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Abstract— This paper studies iterative learning control (ILC)
in a multi-agent framework, wherein a group of agents simul-
taneously and repeatedly perform the same task. The agents
improve their performance by using the knowledge gained from
previous executions. Assuming similarity between the agents,
we investigate whether exchanging information between the
agents improves an individual’s learning performance. That
is, does an individual agent benefit from the experience of the
other agents? We consider the multi-agent iterative learning
problem as a two-step process of: first, estimating the repetitive
disturbance of each agent; and second, correcting for it. We
present a comparison of an agent’s disturbance estimate in the
case of (I) independent estimation, where each agent has access
only to its own measurement, and (II) joint estimation, where
information of all agents is globally accessible. We analytically
derive an upper bound of the performance improvement due
to joint estimation. Results are obtained for two limiting cases:
(i) pure process noise, and (ii) pure measurement noise. The
benefits of information sharing are negligible in (i). For (ii), a
performance improvement is observed when a high similarity
between the agents is guaranteed.

I. INTRODUCTION

Exploiting previous experience when repeatedly executing

the same task is a natural way to improve future perfor-

mance in the presence of repetitive, unmodeled disturbances.

Iterative learning control (ILC), as first proposed in [1],

achieves precise tracking behavior by effectively incorporat-

ing past control information (such as applied input signals

and measured outputs) when calculating the feedforward

control action used in the next iteration, cf. [2], [3]. One way

of viewing ILC is as a two-step process of estimation and

control: first identifying the unknown repetitive disturbance

and later compensating for it [4]–[8]. LQG-type solutions

have been proposed in [9]–[11], which estimate the tracking

error and, based on this result, calculate a new input trajec-

tory by minimizing a quadratic cost function.

While ILC has proven to be successful in a variety of

industrial applications (including chemical process control,

rotary systems and robotics), we have yet to identify if –

and how – ILC schemes can be generalized when facing

homogeneous groups of agents or assemblies of similar

units (for example, robot arms in an industrial environment,

or a fleet of mobile robots in a warehouse [12], [13]).

In other words, how can we cope with uncertainties in a

multi-agent framework? Is there a benefit of exchanging

information between the agents? What kind of information

sharing makes sense? Cooperative iterative learning schemes
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Fig. 1. Simultaneous run of all agents: independent (left) vs. joint (right)
estimation and learning.

were previously proposed in [14]. Recently, ILC was applied

to multi-agent systems, cf. [15], with the goal of achieving

formation control. While it has been established that the joint

performance of all agents is fundamental to the formation

problem, this paper focuses on the potential for individual

agents to improve their performance when conducting a task

alongside a group of similar agents conducting the same task.

Analogous questions were previously studied in the context

of reinforcement learning, see [16].

The results of our research show that the passing of infor-

mation between agents has limited benefit for a large class

of problems. This conclusion is based upon a comparison

of independent learning with a cooperative scheme, where

information of all agents is globally accessible to every

agent, see Fig. I. Similarity between the agents is assured

by assuming that they have the same nominal dynamics and

share a common iteration-independent disturbance; however,

they differ in an additional individual error component that

is also constant across iterations. We introduce iteration-

dependent noise terms that account for measurement and

process noise, and obtain results for two limit cases: (i)

pure process noise, and (ii) pure measurement noise. The

benefits of information sharing are negligible in (i). For (ii),

we observe a greater improvement in performance when a

high similarity between the agents is guaranteed. In short:

Individual agents in an ILC framework do not, in most

cases, benefit significantly from information sharing when

simultaneously learning the same task.

The paper is organized as follows: Section II formalizes

the multi-agent iterative control problem and reduces it to a

comparison of independent versus joint estimation. Section

III compares both scenarios and presents the core result of

the paper in terms of an upper bound on the performance

improvement due to joint estimation. The work is summa-

rized in Section IV, whereas proofs are partly presented in

the Appendix.
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II. PROBLEM STATEMENT

A. Motivation

We begin by considering a group of N agents that simul-

taneously and repeatedly perform the same task. A common

way of describing an agent’s dynamics during a single run is

the so-called lifted system representation [17]–[19]. For each

agent i ∈ I = {1, 2, . . . , N}, the input-state relationship is

modeled by a static matrix equation,

xi = F iui + di , (1)

which maps a given discrete-time input signal

ui =
[
ui(0), ui(1), . . . , ui(T )

]T
∈ R

(T+1)nu to the

corresponding lifted states xi ∈ R
(T+1)nx . In this context,

(T + 1) samples represent a single iteration and nu and nx

denote the dimension of the input and state, respectively.

The vectors xi and ui are defined as the deviation from the

desired task trajectory and the corresponding nominal input,

see for example [8]. The vector di represents an exogenous

disturbance constant across iterations, which captures model

errors along the trajectory as well as repeating disturbances

and nonzero initial conditions [3], [20], [21]. We include a

trial-uncorrelated noise signal ξi in model (1) to account for

process noise, which varies from trial to trial. Introducing

the iteration index j ∈ {1, 2, . . . }, the state in the jth trial

is given by

xi
j = F iui

j + di + ξij . (2)

where ξij is assumed to be zero-mean Gaussian white noise.

The vector di is viewed as an agent-dependent, normally-

distributed random signal.

The agents’ output yij is corrupted by measurement noise

and similarly represented in the lifted domain,

yij = Gixi
j + µi

j , (3)

where µi
j is zero-mean Gaussian white noise.

Note that (2) and (3) might be the result of linearizing the

agent dynamics about a desired task trajectory. Refer to [8],

[22] for a more detailed derivation.

In the above context, the goal of the iterative learning

algorithm is to make the state xi
j (that is, the deviation

from the desired task trajectory) small or, more precisely,

to reduce xi
j with an increasing number of iterations j. The

performance of each individual agent is gradually improved

by taking into account all information on previous iterations

when estimating the disturbance vector di. As the accuracy

of the disturbance estimate increases, a more appropriate

open-loop input is determined, thereby compensating for the

deficiencies in the modeled dynamics represented by the

matrix F i. From xi
j conclusions can be drawn as to the

performance of execution j.

We now consider a homogeneous fleet of agents with the

same nominal dynamics:

F i = F

Gi = I ∀ i ∈ I ,
(4)

where I denotes the identity matrix. That is, the state is

assumed to be measured directly. Differences between the

agents are captured in the disturbance vector di, which is

composed of a common part d0 identical for all agents, and

an individual part di,ind,

di = d0 + di,ind ∀ i ∈ I . (5)

In this context, the question arises: Does an individual agent

benefit from sharing information with its companions? To

what degree can the disturbance estimate di be improved by

taking into account the measurements of the other agents?

B. Simplified Model

Our main objective and central problem is to identify

the disturbance di for each agent i in the presence of both

process and measurement noise. Based on the disturbance

estimate, a correcting input ui
j can be found that best

compensates for the repetitive disturbance using a problem-

specific optimization criterion, see for example [8]. Impor-

tantly, the correcting input ui
j applied in each iteration is

known. Focusing on the estimation problem, we consider a

condensed form of the above multi-agent system representa-

tion (2)-(3),

xi
j = di + ξij (6)

yij = xi
j + µi

j , (7)

which features the key noise and disturbance characteristics,

but omits the known part Fui
j , without loss of generality.

Equations (6) and (7) are summarized by

yij = di + υi
j , (8)

where υi
j = ξij +µi

j captures both process and measurement

noise.

Moreover, assuming independence of the single entries in

the vectors di and υi
j and identical noise characteristics, the

problem reduces to the scalar case,

yij = d0 + di,ind + υi
j , (9)

where all variables are scalar-valued. The probability distri-

butions are given by

d0 ∼ N (0, α)

di,ind ∼ N (0, β)

υi
j ∼ N (0, 1) , α, β ≥ 0 ,

(10)

and υi
j , d0, and di,ind are assumed to be mutually indepen-

dent for all i ∈ I and j ∈ {1, 2, . . . }. The notation N (0, α)
represents a normal distribution with mean 0 and variance α.

Note that in (10), the variance of the individual disturbance

di,ind is assumed to be identical for all agents i ∈ I. Without

loss of generality, the variances are normalized such that υi
j

is 1.

C. Independent vs. Joint Estimation

As the number of trials and measurements increases,

more information about the system is collected, allowing

an increasingly accurate estimate of the agents’ constant

noise terms di, i ∈ I. Two limiting approaches might be
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taken when solving the estimation problem: (I) independent

estimation, and (II) joint estimation.

In the case of independent estimation (I), each agent i
individually estimates its disturbance di taking only its own

measurements yij , j ∈ {1, 2, . . . } into account.

In the joint case (II), the acquired measurement data

is fully exchanged between all agents. Based on this

global knowledge, we can design a joint estimation scheme

that exploits the measurements of all agents and pro-

vides estimates di for every agent i ∈ I. A vector

D, reflecting the estimation objective in this case, is de-

fined as: D = [ d0, d1, . . . , dN ]T ∈ R
(N+1). The measure-

ments of all agents in the jth trial are combined in

Yj = [ y1j , y
2
j , . . . , y

N
j ]T, and analogously, the noise vector

Vj = [ υ1
j , υ

2
j , . . . , υ

N
j ]T is introduced. Based on this repre-

sentation, the joint estimation problem can be formulated as

a Kalman filter problem, cf. [23], [24]:

Dj = Dj−1 ∀ j ≥ 1

Yj = HDj + Vj ,
(11)

where H = [0, I ] is a matrix with zeros in the first

column concatenated with an identity matrix of appropriate

dimensions. The Kalman filter returns an unbiased state

estimate D̂j for j ≥ 1 that minimizes the error covariance

matrix

Pj = E
[
(Dj − D̂j)(Dj − D̂j)

T
]
, (12)

of trial j, taking measurements Ym, 1 ≤ m ≤ j, into

account. E [·] denotes the expected value. The initial values

are obtained from (10); in particular,

D̂0 = [ 0, 0, . . . , 0 ]T (13)

and the initial covariance matrix P0 = [ p
(k,l)
0 ], k, l ∈ K =

{0, 1, . . . , N} , is

P0 = E
[
D0D

T
0

]
(14)

with

p
(k,l)
0 = E

[
dkdl

]
= E

[ (
d0 + dk,ind

) (
d0 + dl,ind

) ]
,

where d0,ind = 0. Recalling (10) and the mutual indepen-

dence of d0 and di,ind for all i ∈ I, the initial covariance is

given by

p
(k,l)
0 =

{
α+ β for k = l ≥ 1
α otherwise .

(15)

Note that the above derivations do not place further assump-

tions or restrictions on how information is shared between

agents: the information yij of each agent is available to

every other agent. In other words, we are investigating the

ideal case of centralized, joint estimation within an optimal

filtering context.

Equally important, the independent estimation problem (I)

is just a special case of the cooperative framework (II) with

N = 1.

In both cases, (I) and (II), the variance of an individual’s

disturbance estimate at iteration j is given by

E
[
(di − d̂ i

j)
2
]
= p

(i,i)
j = p

(1,1)
j , ∀ i ∈ I, (16)

where D̂j = [ d̂ i
j ], i ∈ I, and Pj = [ p

(k,l)
j ], k, l ∈ K. The

variance is identical for all agents, since for each agent the

same assumptions on the dynamics (9) and the initial noise

characteristics (10) are made. The variance of an individual’s

disturbance (16) indicates the quality of the disturbance

estimate. In the general case, (2)-(3), this value influences

the effectiveness of the disturbance compensation, since the

input update rule of the ILC algorithm is based on the current

estimate d̂ i
j ; for example by a relation as follows, see [8]:

ui
j+1 = argmin

u
||F iu+ d̂ i

j || . (17)

Below, we distinguish between the individual disturbance

variance p
(1,1)
j in case of joint and independent estimation,

where the latter is given when evaluating p
(1,1)
j for N = 1,

i.e.

p
(1,1)
j

∣∣∣
N=1

. (18)

Thus, the initial question can be reformulated: To what

degree does joint estimation benefit the individual learning

of an agent?

III. RESULT

We compared the learning performance based on (I) in-

dependent and (II) joint estimation, via the variance of the

state xi
j given all past measurements. This value indicates

the accuracy of the tracking behavior in each iteration j. We

investigated the benefits of information sharing and used,

as our basis for the investigation, two limiting cases of (8):

(i) encountering pure process noise, and (ii) dealing with

measurement noise only. From these benchmark examples,

we were able to deduce properties for the general mixed-

noise case and draw conclusions about the advantages of

passing information in an ILC framework.

In order to compare the independent estimation result (I)

with the joint estimation result (II), we derived an analytical

expression for p
(1,1)
j .

Proposition 1. The error variance of an agent’s disturbance

p
(1,1)
j can be expressed in terms of the initial variances α

and β, the number of agents N, and the iteration j,

p
(1,1)
j =

α+ β + jβ2 + jNαβ

(1 + jβ)(1 + jβ + jNα)
. (19)

The result is obtained by solving the Kalman filter equations

for (11) with initial conditions (13) and (15). �

A detailed proof is found in the Appendix.

Next, we use the relation (19) to derive an upper bound on

the performance improvement due to joint estimation. Two

limiting cases are considered: (i) pure process noise and (ii)

pure measurement noise.

A. Pure Process Noise

Perfect measurements are assumed, i.e. µi
j = 0 in (7)

and υi
j is interpreted as pure process noise, υi

j = ξij . The

performance of independent (I) vs. joint (II) estimation is

analyzed through the variance of the state estimate. As
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mentioned in Section II-A, the goal of ILC is to reduce the

value xi
j . This is most easily achieved if the variance in the

estimate of xi
j is small. That is, the variance of the state

estimate can be used as a measure of learning performance.

Given (6) and (10), the best estimate of the state x̂i
j at

iteration j is equal to the current disturbance estimate d̂ i
j ,

x̂i
j = d̂ i

j , (20)

since the noise ξij has zero mean. Recalling the noise

characteristics (10) and the previous assumption of mutual

independence between di and υi
j , we obtain the variance of

state estimate from the sum of the variance of the estimate

d̂ i
j and the variance of ξij = υi

j . That is, with (16),

E
[
(xi

j − x̂i
j)

2
]
= E

[
(di + ξij − d̂ i

j)
2
]

= p
(1,1)
j + 1 .

(21)

We introduce the performance index (for the pure process

noise case) as the ratio of the state variance in the indepen-

dent case vs. the joint case,

Rproc =
p
(1,1)
j

∣∣
N=1

+ 1

p
(1,1)
j + 1

, (22)

using the notation of (18).

The following theorem can be stated:

Theorem 1. The bounds on the performance improvement

due to joint estimation (vs. independent estimation) are given

by

1 ≤ Rproc ≤
1 + j

j
∀α, β, N, j , (23)

where the best performance improvement occurs when

N → ∞, α → ∞, and β = 0. In this case, Rproc = (1+j)/j.

�

Interpretation of the result:

– The performance improvement due to joint estimation

has an upper bound which is valid for all possible

combinations of α, β, N, and j.

– Joint estimation is most beneficial if the agents’ com-

mon disturbance component dominates and the indi-

vidual noise component is negligible compared to the

process noise; this corresponds to a large common noise

variance α and a small individual component β ≪ 1.

– The largest possible improvement in performance is a

factor of 2, which is obtained only in the first iteration.

With more iterations, the performance index rapidly

decays to 1. That is, the more often the agents perform

a task, the less beneficial the exchange of information.

– Intuitively, the result shows that if the agents are differ-

ent, the measurements of the other agents do not provide

significant information for an individual’s performance

improvement. If the agents are almost identical, ‘av-

eraging’ the measurements of the agents via a joint

estimation still has no ‘visible’ effect, since the process

noise directly corrupts the value of interest, xi
j , see (6).

Moreover, independent estimation and learning (I) is robust

to uncertainties in the initial noise assumptions (10). Note

that the variance of an individual’s disturbance in the inde-

pendent case depends solely on the sum (α + β), cf. (19)

with N = 1. In other words, the assumption on how the

disturbance di is decomposed in d0 and di,ind, does not enter

the result. It does, however, affect the joint estimation.

To conclude, there is little benefit of sharing information

in the case of pure process noise.

Proof: Based on the closed-form representation in (19),

Theorem 1 is proven by introducing Rproc as a function of

j, α, β, and N ,

Rproc
j (α, β,N) =

p
(1,1)
j (α, β, 1) + 1

p
(1,1)
j (α, β,N) + 1

. (24)

Recalling the properties

α, β ≥ 0 and j,N ∈ {1, 2, . . . } , (25)

we note that p
(1,1)
j (α, β,N) ≥ 0 for all possible arguments.

By taking partial derivatives of Rproc
j (α, β,N), it can be

shown that
∂Rproc

j (α, β,N)

∂N
≥ 0 (26)

and Rproc
j (α, β,N) is bounded by

Rproc
j (α, β,∞) := lim

N→∞

Rproc
j (α, β,N) (27)

with

Rproc
j (α, β,∞) =

1 + α+β
1+j(α+β)

1 + β
1+jβ

.

Secondly, it is shown that

∂Rproc
j (α, β,∞)

∂α
≥ 0 (28)

with

Rproc
j (∞, β,∞) := lim

α→∞

Rproc
j (α, β,∞) =

1 + 1
j

1 + β
1+jβ

,

that is Rproc
j (α, β,N) ≤ Rproc

j (∞, β,∞). Finally, with

∂Rproc
j (∞, β,∞)

∂β
≥ 0 , (29)

and
Rproc

j (∞, 0,∞) = 1 +
1

j
,

statement (23) is proven,

Rproc
j (α, β,N) ≤ Rproc

j (∞, 0,∞)

for all α, β, N, j. The lower bound is obtained for

N = 1, cf. (26). Matlab and Mathematica files

for reproducing the results below are available at

www.idsc.ethz.ch/Downloads/multiagentILC.

B. Pure Measurement Noise

We studied the system properties under the assumption of

zero process noise, i.e. ξij = 0 in (6), and interpreted υi
j as
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pure measurement noise, υi
j = µi

j . Here, the noise term in

(21) disappears and the ratio of the state variances is given

by

Rmeas =
p
(1,1)
j

∣∣
N=1

p
(1,1)
j

. (30)

The following theorem can be stated:

Theorem 2. The bounds on the performance improvement

due to joint estimation (vs. independent estimation) are given

by

1 ≤ Rmeas ≤ N ∀α, β, N, j , (31)

where the best performance improvement occurs when

α → ∞ and β = 0 , for all N, j. In this case, Rmeas = N .

�

Interpretation of the result:

– Again, an upper bound of the performance index is

found which is valid for all possible combinations of

α, β, N, and j. However, the upper bound does not

depend on the number of iterations.

– Joint estimation is most beneficial if the agents’ com-

mon disturbance component dominates and the indi-

vidual noise component is negligible compared to the

measurement noise; this corresponds to a large common

noise variance α and a negligible individual component

β ≪ 1. The largest possible improvement in perfor-

mance is a factor of N .

– Intuitively, the result shows that if the agents are very

similar (β ≪ 1 ), joint estimation has a ‘visible’ effect.

The measurement noise is ‘averaged out’. It does not

corrupt the performance result, xi
j , directly, see (7). A

significant improvement in the individual’s performance

can be achieved.

Joint estimation is beneficial when considering a large group

of almost identical agents, where the individual disturbance

is small compared to the measurement noise.

Note that the performance index of the mixed noise case

falls between Rproc and Rmeas.

Proof: The proof of Theorem 2 proceeds similarly as

the proof in Section III-A. With (19), the performance index

Rmeas is given as a function of j, α, β, and N ,

Rmeas
j (α, β,N) =

p
(1,1)
j (α, β, 1)

p
(1,1)
j (α, β,N)

. (32)

Partial derivatives are directly computed, where

∂Rmeas

∂β
≤ 0 ,

∂Rmeas

∂α
≥ 0 ,

∂Rmeas

∂N
≥ 0 , (33)

with (25). In addition, the limiting property for β = 0 is

Rmeas
j (α, 0, N) =

1 + αjN

1 + αj
and

lim
α→∞

Rmeas
j (α, 0, N) = N ∀ j, N .

The lower bound is obtained for N = 1, cf. (33); see also

www.idsc.ethz.ch/Downloads/multiagentILC.

IV. CONCLUSION

In this paper we considered a group of agents which share

the same dynamics and a common iteration-independent

disturbance, but differ in an additional individual error

component. In the context of having these agents learn to

perform an identical task, we asked: How beneficial is it

to exchange experience in order to improve an individual

agent’s learning performance? We considered two cases:

(I) independent learning without information exchange and

(II) learning based on full information exchange between

agents. In the proposed framework, the question can be

reduced to the comparison of the disturbance estimate in

case of independent estimation (I) and when solving a

global estimation problem for (II). An upper bound for the

performance improvement due to information exchange is

derived analytically and reflects the limited benefit of sharing

information in the given setup. In the best case – where the

noise is due to measurement noise only, the agent’s com-

mon disturbance dominates, and the individual disturbance

component is small compared to the noise – joint estimation

improves the performance by a factor equal to the number

of agents. That is, instead of one agent performing a task N
times, N agents performing the task once results in the same

accuracy for the disturbance estimate. For the general case

and, in particular, in the presence of process noise or a large

individual disturbance component, the benefits are shown to

be limited.

APPENDIX

We derive an explicit representation of the vari-

ance p
(1,1)
j that depends only on α, β, j, and N as

presented in Proposition 1. Matlab and Mathematica

files for reproducing the results below are available at

www.idsc.ethz.ch/Downloads/multiagentILC.

Proof: A closed form of the covariance matrix Pj is

derived, cf. (15) and (16). Since noise is assumed to have

the same characteristics for each agent, by symmetry,

p
(k,l)
j =





p
(0,0)
j if k = l = 0

p
(0,1)
j if kl = 0 and k 6= l

p
(1,1)
j if k = l 6= 0

p
(1,2)
j otherwise .

(34)

We obtain the previous values by solving the filter equations,

cf. [23], [24],

Qj = HPj−1H
T + I

Kj = Pj−1H
TQ−1

j

Pj = (I −KjH)Pj−1,

(35)

where Qj = [ q
(k,l)
j ], k, l ∈ I and Kj = [ k

(k,l)
j ], k ∈ K,

l ∈ I. With (34) and (35), the matrix Qj and its inverse

Q−1
j = [m

(k,l)
j ] are directly computed,

q
(k,l)
j =

{
1 + p

(1,1)
j−1 if k = l

p
(1,2)
j−1 otherwise

(36)
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m
(k,l)
j =

{
m

(1,1)
j if k = l

m
(1,2)
j otherwise ,

(37)

where

m
(1,1)
j =

1 + p
(1,1)
j−1 +

(
N − 2

)
p
(1,2)
j−1

n1n2

m
(1,2)
j =

−p
(1,2)
j−1

n1n2

(38)

with

n1 =
(
1 + p

(1,1)
j−1 − p

(1,2)
j−1

)

n2 =
(
1 + p

(1,1)
j−1 +

(
N − 1

)
p
(1,2)
j−1

)
.

(39)

With this, the filtering matrix Kj is given by

k
(k,l)
j =





k
(0,1)
j if k = 0

k
(1,1)
j if k = l

k
(1,2)
j otherwise .

(40)

where,

k
(0,1)
j = p

(0,1)
j−1

(
m

(1,1)
j +

(
N − 1

)
m

(1,2)
j

)

k
(1,1)
j = p

(1,1)
j−1 m

(1,1)
j +

(
N − 1

)
p
(1,2)
j−1 m

(1,2)
j

k
(1,2)
j = p

(1,1)
j−1 m

(1,2)
j + p

(1,2)
j−1 m

(1,1)
j

+
(
N − 2

)
p
(1,2)
j−1 m

(1,2)
j

(41)

From (35), the following values for Pj are found,

p
(k,l)
j =





p
(0,0)
j if k = l = 0

p
(0,1)
j if kl = 0 and l 6= k

p
(1,1)
j if k = l 6= 0

p
(1,2)
j otherwise

(42)

with

p
(0,0)
j = p

(0,0)
j−1 −Np

(0,1)
j−1 k

(0,1)
j

p
(0,1)
j = p

(0,1)
j−1 + p

(1,1)
j−1 k

(0,1)
j −

(
N − 1

)
p
(1,2)
j−1 k

(0,1)
j

p
(1,1)
j =

(
1− k

(1,1)
j

)
p
(1,1)
j−1 −

(
N − 1

)
p
(1,2)
j−1 k

(1,2)
j

p
(1,2)
j =

(
1− k

(1,1)
j

)
p
(1,2)
j−1 − k

(1,2)
j p

(1,1)
j−1

−
(
N − 2

)
p
(1,2)
j−1 k

(1,2)
j

We prove the desired symmetry and obtain the following

values for (34) by induction, using (42) with initial condition

(15):

p
(0,0)
j =

(1 + jβ)α

1 + jβ + jNα

p
(0,1)
j =

α

1 + jβ + jNα

p
(1,1)
j =

α+ β + jβ2 + jNαβ

(1 + jβ)(1 + jβ + jNα)

p
(1,2)
j =

α

(1 + jβ)(1 + jβ + jNα)
.

(43)

The only value of interest is p
(1,1)
j .
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