and identify parameter combinations that support an
application of the joint estimation scheme (where R > 1).
At an iteration j, the joint estimation is beneficial, if the
inequality R ≥ 1 is satisfied, which is equivalent to saying

fj (γ, ǭ, 1) ≥ fj (γ, ǭ, N)− δ gj (γ, ǭ, N) (56)

for a given number of agents N , a known nominal dis-
turbance ratio ǭ, and an overall disturbance γ, see (28)
and (34). The functions fj and gj are non-negative for all
possible values N, j ≥ 1, γ ≥ 0, and ǭ ∈ [0, 1], cf. (32) and
(35),

fj (γ, ǭ, N) ≥ 0 and gj (γ, ǭ, N) ≥ 0 , (57)

and
∂fj (γ, ǭ, N)

∂ N
=

−ǭ2γ2j

mj(γ, ǫ) nj(γ, ǫ,N) 2
≤ 0 . (58)

Combining (56) with (57),(58) yields the following lemma:

Lemma 3. A sufficient condition for the joint estimation
to yield a better (or equal) learning performance than
the independent estimation is a disturbance ratio ǫ that is
larger than (or equal to) the assumed one. The following
implication holds,

ǫ ≥ ǭ ⇒ R ≥ 1 , (59)

for all possible values N, j ≥ 1, γ ≥ 0, and ǭ ∈ [0, 1].

Interpretation of the result. If the agents are more
similar in reality than assumed, it is beneficial to jointly
estimate the repetitive disturbances. We should avoid an
overestimation of the similarity between the agents, since
in this case an independent scheme would actually be more
beneficial. However, if we underestimate the similarity for
a given situation defined by ǫ, we increase the variance
of the disturbance estimate, cf. (42). Moreover, from (28)
and (34) with δ = ǫ− ǭ, we obtain

∂R

∂ǭ
≥ 0 if ǫ ≥ ǭ , (60)

which means that, if we underestimate the similarity of
the agents (reducing ǭ), we reduce the benefit of the joint
estimation vs. the independent estimation. 2 A design rule
for ǭ is consequently: Given a priori knowledge about the
multi-agent system, make ǭ as large as possible while, at
the same time, ensuring that it is less than the real value
ǫ. In this case, applying the joint estimation guarantees
a better learning performance than the independent esti-
mation scheme; however, the benefits of joint estimation
remain marginal, as shown in Schöllig et al. [2010].

Note that if δ ≥ 0 ⇔ ǫ ≤ ǭ, there are also cases for
which R ≥ 1, see Fig. 3. From (56) with (13), we derive
the necessary and sufficient condition: 2

Lemma 4. In the proposed multi-agent learning frame-
work, joint estimation yields a better (or equal) learning
performance as the independent estimation if and only
if the following inequality is satisfied for given values
N, j > 1, γ, ǭ > 0 and ǫ:

ǫ ≥ ǭ
1 + γj

(
2 + γj

(
1 + ǭ2 (N − 1)

))

(1 + γj) (2 + γj (2 + ǭ (N − 2)))

:= ǭ hj(γ, ǭ, N)

(61)

with hj(γ, ǭ, N) < 1. The inequality becomes less restric-
tive for an increasing number of agents, ∂hj/∂N < 0, and
reduces to:

ǫ ≥ ǭ
ǭγj

1 + γj
for N → ∞ , (62)

and, in the limit case for j → ∞, to:

ǫ ≥ ǭ2 for j,N → ∞ . (63)

Fig. 3 illustrates the previously derived characteristics for
ǫ = 0.5 and the nominal values ǭ ranging from 0 to 1. Note
that for the case ǭ = 0.75, the performance index crosses
the R = 1 line and finally approaches one.

The previous analysis focused on identifying the cases
for which the joint estimation is beneficial despite an
incorrect assumption ǭ 6= ǫ and, in turn, defined the
cases where an incorrect assumption ǭ 6= ǫ corrupts the
performance of the joint estimation to such an extent that
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ǭ = 0
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Fig. 2. The variance of an individual’s disturbance esti-
mate for N = 10 agents, ǫ = 0.5, γ = 0.1 and λ = 0
(pure measurement noise).

an independent estimation is more effective. The numerical
examples below summarize the results of this section and
highlight the sensitivity of the joint estimation scheme to
incorrect noise assumptions.

5. NUMERICAL EXAMPLES

We consider a group of N = 10 agents with a similarity
of ǫ = 0.5. The noise is due to measurement only (λ = 0)
and the overall disturbance γ is 0.1. Fig. 2 and Fig. 3 show
the evolution of the variance and the performance index
for various nominal values ǭ ranging from 0 to 1. Note
that different intervals of j are chosen in Fig. 2 and Fig. 3
to emphasize the main characteristics. Both figures show
that an incorrect similarity assumption results in a worse
performance, i.e. in a higher variance in Fig. 2 and a lower
performance index in Fig. 3. The limiting behavior in the
case of ǭ = 1, see (46) and (53), is for the given scenario

lim
j→∞

p
(1,1)
j = 0.5 · 0.1 ·

9

10
= 0.045 and lim

j→∞

R = 0 .

In all other cases, the variance approaches 0 (see Fig. 2)
and the performance index 1 (see Fig. 3) as j → ∞. For the
two cases where ǭ > ǫ, the performance index is (partly)
smaller than one.

6. CONCLUSION

We analyzed the sensitivity of joint estimation to the
underlying assumption of similarity between agents. The
analysis was driven by our previous results, which showed
that the learning performance of an agent is improved by
exchanging information with other agents that are learning
the same task.

While previous results assumed perfect knowledge about
the degree of similarity between the agents, this paper
studied the effects of an incorrect similarity assumption.
We found that an incorrect assumption not only degrades
the performance of the joint estimation scheme (when
compared to the case of perfect knowledge), but that, for
some problems, the joint estimation performs worse than
an independent estimation scheme. This is particularly
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Fig. 3. The performance index for N = 10 agents, ǫ = 0.5,
γ = 0.1 and λ = 0 (pure measurement noise).

true if we overestimate the similarity between the agents.
As a consequence, it is not advisable to assume that
agents are identical because, if agents are not identical
in reality, the joint estimation does not even converge to
the correct disturbance value. However, note that from our
previous analysis, we know that the case of identical agents
(and no process noise) provided the best performance
improvement of joint vs. independent estimation – an
improvement of a factor equal to the number of agents.
In other words, the case with the highest performance
improvement (due to joint estimation) shows the highest
sensitivity to assumption errors.

To conclude: in order to guarantee improved performance
over an individual learning scheme, a joint estimation
scheme must not overestimate the similarity between the
agents.
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Appendix A. PROOF OF PROPOSITION 1

We derive an explicit representation of the variance p
(1,1)
j ,

as presented in Proposition 1, that depends on the total
variance γ, the nominal similarity factor ǭ, the assumption
error δ, the iteration j, and the number of agents N .

The proof proceeds similarly to the derivation of the ideal
variance (31) in Schöllig et al. [2010]. Note that in Schöllig
et al. [2010], we assumed that the real noise characteristics
(9) were known precisely and

p
(1,1)
j simpliy denoted the ideal variance ∗p

(1,1)
j . (A.1)

Matlab and Mathematica files for reproducing the results
below are available on the project webpage 2 .

Proof. For the general case, we derive a closed form
of the covariance matrix Pj , with the assumptions in
Sec. 2.3. Since the disturbance and noise characteristics
are the same for each agent, the covariance matrix is of
the following symmetric structure,

p
(k,l)
j =





p
(0,0)
j if k = l = 0

p
(0,1)
j if kl = 0 and k 6= l

p
(1,1)
j if k = l 6= 0

p
(1,2)
j otherwise .

(A.2)

We derive a recursive relationship for the values in (A.2)
based on (21) and the closed-form representation of Kj

(derived in Schöllig et al. [2010]). The Kalman gains Kj

are calculated based on the nominal disturbance variances
ᾱ = ǭγ and β̄ = (1− ǭ)γ and are given by

k
(k,l)
j =





k
(0,1)
j if k = 0

k
(1,1)
j if k = l

k
(1,2)
j otherwise ,

(A.3)

where

k
(0,1)
j =

ǭγ

nj(γ, ǭ, N)
, k

(1,2)
j =

ǭγ

mj(γ, ǭ)nj(γ, ǭ, N)
,

k
(1,1)
j = fj (γ, ǭ, N) , (A.4)

From (21) with (A.2) and (A.4), we obtain recursive
equations for

p
(0,0)
j , p

(0,1)
j , p

(1,1)
j , p

(1,1)
j (A.5)

that depend only on the (j − 1)th values of (A.5), on the
Kalman gains (A.4) and the number of agents N . A proof
by induction using the recursive equations for (A.5) with
initial condition (23) verifies the closed-form expression in
(34). For the proof, the closed-form representations of all
values (A.5) were needed and derived. However, the only

value of interest is p
(1,1)
j .

Mathematica files with the recursive equations for (A.5)
and the closed-from representations of all quantities (A.5)
are available on the project webpage 2 .
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