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Summary

Numerous systems require controllers that guarantee high performance since they
are deployed in unknown and dynamic environments where they are subject to dis-
turbances, unmodeled dynamics, and parametric uncertainties. Adaptive controllers
enable systems to compensate for disturbances and unmodeled dynamics based on
state measurements. In this paper, we propose a robust adaptive model predictive
controller for safe and high accuracy trajectory tracking in the presence of model
uncertainties. The proposed approach combines robust model predictive control
(MPC) with an underlying discrete time l1 adaptive controller. The l1 adaptive
controller forces the system to behave close to a linear reference model despite the
presence of disturbances and unmodeled dynamics. The true dynamics of the under-
lying adaptive system may deviate from the linear reference model. In this work we
prove this deviation is bounded. The robust MPC accounts for this modeling error
and computes the input that minimizes the tracking error. In experiments we focus in
robotic applications, in particular on a quadrotor. We show that the proposed robust
adaptive MPC enables the quadrotor to achieve high accuracy trajectory tracking
and successfully avoid obstacles avoidance through aggressive maneuvers that an
adaptive MPC is not able to avoid.
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1 INTRODUCTION

Control systems for unstructured environments are required to achieve high overall performance in the presence of unknown
disturbances, changing dynamics and parametric uncertainties. To operate in these environments controllers must adapt quickly
to changing conditions and be robust to unknown disturbances. Adaptive controllers enable systems to compensate for dis-
turbances and unmodeled dynamics based on state measurements. Additionally, the controllers are required to provide fast
update rates to achieve better tracking performance. In this work we focus in robotic systems operating in unstructured environ-
ments. Robotic applications in these unstructured and changing environments include autonomous driving, assistive robotics,
and unmanned aerial vehicle applications. In such robotic applications small changes in the environmental conditions may
significantly deteriorate the performance and cause instability in traditional, model-based controllers (see1 and2).
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In this work we propose a robust adaptive model predictive controller (MPC) for safe and high accuracy tracking in the
presence of model errors. We propose to combine an underlying l1 adaptive controller with a robust MPC. The l1 adaptive
controller forces a system to behave close to a specified linear reference model despite the presence of parametric uncertainties
and unknown disturbances.We show that the l1 controlled systemmay deviate from the linear referencemodel, but this deviation
is bounded and can be interpreted as a bound on the modeling error of the system. The robust MPC explicitly takes into account
the bound on the modeling error, the linear reference model and state and input constraints to calculate an input that improves
the tracking performance of the underlying l1 controlled system. Explicitly taking into account the modeling error enables the
proposed robust adaptive MPC to successfully complete tasks that adaptive MPC fails to achieve. Note that in this work use 1
to refer to the continuous time formulation and l1 to refer to the discrete time formulation.

1.1 Related Work
1 adaptive control generates a control signal that forces a system to track a reference trajectory according to a specified linear
reference model despite the presence of unknown disturbances and model uncertainties. The architecture of the 1 adaptive
controller decouples the estimation loop from the control law. Consequently, there is guaranteed robustness in the presence of fast
adaptation, without introducing persistence of excitation, gain scheduling in the controller parameters or high-gain feedback3.
1 adaptive control has been extensively developed in the continuous time3,4,5 and has been applied to different platforms such
as an underwater vehicle6, a tailless fighter aircraft, in simulation7, bipedal robots, in simulation8, and a quadrotor, hexacopter,
and octocopter9. However, 1 adaptive control has not been developed as extensively in the discrete time10,11.
Model predictive control has been widely employed to control constrained systems and an extensive literature on the subject

exists12,13,14. MPC solves a finite horizon optimal control problem at each time step to calculate a control sequence that minimizes
a given objective function according to a system model and constraints. A controller is said to be robust when stability is
maintained and performance specifications are met for a specified range of model variations and a class of noise signals15.
The standard implementation of MPC using a nominal model of the system dynamics exhibits nominal robustness to small
disturbances16 and may be insufficient when larger errors are present. The term nominal MPC is used in this work to describe
the standard implementation of MPC12. In order to achieve robustness to larger disturbances numerous MPC methods have
been considered. The simplest is to ignore the disturbances and rely on the inherent robustness of deterministic MPC applied
to the nominal system16. In these approaches the so-called spread of predicted trajectories resulting from disturbances is not
acknowledged.
In order to acknowledge disturbances open- and closed-loop MPC methods were developed. Open-loop methods calculate

the control action that is safe enough to cope with the effect of the worst disturbance realization17. These controllers can be
very conservative as the disturbance effect can be mitigated by feedback in the actual operation. For this reason, closed-loop
prediction is introduced in18. Thework in19 proposed a feedbackMPCwhere the decision variable is a policy which is a sequence
of control laws. Nevertheless, determining a control policy can be prohibitively difficult and simplifying approximations have
been proposed20,21,22. A popular branch of robust MPC is based on the idea of tubes, as presented in21 for linear systems. In23

a robust MPC for nonlinear systems based on tubes was proposed. The proposed scheme achieves good tracking performance
in simulation. However, it presents a challenge to determine the tightened input constraints and the added computational cost of
solving a nonlinear optimization problem. Our proposed robust adaptive MPC approach has the potential to control a nonlinear
system with a linear MPC. A survey on robust MPC can be found in24.
One way to handle model uncertainties is to develop robust MPC methods, as described above. Another way to handle model

uncertainties is through adaptive MPC. In25 an adaptive MPC for a class of constrained linear systems, which estimates parame-
ters online is presented. However, parameter adaptation depends on state excitation. The performance of the proposed approach
is shown in simulation. The work in26 proposed an adaptive MPC for linear systems with parametric uncertainties. At each
timestep, the adaptation law updates the estimated model parameters and uses the updated model to solve an MPC problem.
However, additional constraints have to be added to the MPC problem in order to guarantee an estimation error bound. These
results are shown in a simulation example. It is difficult to guarantee the fulfillment of constraints in the presence of an adaptive
mechanism. Further, it is difficult to guarantee feasibility and stability theoretically when an adaptation is introduced to MPC25.
Robust adaptive control aids adaptive controllers to achieve robustness. A small number of robust adaptive MPC schemes

have been proposed. The work by27 proposes a robust adaptive MPC for building climate control. In this linear MPC implemen-
tation, the uncertainty of the model is assumed to be in a given parameter set. At each timestep (i) a recursive set membership
identification algorithm tracks the set of all possible model parameters that are consistent with the initial assumptions and the
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FIGURE 1 Proposed framework to achieve high performance control in the presence of modeling errors. The discrete time state
feedback l1 adaptive controller makes the system behave in a predefined, repeatable way. The robust model predictive control
improves the performance at each time step.

data collected thus far, and (ii) a robust MPC minimizes the cost function while guaranteeing satisfaction of constraints for all
parameters in the feasible parameter set. In order to reduce computational complexity (which could grow linearly with time),
further assumptions have to be made on the parameters, e.g. that the parameters lie in a larger set. The latter could incur in a
conservative controller. In28 a robust adaptive MPC for autonomous lane keeping was proposed. The linear model is assumed to
accurately model the system with the exception of uncertainty introduced by discretization and noise components. The knowl-
edge in the steering offset lies in the feasible parameter set, which is updated at every time step (the adaptive component of this
framework). The feasible parameter set is used by a robust MPC to compute an input that is feasible for all the possible steering
offsets in the feasible parameter set. However, the algorithm must be reset if there is any variation in the uncertainty over time
is suspected. Simulation results show that the proposed approach outperforms nominal MPC.
In previous work29 we proposed an adaptive MPC that combines an underlying 1 adaptive controller with a nominal MPC.

In this way, adaptation is decoupled from the optimization problem. The 1 adaptive controller forces a system to behave
close to a specified linear reference model despite the presence of parametric uncertainties and unknown disturbances. The
nominal MPC uses this linear reference model to improve the trajectory tracking performance of the 1 controlled system. This
architecture achieves high tracking performance of a possibly nonlinear system at the computational cost of a linear MPC even
when disturbances are applied. Experiments on a drone showed that the adaptive MPC approach is able to achieve high accuracy
trajectory tracking even when wind disturbances are applied to the vehicle. However, this approach assumes that the linear model
exactly represents the underlying adaptive system, which may degrade the performance of the controller when modeling errors
are present.

1.2 Our Contributions
In order to deal with model uncertainties and further improve performance, we propose a robust and adaptive MPC and make
the following contributions (i) introduce a modified discrete time state feedback l1 adaptive controller, (ii) provide stability and
performance proofs, and (iii) show the performance of the proposed approach with experiments on a quadrotor. Our proposed
robust adaptive MPC decouples adaptation from robustness with two main components: (i) an underlying discrete time state
feedback l1 adaptive controller (orange dashed box in Fig. 1), and (ii) a robust MPC (blue box in Fig. 1). The l1 adaptive
controller makes the system behave close to a linear reference model despite disturbances, which the control designer specifies.
The real system state may deviate from the linear reference model state, which would cause a modeling error. In this work we
show that this deviation is upper bounded and realizable. The upper bound and the linear reference model are used in a robust
MPC framework to calculate the input that minimizes the tracking error of the l1 controlled system. Intuitively, the modeling
error -characterized by the upper bound on the difference between the linear reference model and the l1 controlled system-
can be viewed as an additive disturbance affecting the linear reference model. Recall that robust MPC frameworks such as the
ones presented by21 and22, are proposed for linear systems with bounded additive disturbances; hence, they can be used in our
framework.
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The proposed robust adaptive MPC has the following improvements with respect to30: (i) the l1 adaptive controller is state
feedback instead of output feedback, (ii) the l1 adaptive controller is formulated in the discrete time, (iii) introduces the bound
on the modeling error, and (iv) explicitly accounts for the modeling error with a robust MPC. The l1 adaptive controller is
state feedback to attain performance bounds that are realizable. The output feedback 1 adaptive controller used in30 describes
the system with A(s), which is strictly-proper but unknown. This transfer function is found in all the performance bounds,
which makes them difficult to calculate. Unlike output feedback, state feedback 1 adaptive controllers decouple the system
uncertainties in the performance bounds. Hence, it is possible to calculate these bounds. The l1 adaptive controller was designed
in the discrete time to improve robustness in the implementation. Typically, a discretized version of the continuous time 1
adaptive control is implemented4,29,30,31. However, if the sampling time is increased, the discretized version can become unstable,
as shown in32. Additionally, MPC frameworks are generally formulated for discrete time systems. In this work we introduce
the uniform bound of the difference between the state of the linear reference model and the actual system and explicitly take it
into account in a robust MPC. We show in experimental results with a quadrotor that the proposed robust adaptive MPC has
a marginally better performance than an adaptive MPC (no robustness in the MPC) for trajectory tracking showing that the
robustness added to the MPC does not negatively affect the performance of the controller. Moreover, we show that the robust
adaptive MPC is able to complete tasks that the adaptive MPC is not able to complete, because it takes into account the modeling
errors with the robust MPC.

2 PROBLEM FORMULATION

The objective of this work is to achieve safe and high accuracy trajectory tracking in the presence of modeling errors. Consider
the class of discrete time systems with matched constant uncertainties (see Fig. 1) whose dynamics can be described by the
following system:

x(k + 1) = A(k) + bm(u(k) + �Tx(k) + �) , x(0) = x0 ,
y(k) = cTmx(k) ,

(1)

where x(k) ∈ ℝn is the system state vector (assumed to be measured); u(k) is the control signal; bm, cm ∈ ℝn are known constant
vectors; Am is the known n × n matrix, with (Am , bm) controllable; � is a vector of unknown parameters, and � is a disturbance
both belonging to the compact convex sets � ∈ Θ ⊂ ℝn and � ∈ Ξ ⊂ ℝ; and y(k) ∈ ℝ is the regulated output.

Assumption 1. The set Θ is compact and convex. Each dimension i is bounded by LΘi,min ≤ �i ≤ LΘi,max and the set Θ includes
all the values that satisfy this criterion.
The parameter � is bounded by L�,min ≤ � ≤ L�,max where Ξ is the set that includes all the values that satisfy this criterion.

Generally, the unknown parameters model physical attributes of the system such as mass, moment of inertia, friction, among
others. For this reason we assume these parameters lie in a compact, convex set.
The system is required to accurately track a desired trajectory y∗(k) defined over a finite number of steps N < ∞ and is

assumed to be feasible with respect to the true dynamics of the l1 controlled system (orange dashed box in Fig. 1). We introduce
the lifted representation33 for the desired trajectory y∗ = (y∗(1),… , y∗(N)), and the output of the plant y = (y(1),… , y(N)).
The tracking performance criterion J is defined as:

J ≜ min
e

eTQe , (2)

where e = y − y∗ is the tracking error and Q is a positive definite matrix. The goal is to take into account the disturbances in
the system to improve the tracking performance at each time step.

3 DISCRETE TIME STATE FEEDBACK l1 ADAPTIVE CONTROL

In this Section we present a modified discrete time l1 adaptive controller along with proofs for stability and performance
guarantees. Recall that the l1 adaptive controller brings two important features for the overall robust adaptive MPC. First, it
forces the controlled system to behave close to a linear model despite the presence of disturbances. Second, it provides an upper
bound for the modeling error that arises between the controlled system and the linear reference model. The discrete time state
feedback l1 adaptive controller is inspired by10; however, in this work we (i) extend the system to include a disturbance �
(see (1)), (ii) modify the adaptation law to avoid division by zero, and (iii) prove the uniform upper bound on the difference
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between the l1 controlled system and the linear reference model. There are two main design challenges for a discrete time state
feedback l1 adaptive controller: (i) the definition of an adaptation law, and (ii) the guarantee that the estimated parameters
remain in a given set.
The first challenge is the definition of an adaptation law that allows us to prove stability and show performance guarantees. The

adaptation law is fundamentally a parameter estimation scheme. Parameter estimation for deterministic discrete time systems has
been widely studied34,35. Some of these algorithms have been used in discrete time model reference adaptive control (MRAC)
frameworks36 and discrete time l1 adaptive controllers10. The second challenge is guaranteeing that the estimated parameters
remain in a given set. The latter facilitates the stability analysis and derivation of performance guarantees for the l1 adaptive
control, as will be shown in this Section. To guarantee that the estimated parameters remain in a given set, the continuous time
1 adaptive controllers use the projection operator3. To derive similar performance guarantees in discrete time, the adaptation
law used for the l1 adaptive controller must also include a projection operator. For this reason, the adaptation law in this work
is based on the orthogonalized projection algorithm described in35.
Considering the class of systems described in (1), the control objective is to design an adaptive state feedback control signal

ul1(k) such that the system output y(k) tracks the desired piecewise, bounded reference signal r(k)with quantifiable transient and
steady-state performance bounds. The output is required to track the reference according to a specified stable reference system.

3.1 Discrete Time State Feedback l1 Adaptive Control Architecture
Our discrete time state feedback l1 adaptive controller designs a control signal such that the output y(k) tracks a reference signal
r(k) according to a specified stable reference system Am(k). The discrete time state feedback l1 adaptive controller proposed in
this work is shown in an orange dashed box in Fig. 1. The individual components of the l1 architecture are introduced below.
This architecture is inspired by the architecture presented by10.
Consider the following control structure:

u(k) = um(k) + ul1(k) , um(k) = −kTmx(k) , (3)

where km ∈ ℝn renders Am ≜ A− bkTm stable, while ul1(k) is the adaptive component, which will be defined shortly. The static
feedback gain km leads to the following partially closed-loop system:

x(k + 1) = Amx(k) + bm(u(k) + �Tx(k) + �) , x(0) = x0 ,
y(k) = cTmx(k) .

(4)

The equations that describe the implementation of the discrete time state feedback l1 adaptive controller are:

Adaptation Law:
We the following projection algorithm estimator34,35 that avoids division by zero:

�̂(k + 1) = �̂(k) +

[

x(k)
1

] [

bT0 (x(k + 1) − Amx(k) − bmul1(k)) − �̂
T (k)

[

x(k)
1

]]

1 + xT (k)x(k)
, �̂(0) = �̂0 ∈ Θ × Ξ , (5)

where b0 ≜
bm
bTmbm

is a constant vector. If �̂(k + 1) ∈ Θ × Ξ, then continue, else:

(i) orthogonally project �̂(k + 1) on the boundary of Θ × Ξ to yield �̂′(k + 1):

�̂′i (k + 1) =

⎧

⎪

⎨

⎪

⎩

LΘi,min if �i(k + 1) ≤ LΘi,min
LΘi,max if �i(k + 1) ≥ LΘi,max
�̂i(k + 1) otherwise ,

�̂′(k + 1) =

⎧

⎪

⎨

⎪

⎩

L�,min if �̂(k + 1) ≤ L�,min
L�,max if �̂(k + 1) ≥ L�,max
�̂(k + 1) otherwise .

(6)
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Since �̂′(k+1) is an orthogonal projection of �̂(k+1) ontoΘ×Ξ and since � ∈ Θ×Ξ, then as for the projection algorithm
of35:

‖�̂′(k + 1) − �‖2 ≤ ‖�̂(k + 1) − �‖2 . (7)
The additional steps in the adaptation law guarantee that the estimate �̂(k) remains in the setΘ×Ξ. The latter is needed for
the Lyapunov analysis of the system. It is of particular importance to note that since the projection is orthogonal, then (7)
holds. This allows us to develop the analysis only for �̃(k) ≜ �̂(k) − �, since �̃′(k) ≜ �̂′(k) − � is smaller.

(ii) Finally, assign
�̂(k + 1) = �̂′(k + 1) . (8)

Control law:
The z-transform of the adaptive control signal is:

u(z) = −C(z)(�̂(z) − kgr(z)) , (9)

where r(z) and �̂(z) are the z-transforms of command input r(k) and �̂(k) = �̂T (k)
[

x(k)
1

]

, respectively, kg ≜ (cTm(In −

Am)−1bm)−1, and C(z) is a bounded-input, bounded-output (BIBO) stable, strictly-proper, discrete time transfer function with
gain C(1) = 1, and its state-space realization assumes zero initialization.
The discrete time l1 adaptive controller is defined via (5) – (9) with C(z) verifying the following l1-norm condition:

�� ≜ ‖G(z)‖l1L� < 1 , �� ≜ ‖G(z)‖l1L� <∞ , (10)

where
G(z) ≜ H(z)(1 − C(z)) , H(z) ≜ (zIn − Am)−1bm ,

L� ≜ max�∈Θ ‖�‖1 , L� ≜ max�∈Ξ ‖�‖1 .
(11)

3.2 Lyapunov Stability and Performance Bounds
In this subsection we show Lyapunov stability of the l1 controlled system and its performance bounds with respect to a closed-
loop reference system. Finally, we introduce a performance bound of the l1 controlled system with respect to an ideal reference
model. The ideal reference model can be used to described the l1 controlled system and the performance bound can be used as
a bound on the modeling error. This subsection is divided in three parts (i) background theory required for subsequent proofs,
(ii) Lyapunov stability, and (iii) performance bounds with respect to an ideal linear system.

3.2.1 Background
The following results are needed to show Lyapunov stability and performance bounds. We present them next to improve
readability of the main results of the paper.
We use a state predictor and its corresponding error dynamics as tools to show Lyapunov stability and performance bounds

of the l1 controlled system. We consider the following state predictor:

x̂(k + 1) = Amx̂(k) + bm

(

ul1(k) + �̂
T (k)

[

x(k)
1

])

, x̂(0) = x0 ,

ŷ(k) = cTm x̂(k) ,
(12)

where x̂(k) ∈ ℝn is the state predictor and �̂(k) ≜
[

�̂(k)
�̂(k)

]

∈ ℝn+1 is the adaptive estimate of parameters � and �.

Next, we derive the error dynamics of the state predictor from (4) and (12):

x̃(k + 1) = Amx̃(k) + bm(�̃T (k)x(k) + �̃(k)) , x̃(0) = 0 , (13)

where x̃(k) = x̂(k) − x(k), �̃(k) ≜ �̂(k) − �, and �̃(k) ≜ �̂(k) − �. Let �̃(k) ≜
[

�̃(k)
�̃(k)

]T [x(k)
1

]

and �̃(z) be its z-transform. The

error dynamics (13) can be written in the z-domain as:

x̃(z) = H(z)�̃(z) . (14)
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We need to show that the error dynamics (14) are bounded. Lemma 1 and 2 contain results needed to show boundedness of
the prediction error dynamics. Lemma 1 proposes a Lyapunov function for the error dynamics of a form that is convenient to
show uniform boundedness.

Lemma 1. Recall that Am is asymptotically stable. Let P , R ∈ ℝn×n be positive definite matrices that satisfy:

P = ATmPAm + R + In (15)

and
� ≜

√

�max(ATmPAm) , (16)

where �max(ATmPAm) is the maximum eigenvalue of ATmPAm. Let � > 0 and define:

Vx(x̃(k)) ≜ ln(1 + �x̃T (k)P x̃(k)) (17)

and
ΔVx(x̃(k)) ≜ Vx(x̃(k + 1)) − Vx(x̃(k)) . (18)

Then
ΔVx(x̃(k)) ≤ �

−x̃T (k)Rx̃(k) + (�2 + 1)bTmPbm[x
T (k)�̃(k) + �]2

1 + �x̃T (k)P x̃(k)
, k ≥ 0 . (19)

The proof of this lemma can be found in Section A.1. The result of the following Lemma is required to show uniform
boundedness of the error dynamics x̃.

Lemma 2. There exist constants �, �, � > 0 such that

1 + xT (k)x(k) ≤ (1 + ��)(1 + �x̃T (k)P x̃(k)) . (20)

The proof of Lemma 2 can be found in Section A.2. Using the results presented in Lemmas 1–2, we show that the prediction
error x̃ is uniformly bounded.

Lemma 3. The prediction error in (13) is uniformly bounded by:

‖x̃‖l∞ ≤

√

ew�max − 1
��min(P )

, �max ≜ 4 max�∈Θ×Ξ
‖�‖2 , (21)

where P is defined in (15), w > 0, and � > 0 is defined in (A16).

The proof of Lemma 3 can be found in Section A.3. So far we have shown that x̃(k) remains bounded, but x(k) and x̂(k) could
diverge at the same rate3. In the next Lemma, we show that x̂(k) in (12), with ul1(k) given by (9), is uniformly bounded.

Lemma 4. The state estimate in (12) is uniformly bounded by:

‖x̂‖l∞ ≤
��
√

ew�max−1
��min(P )

+ ‖G(z)‖l1L� + ‖H(z)kgC(z)‖l1‖r‖l∞ + ‖xin‖l∞
1 − ��

. (22)

The proof of this Lemma is found in Section A.4.
Finally, we define the following proper and BIBO stable transfer function

H1(z) ≜ C(z) 1
cT0H(z)

cT0 , (23)

where c0 ∈ ℝn and ensures that cT0H(z) is a minimum phase transfer function with relative degree one. The full derivation is
found in Section A.5.

3.2.2 Lyapunov Stability
Lyapunov stability of the l1 controlled system is shown in two steps. First, we find a closed-loop reference model for the class
of systems in (4) and show that it is stable. Then, we show that the l1 controlled system stays close to the closed-loop reference
model. Consider the following nonadaptive version of the control system in (4) and (9) which defines the closed-loop reference
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system for the class of systems in (4):

xref (k + 1) = Amxref (k) + bm(uref (k) + �Txref (k) + �) , xref (0) = x0 ,

uref (z) = −C(z)(�Txref (z) + � − kgr(z)) ,

yref (k) = cTmxref (k) .

(24)

In the next Lemma we first show that the closed-loop reference system (24) is stable.

Lemma 5. If ‖G(z)‖l1L� < 1, and ‖G(z)‖l1L� <∞, then (24) is bounded-input, bounded-state (BIBS) stable with respect to
r(z) and x0.

Proof. From the definition in (24), it follows that:

xref (z) = H(z)kgC(z)r(z) + G(z)�Txref (z) + G(z)� + xin(z) , (25)

where xin(z) ≜ (zIn − Am)−1x0. Since H(z), C(z) and G(z) are proper BIBO stable discrete time transfer functions, it follows
from (24) that for all i ∈ ℕ ∪ {0} the following bound holds:

‖xref |i‖l∞ ≤ ‖H(z)kgC(z)‖l1‖r|i‖l∞ + ‖G(z)�T ‖l1‖xref |i‖l∞ + ‖G(z)�‖l1 + ‖xin|i‖l∞ . (26)

Since Am is stable, xin(k) is uniformly bounded. Then, we have the following relationship

‖G(z)�T ‖l1 = max
m=1,…,n

‖Gm(z)‖l1

n
∑

p=1
|�p| ≤ ‖G(z)‖l1L� < 1 , (27)

where ‖Gm(z)‖l1 is the l1-norm for the impulse response for each output gm(k) where m = 1,… , n. Recall from Assumption 1
that � ∈ Ξ. Then we have the following relationship

‖G(z)�‖l1 = max
m=1,…,n

‖Gm(z)‖l1 |�| ≤ ‖G(z)‖l1L� <∞ . (28)

Consequently,

‖xref |i‖l∞ ≤
‖H(z)kgC(z)‖l1‖r|i‖l∞ + ‖G(z)‖l1L� + ‖xin|i‖l∞

1 − ‖G(z)�T ‖l1
. (29)

Since r(k) and xin(k) are uniformly bounded, ‖G(z)‖l1L� is bounded, and (29) holds uniformly for all i ∈ ℕ ∪ {0}, xref (k) is
uniformly bounded. Boundedness of yref (k) follows from its definition.

The second step to show Lyapunov stability of the l1 controlled system is to show that the system stays close to the closed-
loop reference system (24). The following theorem shows that the difference between states and inputs of the l1 controlled
system and the closed-loop reference system (24) is bounded.

Theorem 1. For the system in (4) and the controller defined via (5) – (6) and (9) subject to the l1-norm condition in (10), we
have

‖xref − x‖l∞ ≤ 1 , ‖uref − u‖l∞ ≤ 2 , (30)
where

1 ≜
‖C(z)‖l1

1 − ‖G(z)‖l1L�

√

ew�max − 1
��min(P )

,

2 ≜ ‖H1(z)‖l1

√

ew�max − 1
��min(P )

+ ‖C(z)�T ‖l11 + L�‖1 − C(z)‖l1 .

(31)

Proof. The response of the closed-loop system in (4) with the l1 adaptive controller in (9) can be written in the z domain as:

x(z) = H(z)C(z)kgr(z) −H(z)C(z)�̂(z) +H(z)(�Tx(z) + �) + xin(z)

= H(z)C(z)kgr(z) −H(z)C(z)�̃(z) + G(z)(�Tx(z) + �) + xin(z)
(32)
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The above equality holds because �̃(z) = �̂(z)−�T
[

x(z)
1

]

and−�̂(z) = −�̃(z)−�T
[

x(z)
1

]

. From the definition of the closed-loop

reference system in (24), it follows that

xref (z) = H(z)kgC(z)r(z) + G(z)�T
[

xref (z)
1

]

+ xin(z) . (33)

The expressions above and the predictor error dynamics in (14) allow us to write

xref (z) − x(z) = G(z)�T
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

xref (z)

1

⎤

⎥

⎥

⎦

−
⎡

⎢

⎢

⎣

x(z)

1

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

+H(z)C(z)�̃(z)

= G(z)�T (xref (z) − x(z)) +H(z)C(z)�̃(z)

= G(z)�T (xref (z) − x(z)) + C(z)x̃(z) ,

(34)

which implies that
‖(xref − x)|i‖l∞ ≤ ‖G(z)�T ‖l1‖(xref − x)|i‖l∞ + ‖C(z)‖l1‖x̃|i‖l∞ . (35)

Then, the bounds in (27) and (21) lead to the following uniform upper bound:

‖(xref − x)|i‖l∞ ≤
‖C(z)‖l1‖x̃|i‖l∞
1 − ‖G(z)‖l1L�

≤
‖C(z)‖l1

1 − ‖G(z)‖l1L�

√

ew�max − 1
��min(P )

. (36)

To derive the second bound, notice that (9) and (24) lead to:

uref (z) − u(z) = −C(z)
⎛

⎜

⎜

⎝

�T
⎡

⎢

⎢

⎣

xref (z)

1

⎤

⎥

⎥

⎦

− kgr(z)
⎞

⎟

⎟

⎠

+ C(z)(�̂(z) − kgr(z))

= −C(z)�T
⎡

⎢

⎢

⎣

xref (z)

1

⎤

⎥

⎥

⎦

+ C(z)�̂(z)

= −C(z)�Txref (z) − C(z)� + C(z)(�̃(z) + �Tx(z) + �)

= C(z)�̃(z) − C(z)�T (xref (z) − x(z)) − �(1 − C(z)) .

(37)

It follows from the error dynamics in (14) and the definition ofH1(z) in (23) that

C(z)�̃(z) = C(z)
cT0H(z)

cT0H(z)
�̃(z) = H1(z)H(z)�̃(z) = H1(z)x̃(z) , (38)

which implies that
uref (z) − u(z) = H1(z)x̃(z) − C(z)�T (xref (z) − x(z)) − �(1 − C(z)) , (39)

and the following bound holds

‖(uref − u)|i‖l∞ ≤ ‖H1(z)‖l1‖x̃(z)‖|i‖l∞ + ‖C(z)�T ‖l1‖(xref − x)|i‖l∞ + L�‖1 − C(z)‖l1 . (40)

This bound holds uniformly. The bounds in (21) and (36) lead to

‖(uref − u)|i‖l∞ ≤ ‖H1(z)‖l1

√

ew�max − 1
��min(P )

+ ‖C(z)�T ‖l11 + L�‖1 − C(z)‖l1 . (41)

In this subsection we used Lemma 5 to show that the closed-loop reference system (24) is BIBS stable. Then, in Theorem 1
we showed that the difference between the state and input of the l1 controlled system and the state and input of the closed-loop
reference system is bounded. Therefore, we can conclude that the l1 controlled system is stable in the sense of Lyapunov.
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3.3 Performance Bounds
The closed-loop reference system (24) is not realizable as it depends on knowing the true value of � and �; hence, it cannot be
used to describe the l1 controlled system. In this subsection we show that the l1 controlled system stays close to a known linear
model. Further, we show that the difference between these two systems is bounded.
The l1 adaptive controller is able to cancel the uncertainties of the system exactly when the uncertainties are within the

bandwidth of the low-pass filter. In this ideal scenario, the system response is the following:

xid(k + 1) = Amxid(k) + bmkgr(k) , (42)

where the subscript xid is used to denote the ideal response. All variables of the ideal system are known; hence, it can be
implemented. Next, we show that there exists a uniform upper bound for the difference between the ideal (42) and the l1
controlled system. This bound will be later used in the robust MPC implementation.

Theorem 2. For the system (4) and the controller defined via (5) – (6) and (9) subject to the l1-norm condition in (10), we have

‖xid − x‖l∞ ≤ ‖H(z)(1 − C(z)kg)‖l1‖r‖l∞ + ‖H(z)H1(z)‖l1‖x̃‖l∞ + ��

(

‖x̂‖l∞ +

√

ew�max − 1
��min(P )

)

+ �� . (43)

Proof. The response of the ideal system in the z domain can be written as:

xid(z) = H(z)kgr(z) + xin(z) . (44)

The response of the closed-loop system in (4) with the l1 adaptive controller in (9) can be written in the z domain as (32). The
latter implies that:

x(z) − xid(z) = H(z)kg(C(z) − 1)r(z) −H(z)C(z)�̂(z) +H(z)(�Tx(z) + �)

= H(z)kg(C(z) − 1)r(z) −H(z)C(z)�̃(z) + G(z)(�Tx(z) + �)

= H(z)kg(C(z) − 1)r(z) −H(z)H1(z)x̃(z) + G(z)(�Tx(z) + �) .

(45)

Using the above, the following uniform bound can be derived

‖(x − xid)|i‖l∞ ≤ ‖H(z)kg(C(z) − 1)‖l1‖r|i‖l∞ + ‖H(z)H1(z)‖l1‖x̃‖l∞

+��

(

‖x̂‖l∞ +
√

ew�max − 1
��min(P )

)

+ �� .
(46)

Ideally, the controller would be able to compensate for all the disturbances in the system, which would make the controlled
system behave exactly as the ideal system (42). However, this is not always possible and modeling errors arise. In Theorem 2,
we showed that there exists a uniform upper bound for the difference between the real and the ideal system. This bound can
be interpreted as a bound on the modeling error of the adaptive system by the linear model (42), which is required for the
implementation of the robust MPC, as will be shown in the next Section.

4 MODEL PREDICTIVE CONTROL

The main disadvantages of MPC are the difficulty to incorporate plant model uncertainties explicitly37 and to guarantee robust
stability of the origin. Robust MPC implementations have two requirements: (i) a model of the system, and (ii) a bound on the
disturbance in the system, which may be thought of as a modeling error. In Section 3, we presented a discrete time state feedback
l1 adaptive controller that is able to provide a system model and an upper bound on the modeling error. Any robust MPC
implementation that has a bounded additive disturbance21,22 can be used. In this work we use the robust MPC for linear systems
with additive disturbance proposed in21. For convenience and completeness, we briefly describe the robust MPC approach and
highlight its role in the robust adaptive MPC framework. The discrete time system to be controlled by a robust MPC is described
by:

x(k + 1) = Amx(k) + bmu(k) +w , (47)
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where x(k) ∈ ℝn is the state at time step k, u ∈ ℝm is the input, w ∈ ℝn is a bounded disturbance, and x(k + 1) denotes the
successor state. The system is subject to state and input constraints

u ∈ U , x ∈ X , (48)

where U ⊂ ℝm is compact, X ⊂ ℝn is closed, and each set contains the origin in its interior. The disturbance w is assumed to
be bounded

w ∈ W , (49)
whereW is compact and contains the origin. In our work, this disturbance is the modeling error from the l1 adaptive controller
and is described by (43). Let u = [u(0),… , u(NH − 1)] be the control sequence and w = [w(0),… , w(NH − 1)] be the
disturbance sequence. Let �(k; x,u,w) be the solution of (47) at time k when the initial state is x (at time 0) and the control and
disturbance sequences are u and w, respectively. We define the nominal system corresponding to (47) by

x̄(k + 1) = Amx̄(k) + bmū(k) , (50)

and define �̄(k; x̄, ū) as the solution of (50) at time k when the initial state is x̄ and the control sequence is ū.
Let K ∈ ℝm×n such that AK ≜ Am + bmK is stable. Further, let Z be a disturbance invariant set for the controlled uncertain

system x(k + 1) = AKx(k) +w satisfying
AKZ ⊕W ⊆ Z , (51)

where⊕ denotes Minkowski set addition, i.e.,A⊕B ≜ {a+b | a ∈ A, b ∈ B}. The setZ serves as the ‘origin’ for the perturbed
system. In order to reduce conservativeness, the set Z should be as small as possible. Different ways to calculate and minimize
Z are presented in21. The following Proposition is introduced as it is required for the definition of the controller. It states that
the feedback policy u(k) = ū(k) + K(x(k) − x̄(k)) keeps the states x(k) of the uncertain system (47) close to the states x̄(k) of
the nominal system (50) for all ū(⋅), x(k) ∈ x̄(k)⊕Z if x(0) ∈ x̄(0)⊕Z.

Proposition 1. SupposeZ is disturbance invariant for x(k+1) = AKx(k)+w. If x ∈ x̄⊕Z and u(k) = ū(k)+K(x(k)− x̄(k)),
then x(k + 1) ∈ x̄(k + 1)⊕Z for all w ∈ W where x(k + 1) = Amx(k) + bmu(k) +w and x̄(k + 1) = Amx̄(k) + bmū(k).

The robust MPC used in this work21 has three main changes compared to nominal MPC (i) addition of the initial state as a
decision variable, (ii) tightening of state and input constraints, and (iii) modification of the control law to include an ancillary
controller. In order to better understand these changes, we first present the nominal MPC formulation.

4.1 Nominal Model Predictive Control
Nominal MPC is described by a conventional optimal control problem ℙNH

(x(k)) with constraints that are tighter than those
specified in (48), where x(k) is the current state with no uncertainties. The tighter constraints guarantee that the controller for the
uncertain system satisfies the original constraints; however, nominal MPC generally doesn’t tighten its constraints. The optimal
control problem ℙNH

(x(k)) is defined by

V 0
NH
(x(k)) = min

u
{VNH

(x(k),u) |u ∈ NH
(x(k))} , (52)

u0(x(k)) = argminu{VNH
(x,u) |u ∈ NH

(x(k))} , (53)
where the cost function VNH

(⋅) is defined over the time horizonNH by

VNH
(x(k),u) ≜

NH−1
∑

i=0
l(x(i), u(i)) + Vf (x(NH )) . (54)

Note that each x(i) satisfies x(i) = �̄(i; x, ū), and NH
x(k) is the set of control sequences satisfying the tighter control, state

and terminal constraints defined by
u(i) ∈ Ū ≜ U⊖KZ , i ∈ NH−1 ,
x(i) ∈ X̄ ≜ X⊖Z , i ∈ NH−1 ,
x(NH ) ∈ Xf ⊂ X⊖Z ,

(55)

where NH−1 ≜ {0, 1,… , NH − 1}, and Xf is the terminal constraint set for ℙNH
(x(k)), which is assumed to have an interior.

Hence,
NH

(x(k)) = {u | u(i) ∈ Ū, �̄(i; x,u) ∈ X̄, ∀i ∈ NH−1, �̄(NH ; x(k),u) ∈ Xf} , (56)
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where x(i) = �̄(NH ; x(k),u). The domain of the value function V 0
NH
(⋅) is X̄NH

and is defined by

X̄NH
≜ {x(k) |NH

(x(k)) ≠ ∅} . (57)

Further, we assume that the setW is small enough to ensure thatZ ⊂ interior(X) andKZ ⊂ interior(U). Note that the minimal
Z is proportional toW . Let

l(x, u) ≜ 1
2
[xTQMPCx + uTRMPCu] , Vf (x) ≜

1
2
xTPMPCx , (58)

whereQMPC,RMPC andPMPC are positive definite. The terminal cost Vf (⋅) and the terminal constraint setXf satisfy the following
usual axioms13:

Axiom 1. AKXf ⊂ Xf , Xf ⊂ X⊖Z, KXf ⊂ U⊖KZ,

Axiom 2. Vf (AKx(k)) + l(x(k), Kx(k)) ≤ Vf (x(k)) ∀x(k) ∈ Xf .

Solving the optimal control problem ℙNH
(x(k)) yields the optimal control sequence u0(x(k)) ≜

{u00(x(k)), u
0
1(x(k)),… , u0NH−1

(x(k))} and the optimal state sequence x0(x(k)) ≜ {x00(x(k)), x
0
1(x(k)),… , x0NH

(x(k))},
x00(x(k)) ≜ x(k), where, for each i, x0i (x(k)) ≜ �̄(i; x(k),u0(x(k))). With the following model predictive control law

�0NH
(x(k)) ≜ u00(x(k)) , (59)

the nominal system, under model predictive control satisfies

x(k + 1) = Amx(k) + bm�0NH
(x(k)) . (60)

The model predictive control law ensures that the nominal system satisfies the tighter constraints for all initial states in X̄NH
.

The nominal system is also stabilized as , under the assumptions above, the value function satisfies13

V 0
NH
(Amx(k) + bm�0NH

(x(k))) ≤ V 0
NH
(x(k)) − l(x(k), �0NH

(x(k)) . (61)

We assume X̄NH
is bounded, hence, the origin is exponentially stable for the controlled nominal system x(k + 1) = Amx(k) +

bm�0NH
(x(k)) with a region of attraction X̄NH

.
Recall that nominal MPC provides nominal robustness to small disturbances in the nominal system; however, if larger

disturbances are present, they should be addressed by a robust MPC.

4.2 Robust Model Predictive Control
When there are additive disturbances, given any state x(k) ∈ X̄NH

⧵Z, it may not be true that V 0
NH
(Amx(k)+bm�0NH

(x(k))+w) ≤
V 0
NH
(x(k)) for all w ∈ W . As stated at the beginning of this Section (see eq. (51)), there exists a controller K for which we can

find a disturbance invariant setZ. In other words, the controllerK is able to keep inZ any state beginning inZ. Hence, we need
to establish robust asymptotic stability of Z. To do this, the optimization problem incorporates the initial state. This is possible
as the initial state x0 in the optimal control problem is not the current state x(k) of a plant, but a parameter of the control law.
The new optimal control problem ℙ∗NH

(x(k)), is a modification of the previously defined conventional optimal control problem
ℙNH

(x(k)). The new problem ℙ∗NH
(x(k)) is defined as follows

V ∗
NH
(x(k)) = min

x0,u
{VNH

(x0,u) |u ∈ NH
(x0), x ∈ x0 ⊕Z} , (62)

(x∗0(x(k)),u
∗(x(k))) = argminx0,u{VNH

(x0,u) |u ∈ NH
(x0), x(k) ∈ x0 ⊕Z} . (63)

The function VNH
(x(k),u) was defined in (54) and the constraint set  (x(k)) was defined in (55). Note that the only differ-

ence between ℙNH
(x(k)) and ℙ∗NH

(x(k)) is that the initial state x0 of the model employed in the new optimal control problem
ℙ∗NH

(x(k)) is a decision variable that can be varied if it satisfies the following constraint

x(k) ∈ x0 ⊕Z , (64)

where x(k) is the current state of the system being controlled. It can be shown that ℙ∗NH
(x(k)) is a quadratic program that

yields the optimal control sequence u∗(x(k)) ≜ {u∗0(x(k)),… , u∗NH−1
(x(k))} and the optimal state sequence x∗(x(k)) ≜

{x∗0(x(k)),… , x∗NH
(x(k))} where, for each i > 0, x∗i (x(k)) ≜ �̄(i; x∗0(x(k)),u

∗(x(k))). Note that the optimal state x∗0(x(k)) is not
necessarily equal to the current state x(k). A pair (x0,u) is a feasible solution of ℙ∗NH

(x(k)) if x(k) ∈ x0⊕Z and u ∈ UNH
(x0).
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Motivated by Proposition 1, we propose the following implicit model predictive control law �∗NH
(⋅), yielded by the solution of

ℙ∗NH
(x(k))

�∗NH
(x(k)) ≜ u∗0(x(k)) +K(x(0) − x

∗
0(x(k))) . (65)

The control �∗NH
(x(k))is not necessarily equal to u∗0(x(k)), as in conventional model predictive control. Let x(k) be an arbitrary

state in
XNH

≜ {x |∃ x0 such that x(k) ∈ x0 ⊕Z, UNH
(x0) ≠} , (66)

the domain of the value function V ∗
NH
(⋅). The optimal control and state trajectories for the problem ℙ∗NH

(x(k)), u∗(x(k)) and
x∗(x(k)), respectively, satisfy

u∗i (x(k)) ∈ U⊖KZ ,

x∗i (x(k)) ∈ X⊖Z ,∀i ∈ NH−1 and

x∗NH
(x(k)) ∈ Xf ⊂ X⊖Z .

(67)

In21 it was shown that for the above robust model predictive controller, the setZ is robustly exponentially stable for the controlled
uncertain system x(k + 1) = Amx(k) + bm�∗NH

(x(k)) +w where w ∈ W , and that the region of attraction is XNH
.

This robust MPC implementation provides robust stability of the invariant setZ. To achieve this the initial state is added as a
decision variable in the optimization problem and the control law is modified to include an ancillary controller whose aim is to
keep the state in the invariant set Z. In this way, a system with additive disturbances (47) is able to track a path that decreases
the cost of the value function, despite the presence of disturbances.

5 ROBUST ADAPTIVE MPC FRAMEWORK

This Section presents a summary of the proposed robust adaptiveMPC framework in Fig. 1.We propose an l1 adaptive controller
(orange dashed box in Fig. 1) as an underlying controller to a robust MPC (blue box in Fig. 1) to achieve safe and high accuracy
tracking performance. The key idea of this framework is to leverage characteristics of the discrete time state feedback l1 adaptive
controller to satisfy the requirements for the linear robust MPC.
In Section 3 we showed that the proposed discrete time state feedback l1 adaptive controller is able to make a system behave

close to an ideal linear system (42). The ideal system behavior is achievable only if all the uncertainties in the system are
canceled, which is not always attainable. Therefore, the behavior of the real system may deviate from the ideal system behavior.
We also showed that the deviation between ideal and real behavior is bounded (43) and can be thought of as a bound on the
modeling error. We can then reformulate the ideal linear system (42) as a linear system with a bounded additive disturbance
defined by (43).
In Section 4.2 we described a robust MPC for linear systems with bounded additive disturbances. The robust MPC uses an

ancillary controller to achieve robust stability of a disturbance invariant set. In this work we formulate a cost function that aims
to minimize tracking error and control effort of the l1 controlled system. In summary, the underlying l1 adaptive controller is
able to provide a linear system model with bounded additive disturbances to be used by the robust MPC; while the robust MPC
provides the l1 adaptive controller with a reference signal that will minimize the tracking error of the l1 controlled system. In
this way, we are enable a system to achieve safe and high accuracy tracking in the presence of modeling errors.

6 EXPERIMENTAL RESULTS

This section presents experimental results of the proposed robust adaptive MPC applied to a quadrotor flying a given trajectory.
We show that combining an underlying l1 adaptive controller with a robust MPC instead of a nominal MPC (as we previously
proposed in30), enables the quadrotor to successfully complete more challenging tasks. We assess three aspects of the perfor-
mance of the proposed framework: (i) trajectory tracking performance, (ii) obstacle avoidance without trajectory update, and
(iii) obstacle avoidance with trajectory update. The performance of the proposed robust adaptive MPC is compared to the perfor-
mance of an adaptive MPC framework where the same underlying discrete time state feedback l1 adaptive controller described
in Section 3 is combined with a nominal MPC.
Section 6.1 describes the experimental setup and implementation details of the proposed robust adaptive MPC. Section 6.2

compares the tracking performance of adaptive MPC and robust adaptive MPC on six different trajectories. Finally, an obstacle
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FIGURE 2 Parrot Bebop 2 used in the experiments.

is introduced and the ability of the controllers to steer the quadrotor to avoid a collision is tested in Section 6.3, where the
trajectory is not updated to avoid the obstacle, and Section 6.4, where the trajectory is updated to avoid the obstacle.

6.1 Experimental Setup
The vehicle used in the experiments is the Parrot Bebop 2. A central overhead motion capture camera system provides position,
roll-pitch-yaw Euler angles and rotational velocity measurements, and through numerical differentiation, we obtain translational
velocities of the quadrotor. We implement a discrete time state feedback l1 adaptive controller for position control of each axis,
as described in Section 3. We assume that the x, y, and z axes are decoupled. The signal r(k) in Fig. 1 is the desired position
in x, y and z directions. The output of the l1 adaptive controller ui,l1(k) where i = x, y, z, commanded x and y translational
acceleration and commanded z velocity, respectively, is specified in the global coordinate frame. However, the interface to the
real quadrotor (‘Plant’ in Fig. 1) requires commanded roll (�des), pitch (�des), vertical velocity (żdes), and rotational velocity
around the z axis ( des) (see38). Therefore, we transform the signals ui,l1(k) through the following nonlinear transformation:

�des = −arcsin(−ux sin( ) + uy cos( )) ,

�des = arcsin(ux cos( ) + uy sin( )) ,

żdes = uz,l1 ,

(68)

where  is the current yaw angle. During the experiment, the desired yaw angle ( des) is set to zero and is controlled with
a proportional controller u = k ( des −  ), with proportional gain k . We also implement a robust MPC as described in
Section 4.2. The signal x(k) is the state and r∗(k) the desired state, which in this case is composed of position and velocity.
Nominal and robust MPC use the same weights on the value function to be minimized that is defined as follows:

VNH
(x(k),u) ≜

NH−1
∑

i=0
eTx (i)QMPCex(i) + uT (i)RMPCu(i) + Vf (x(NH )) , (69)

whereQMPC and RMPC are positive definite matrices defined byQMPC = qI , RMPC = rI , and ex(i) is the error between the state
x(i) and the desired state r∗(i). We constrain the input to guarantee that the quadrotor remains in a given area at all times. We
use IBM CPLEX optimizer to solve the above optimization problem.
To quantify the tracking error we define the average position error along the trajectory as:

e =

∑N
i=1

√

(rx,pos(i) − xx,pos(i))2 + (ry,pos(i) − xy,pos(i))2 + (rz,pos(i) − xz,pos(i))2

N
, (70)

where rj,pos(i) are the desired positions and xj,pos(i) are the measured positions with j = x, y, z.
In Section 3 we showed that there is an upper bound on the modeling error between the real and ideal state (43). This bound

is conservative and would not be suitable to use in a robust MPC framework. However, this bound can experimentally be
characterized through simple step response experiments. Fig. 4 shows the response of the actual system and the ideal system
of the x, y, and z axes for a step response. The deviation between the real and ideal system response is used to characterize the
upper bound (43).
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FIGURE 3 The six different trajectories that are used to test trajectory tracking of the robust adaptive MPC framework.
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FIGURE 4 Comparison of ideal trajectory followed by the ideal system (solid magenta line) and actual trajectory followed by
the quadrotor (dashed gray line).

6.2 Tracking Performance
In our previous work30 we showed an adaptive MPC with tracking capabilities that outperform those of non adaptive and non
predictive approaches. In this subsection we want to show that the added robustness of the robust MPC does not negatively affect
the tracking performance of the robust adaptive MPC. The adaptive MPC in30 has an underlying discretized output feedback 1
adaptive controller. Recall that in this experiment, the adaptive and the robust adaptive MPC use the same underlying discrete
time state feedback l1 adaptive controller described in Section 3. The only differences between adaptive and robust adaptive
MPC are (i) the inclusion of the initial state as a decision variable in the robust MPC, and (ii) the modification of the robust
MPC control law to include an ancillary controller.
We propose six different trajectories to test the tracking performance of our approach, as shown in Fig. 3. The average position

tracking errors for each controller and trajectory are shown in Fig. 5. In the six trajectories both controllers have a similar per-
formance. In five of the six trajectories, the robust adaptive MPC achieves a smaller tracking error, since it is able to incorporate
the error between the ideal and real system state.

6.3 Obstacle Avoidance without Trajectory Update
We assess the performance of the controllers when an obstacle is introduced in the environment. Fig. 6a shows the obstacle and
the desired trajectory in 3D space. Fig. 6b shows a top view of the obstacle (in black), and the desired trajectory (in red). The
obstacle lies on the path of the desired trajectory; hence, the controllers must compute inputs that force the system to fly around
the obstacle and avoid a collision. In this experiment, the trajectory remains unchanged despite the presence of the obstacle. The
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FIGURE 5 Average tracking error in quadrotor experiments of six different trajectories with adaptive MPC and the proposed
robust adaptive MPC. Robust Adaptive MPC has a lower trajectory tracking error in most trajectories.
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FIGURE 6 The drone is required to fly a 3D trajectory as shown in Fig. 6a. However, an obstacle is detected after the trajectory
has been calculated. For this experiment the trajectory remains constant even if an obstacle lies on the trajectory. Fig. 6b is the top
view and shows that the trajectory passes through the center of the obstacle. The drone must avoid the obstacle to successfully
complete the task.

drone must avoid the obstacle during the flight in order to successfully complete the task. To avoid crashing with the obstacle,
constraints on the allowable states set X are introduced such that

Xnew = X⊖W , (71)

where W is the obstacle set which includes the positions that lie inside the obstacle. For this experiment, the obstacle set W is
described by

x2 + y2 ≤ 0.152 . (72)
Recall from Section 4.2 that the robust MPC implementation we use in this work requires us to further constrain the set

of allowable states. In the framework of this experiment this means that each state in the optimal state sequence must satisfy
x∗i (x(k)) ∈ Xnew ⊖Z. In this experiment we will compare the proposed robust adaptive MPC with two variations of adaptive
MPC (i) allowable state set is unchanged, i.e., x∗i (x(k)) ∈ Xnew, which we will refer to as nominal adaptive MPC and (ii) allow-
able state set is constrained, i.e., x∗i (x(k)) ∈ Xnew⊖Z, which wewill refer to as conservative adaptiveMPC. Typically, a nominal
MPC implementation does not further constrain Xnew. We use two variations of adaptive MPC to show that only constraining
the state set is not enough to successfully complete the proposed task.
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(c) Time = 2.32 [s].

-1 -0.5 0 0.5 1 1.5

x axis [m]

-1

-0.5

0

0.5

1

1.5

y
 a

x
is

 [
m

]

(d) Time = 2.32 [s].
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(e) Time = 2.58 [s].
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(f) Time = 2.58 [s].
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(g) Time = 2.74 [s].
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(h) Time = 6.82 [s].

FIGURE 7 Quadrotor experiments comparing conservative adaptive MPC and robust adaptive MPC. The goal of this task is to
follow the trajectory while avoiding the obstacle. Plots of the x, y plane show the evolution of the system with both controllers.
Only constraining the set of allowable states X, as in the conservative adaptive MPC, is not enough to successfully avoid the
obstacle. The modeling error in the systemmust be included, as in the robust adaptiveMPC framework, to successfully complete
the task.
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(b) Time = 2.24 [s].
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(e) Time = 2.42 [s].
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(f) Time = 2.42 [s].
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(g) Time = 2.64 [s].
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FIGURE 8 Quadrotor experiments comparing nominal adaptive MPC and robust adaptive MPC. The goal of this task is to
follow the trajectory while avoiding the obstacle. Plots of the x, y plane show the evolution of the system with both controllers.
The nominal adaptive MPC does not further constrain the set of allowable states X, as the robust adaptive MPC does, yet it
does not successfully avoid the obstacle. The modeling error in the system must be included, as in the robust adaptive MPC
framework, to successfully avoid the obstacle.
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In order to compare the performance of the different approaches, we plot in the x, y plane at different timesteps: (i) the desired
trajectory (in red), (ii) the actual trajectory of the drone (in blue), (iii) the predicted trajectory at that timestep (in magenta),
(iv) the obstacle (in black), and (v) the boundary of the set Xnew ⊖Z (as a dashed black line), where applicable.
The performance at four different times of the changed adaptive MPC and robust MPC is shown in Fig. 7. Fig. 7a shows that

at 2.24 seconds, the constrained adaptive MPC optimizes for a trajectory that is predicted to go around the constrained area. At
the same time, Fig. 7b shows that the robust MPC predicts a trajectory that also goes around the constrained area. It is clear
that the robust MPC changes the initial state in the optimization. Note that the predicted trajectories shown are the ones that
the nominal and robust MPC calculate. They do not reflect the ‘real’ predicted behavior of the system as the inputs change at
each time step. At 2.32 seconds, the constrained adaptive MPC still predicts a trajectory that goes around the constrained area,
as shown in Fig. 7c. However, the real state of the system and the ideal state start to deviate and the adaptive MPC is unable
to compute a trajectory robust enough given the increased modeling error. At 2.58 seconds the drone goes into the constrained
area and the nominal MPC becomes an unfeasible problem, as seen in Fig. 7e. Finally, the drone with the changed adaptive
MPC collides with the obstacle (see Fig. 7g) while the drone with the robust adaptive MPC is able to avoid the obstacle (see
Fig. 7h). The behavior of the robust adaptive MPC is oscillatory at the end of the trajectory because the optimization aims to
minimize the trajectory tracking error. Hence, the robust adaptive MPC generates large inputs to bring the system close to the
desired trajectory faster causing oscillations.
Next, we show in Fig. 8 a comparison between the nominal adaptive MPC and robust adaptive MPC at different times in the

trajectory. At 2.24 seconds the nominal adaptiveMPC (see Fig. 8a) and the robust adaptiveMPC (see Fig. 8b) predict trajectories
that will not collide with the obstacle. A similar behavior is shown at 2.32 and 2.42 seconds for the nominal adaptive MPC
(see Fig. 8c and Fig. 8e) and robust adaptive MPC (see Fig. 8d and Fig. 8f). However, the nominal adaptive MPC is not able
to generate a signal robust to model inaccuracies and the drone crashes at 2.64 seconds as seen in Fig. 8g. The proposed robust
adaptive MPC is able to make the drone avoid the obstacle and finish the trajectory successfully, as seen in Fig. 8h.

6.4 Obstacle Avoidance with Trajectory Update
We also assess the performance of the controllers when an obstacle is introduced in the environment and the trajectory is
modified to avoid the obstacle. Fig. 9a shows the obstacle and the desired trajectory in 3D space. Fig. 9b shows a top view into
the x, y plane of the obstacle (in black), and the desired trajectory (in red). The desired trajectory surrounds the obstacle. The
drone must avoid the obstacle during the flight in order to successfully complete the task. In this experiment we also constrain
the allowable states set X to exclude the positions that lie inside the obstacle. The obstacle is described as in (72).
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FIGURE 9 The drone is required to fly a 3D trajectory as shown in Fig. 9a. The trajectory goes around the obstacle in order to
avoid colliding with it. Fig. 9b is the top view and shows that the trajectory goes around the obstacle. The drone must avoid the
obstacle to successfully complete the task.
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(g) Time = 2.72 [s].
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FIGURE 10 Quadrotor experiments comparing conservative adaptive MPC and robust adaptive MPC. The goal of this task is
to follow the trajectory while avoiding the obstacle. In this experiment the trajectory is modified to avoid the obstacle. Plots of
the x, y plane show the evolution of the system with both controllers. Only constraining the set of allowable states X, as in the
conservative adaptiveMPC, is not enough to successfully avoid the obstacle. The modeling error in the systemmust be included,
as in the robust adaptive MPC framework to successfully complete the task.
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(g) Time = 2.62 [s].
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FIGURE 11 Quadrotor experiments comparing nominal adaptive MPC and robust adaptive MPC. The goal of this task is to
follow the trajectory while avoiding the obstacle. In this experiment the trajectory is modified to avoid the obstacle. Plots of the
x, y plane show the evolution of the system with both controllers. The nominal adaptive MPC does not further constrain the set
of allowable states X, as the robust adaptive MPC does, yet it does not successfully avoid the obstacle. Including the modeling
error of the system in the robust adaptive MPC framework enables the system to successfully complete the task.
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The performance at four different times of the conservative adaptive MPC and robust adaptive MPC is shown in Fig. 10. The
conservative adaptive MPC and the robust adaptive MPC plan trajectories to go around the constrained area at 2.2 seconds (see
Fig. 10a and Fig. 10b), and 2.32 seconds (see Fig. 10c and Fig. 10d). The conservative adaptive MPC is unable to steer the
vehicle from entering the constrained area and the problem becomes infeasible at 2.5 seconds, see Fig. 10e. The vehicle with
conservative adaptive MPC collides with the obstacle at 2.72 seconds, as shown in Fig. 10g. The drone with the robust adaptive
MPC is able to avoid the obstacle as shown in Fig. 10h because it takes into account the modeling error.
Similarly, the nominal adaptive MPC is unable to steer the vehicle and avoid collision with the obstacle, as shown in Fig. 11.

The nominal adaptive MPC plans a trajectory that avoids the obstacle as shown in Fig. 11a and Fig. 11c. Since the disturbances
in the system are not included in the optimization, the input calculated by the nominal adaptive MPC is not able to make the
vehicle avoid the obstacle and it finally collides at 2.62 seconds as shown in Fig. 11g. However, robust adaptive MPC is able to
plan a trajectory that helps the drone to successfully complete the task.

7 CONCLUSION

In this paper we introduced a novel robust adaptive MPC framework to achieve safe and accurate trajectory tracking in the pres-
ence of modeling errors. The robust adaptive MPC consists of an underlying discrete time state feedback l1 adaptive controller
and a robust MPC. In this work we (i) introduce a modified discrete time state feedback l1 adaptive controller, (ii) provide its
stability and performance proofs, (iii) use the performance proofs in a robust MPC framework, and (iv) show the performance of
the proposed robust adaptive MPC with quadrotor experiments. Ideally, the discrete time state feedback l1 adaptive controller
makes the system behave as a linear reference model. In reality, the behavior of the real system may deviate from the linear
reference model. In this work, we show that this deviation is uniformly bounded and can be thought of as modeling error. A
robust MPC is then used to compute an optimal input that minimizes the tracking error of the system while taking into account
the modeling error. In experiments on a quadrotor we show that the proposed robust adaptive MPC achieves high accuracy tra-
jectory tracking on six different trajectories. We compare the proposed robust adaptive MPC to an adaptive MPC. When an
obstacle is introduced in the environment, the adaptive MPC framework is not able to make the quadrotor avoid collision while
the robust adaptive MPC includes the modeling error and is able to compute an input that successfully avoids the obstacle.
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APPENDIX

A SUPPLEMENTAL MATERIALS

A.1 Proof of Lemma 1
The proof of Lemma 1 is presented next.

Proof. Define
F ≜ 1

�
P

1
2Am G ≜ �P

1
2 bm J (x̃(k)) ≜ x̃T (k)P x̃(k) . (A1)

Then,
ΔJx̃(k) ≜ x̃T (k + 1)P x̃(k + 1) − x̃T (k)P x̃(k)

= (Amx̃(k) + bm(�̃T (k)x(k) + �̃(k)))TP (Amx̃(k) + bm(�̃T (k)x(k) + �̃(k))) − x̃T (k)P x̃(k)

= x̃T (k)ATmPAmx̃(k) + x̃
T (k)ATmPbm(�̃

T (k)x(k) + �̃(k)) + (xT (k)�̃(k) + �̃(k))bTmPAmx̃(k)

+(xT (k)�̃(k) + �̃(k))bTmPbm(�̃
T (k)x(k) + �̃(k)) − x̃T (k)P x̃(k)

= x̃T (k)(ATmPAm − P )x̃(k) + x̃
T (k)ATmPbm(x

T (k)�̃(k) + �̃(k))

+(xT (k)�̃(k) + �̃(k))bTmPAmx̃(k) + (x
T (k)�̃(k) + �̃(k))2bTmPbm

= x̃T (k)(ATmPAm − P + F
TF )x̃(k) − x̃T (k)F TF x̃(k) + x̃T (k)F TG(xT (k)�̃(k) + �̃(k))

+(xT (k)�̃(k) + �̃(k))GTF x̃(k) + (xT (k)�̃(k) + �̃(k))2bTmPbm + (x̃
T (k)�̃(k) + �̃(k))2GTG

−(x̃T (k)�̃(k) + �̃(k))2GTG

= x̃T (k)(ATmPAm − P + F
TF )x̃(k) + (xT (k)�̃(k) + �̃(k))2(bTmPbm + G

TG)

−
[

x̃T (k) −(xT (k)�̃(k) + �̃(k))
]
⎡

⎢

⎢

⎣

F TF F TG

GTF GTG

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x̃(k)

−(xT (k)�̃(k) + �̃(k))

⎤

⎥

⎥

⎦

≤ x̃T (k)(ATmPAm − P + F
TF )x̃(k) + (xT (k)�̃(k) + �̃(k))2(bTmPbm + G

TG) .

(A2)

The last inequality is possible by using the Schur complement condition for positive definitiveness. Note that

F TF = 1
�2
ATmPAm =

ATmPAm
�max(ATmPAm)

≤
In�max(ATmPAm)
�max(ATmPAm)

= In . (A3)

It follows from (15) that
ATmPAm − P + F

TF ≤ ATmPAm − P + In = −R . (A4)
Therefore,

x̃T (k)(ATmPAm − P + F
TF )x̃(k) ≤ −x̃(k)Rx̃(k) , (A5)

which implies
ΔJx̃(k) ≤ −x̃T (k)Rx̃(k) + (xT (k)�̃(k) + �̃(k))2(bTmPbm + G

TG) , GTG = �2bTmPbm , (A6)
then

ΔJx̃(k) ≤ −x̃(k)Rx̃(k) + (xT (k)�̃(k) + �̃(k))2((1 + �2)bTmPbm) . (A7)
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Since ln x ≤ x − 1 for all x ≥ 0 ,

ΔVx(x̃(k)) = ln(1 + �x̃T (k + 1)P x̃(k + 1)) − ln(1 + �x̃T (k)P x̃(k))

= ln
(

1 + �x̃T (k + 1)P x̃(k + 1)
1 + �x̃T (k)P x̃(k)

)

= ln
(

1 +
�ΔJx̃(k)

1 + �x̃T (k)P x̃(k)

)

≤
�ΔJx̃(k)

1 + �x̃T (k)P x̃(k)
≤ �

[−x̃(k)Rx̃(k) + (xT (k)�̃(k) + �̃(k))2((�2 + 1)bTmPbm)]
1 + �x̃T (k)P x̃(k)

.

(A8)

A.2 Proof of Lemma 2
The proof of Lemma 2 is presented next.

Proof. Using the z-transform and (9), we can write (12) as

x̂(z) = G(z)�̂(z) + kgH(z)C(z)r(z) + xin(z) . (A9)

For all i ∈ ℕ ∪ {0}, the following bounds hold:

‖x̂(k)‖∞ ≤ ‖G(z)‖l1‖�̂(k)‖∞ + ‖kgH(z)C(z)‖l1‖r(k)‖∞ + ‖xin(k)‖∞ ,

‖�̂(k)‖∞ ≤ L�
(

‖x̃(k)‖∞ + ‖x̂(k)‖∞
)

+ L� ,

‖x̂(k)‖∞ ≤ 1
1−��

(

��‖x̃(k)‖∞ + ‖G(z)‖l1L� + ‖kgH(z)C(z)‖l1‖r(k)‖∞ + ‖xin(k)‖∞
)

,

‖x̂(k)‖∞ ≤ 1
1−��

(

��‖x̃(k)‖∞ + ‖G(z)‖l1L� + ‖kgH(z)C(z)‖l1‖r‖l∞ + ‖xin‖l∞
)

,

‖x̂(k)‖∞ ≤ c1‖x̃(k)‖∞ + c2 ,

where c1 ≜
��
1−��

, c2 ≜
1

1−��

(

‖G(z)‖l1L� + ‖kgH(z)C(z)‖l1‖r‖l∞ + ‖xin‖l∞
)

,

(A10)

where ‖ ⋅ ‖∞ is the vector∞-norm. Then,
‖x̂(k)‖2∞ ≤ 2c21‖x̃(k)‖

2
∞ + 2c

2
2 . (A11)

Notice that we require n ≥ l > 0 for the following inequality to hold,

x̂T (k)x̂(k) ≤ l‖x̂(k)‖2∞ , ‖x̃(k)‖2∞ ≤ x̃T (k)x̃(k) . (A12)

Hence,
x̂T (k)x̂(k) ≤ 2lc21‖x̃(k)‖

2
∞ + 2lc

2
2 ≤ 2lc

2
1 x̃

T (k)x̃(k) + 2lc22 . (A13)
Then,

xT (k)x(k) ≤ 2x̂T (k)x̂(k) + 2x̃T (k)x̃(k) ≤ (4lc21 + 2)x̃
T (k)x̃(k) + 4lc22 ,

xT (k)x(k) ≤ �� + �x̃T (k)x̃(k) , � ≜ 4lc21 + 2 > 0 , � ≜
4lc22

4lc21 + 2
> 0 .

(A14)

Since 1 + �� + �x̃T (k)x̃(k) = (1 + ��)(1 + �
1 + ��

x̃T (k)x̃(k)), then,

1 + xT (k)x(k) ≤ (1 + ��)(1 + �
1 + ��

x̃T (k)x̃(k)) ≤ (1 + ��)(1 + �x̃T (k)P x̃(k)) , (A15)

where
� = �

(1 + ��)(�min(P ))
> 0 , (A16)

where �min(P ) is the minimum eigenvalue of P , which completes the proof.

A.3 Proof of Lemma 3
The proof of Lemma 3 is found next.
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Proof. Consider the following Lyapunov function candidate:

V (x̃(k), �̃(k)) ≜ Vx(x̃(k)) +wV�(�̃(k)) , (A17)

where
V�(�̃(k)) ≜ �̃T (k)�̃(k) , (A18)

and Vx(x̃(k)) is defined in (17). We also define

ΔV (x̃(k), �̃(k)) = ΔVx(x̃(k)) +wΔV�(�̃(k)) , (A19)

where
ΔV�(�̃(k)) = V�(�̃(k + 1)) − V�(�̃(k)) , (A20)

andΔVx(x̃(k)) is defined in (18). The orthogonal projection (6) in the adaptation law that keeps the estimate �̂(k) in the setΘ×Ξ
incurs in a lower value of ΔV�(�̃′(k+ 1)) than when no orthogonal projection is used ΔV�(�̃(k+ 1)). The latter means that only
the upper bound for ΔV�(�̃(k + 1)) is needed to draw conclusions for both cases. Note that from (7), we can write:

�̃′T (k + 1)�̃′(k + 1) ≤ �̃T (k + 1)�̃(k + 1) , (A21)

where �̃′(k + 1) = �̃′(k + 1) − �. Hence, if the orthogonal projection is used,

ΔV�(�̃′(k)) = �̃′T (k + 1)�̃′(k + 1) − �̃T (k)�̃(k) ≤ �̃T (k + 1)�̃(k + 1) − �̃T (k)�̃(k) = ΔV�(�̃(k)) . (A22)

Since ΔV�(�̃′(k)) ≤ ΔV�(�̃(k)), we will focus the analysis on ΔV�(�̃(k)). From (4) and (5), we can write:

�̃(k + 1) = �̃(k) +

[

x(k)
1

] [

bT0

(

bm�T
[

x(k)
1

])

− �̂T (k)
[

x(k)
1

]]

1 + xT (k)x(k)

= �̃(k) +

[

x(k)
1

] [

(�T − �̂T (k))
[

x(k)
1

]]

1 + xT (k)x(k)
= �̃(k) −

[

x(k)
1

]

�̃T (k)
[

x(k)
1

]

1 + xT (k)x(k)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

In+1 −

[

x(k)
1

] [

x(k)
1

]T

1 + xT (k)x(k)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Φ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

�̃(k) .

(A23)

Note thatΦT = Φ > 0. Then,ΔV�(�̃(k)) = �̃T (k+1)�̃(k+1)−�̃T (k)�̃(k) = �̃T (k)ΦTΦ�̃(k)−�̃T (k)�̃(k) = �̃T (k)(ΦTΦ−In+1)�̃(k).
Also note that since 0 < Φ ≤ In+1, then 0 ≤ Φ(In+1 − Φ) and ΦΦ ≤ Φ. Consequently, ΦΦ − In+1 ≤ Φ − In+1 and

ΔV�(�̃(k)) ≤ �̃T (k)(Φ − In+1)�̃(k) = −�̃T (k)

[

x(k)
1

] [

x(k)
1

]T

1 + xT (k)x(k)
�̃(k) = −

(

�̃T (k)
[

x(k)
1

])2

1 + xT (k)x(k)
. (A24)

Define
w ≜ �(1 + ��)(�2 + 1)bTmPbm . (A25)
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From (19) and (A24) and using (20) in Lemma 2, we have

ΔV (x̃(k), �̃(k)) ≤ �
−x̃T (k)Rx̃(k) +

(

�̃T (k)
[

x(k)
1

])2

(�2 + 1)bTmPbm

1 + �x̃T (k)P x̃(k)
−w

(

�̃T (k)
[

x(k)
1

])2

1 + xT (k)x(k)

≤ �
−x̃T (k)Rx̃(k) +

(

�̃T (k)
[

x(k)
1

])2

(�2 + 1)bTmPbm

1 + �x̃T (k)P x̃(k)
−w

(

�̃T (k)
[

x(k)
1

])2

(1 + ��)(1 + �x̃T (k)P x̃(k))

≤ �
−x̃T (k)Rx̃(k) +

(

�̃T (k)
[

x(k)
1

])2

(�2 + 1)bTmPbm −
(

�̃T (k)
[

x(k)
1

])2

(�2 + 1)bTmPbm

1 + �x̃T (k)P x̃(k)

≤ �
−x̃T (k)Rx̃(k)

1 + �x̃T (k)P x̃(k)
≤ 0 .

(A26)

The above implies that x̃(k) and �̃(k) are uniformly bounded. Since x̃(0) = 0, it follows that

V (x̃(k), �̃(k)) ≥ ln(1 + �x̃T (k)P x̃(k))

(1 + �x̃T (k)P x̃(k)) ≤ eV (x̃(k), �̃(k))

�x̃T (k)P x̃(k) ≤ eV (x̃(k), �̃(k)) − 1 .

(A27)

Finally,
��min(P )‖x̃(k)‖2 ≤ �x̃T (k)P x̃(k) ≤ eV (x̃(k) ,�̃(k)) − 1 ≤ eV (x̃(0) ,�̃(0)) − 1 ≤ ew�̃T (0)�̃(0) − 1 , (A28)

and
‖x̃(k)‖2 ≤ ew�̃T (0)�̃(0) − 1

��min(P )
. (A29)

Note that � ∈ Θ × Ξ and �̃T (0)�̃(0) ≤ �max. Since ‖.‖l∞ ≤ ‖.‖, then

‖x̃‖l∞ ≤

√

ew�max − 1
��min(P )

, (A30)

which holds uniformly.

A.4 Proof of Lemma 4
The proof of Lemma 4 is found next.

Proof. Recall that the state predictor (12) can be written in the z domain as:

x̂(z) = G(z)�̂(z) +H(z)C(z)kgr(z) + x̂in(z) (A31)

which leads to the following upper bound:

‖x̂|i‖l∞ ≤ ‖G(z)‖l1‖�̂|i‖l∞ + ‖kgH(z)C(z)‖l1‖r|i‖l∞ + ‖x̂in|i‖l∞ . (A32)

Applying the triangular relationship for norms to the bound (21), we have:

|‖x̂|i‖l∞ − ‖x|i‖l∞ | ≤

√

ew�max − 1
��min(P )

. (A33)

The adaptation law in (5) and (6) ensures that �̂(k) ∈ Θ × Ξ and ‖�̂|i‖l∞ ≤ L�‖x|i‖l∞ + L� . Substituting ‖x|i‖l∞ yields

‖�̂‖l∞ ≤ L�

(

‖x̂|i‖l∞ +

√

ew�max − 1
��min(P )

)

+ L� . (A34)
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Then, using the bounds on ‖x̂|i‖l∞ in (A32) and ‖�̂|i‖l∞ in (A34), and the l1 norm condition in (10), leads to:

‖x̂|i‖l∞ ≤
��
√

ew�max−1
��min(P )

+ ‖G(z)‖l1L� + ‖H(z)kgC(z)‖l1‖r|i‖l∞ + ‖xin|i‖l∞
1 − ��

. (A35)

Since the bound on the right hand side is uniform, then x̂(k) is uniformly bounded.

A.5 Derivation ofH1(z)
We first look at a special case of state-to-input stability for linear time-invariant (LTI) systems. Consider an LTI system given by

x(z) = (zI − A)−1bu(z) , (A36)

where x(z), u(z) are the z-transforms of the system state x(k) and input u(k), A ∈ ℝn×n, b ∈ ℝn, and assume that:

G(z) = (zI − A)−1b =
N(z)
D(z)

, (A37)

where D(z) = det(zI − A) using Cramer’s rule, andN(z) is a n × 1 vector with its itℎ element being a polynomial function

Ni(z) =
n
∑

j=1
Nijz

j−1 . (A38)

Lemma 6. If (A, b) is controllable, then the matrixN of entriesNij is full rank.

Proof. Controllability of (A, b) implies that given an initial condition x(0) = 0, and arbitrary k1 and xk1 , there exists u(�),
� ∈ [0, k1], such that x(k1) = xk1 . If N is not full rank, then there exists a  ∈ ℝn,  ≠ 0, such that  TN(z) = 0. Thus, for
x(0) = 0 we have

 Tx(z) =  T N(z)
D(z)

u(z) = 0 , ∀u(z) , (A39)

which implies that x(�) ≠ xk1 for any �. The latter contradicts controllability where x(k1) = xk1 can be an arbitrary point in
ℝn. As a result,N must be full rank.

Corollary 1. If the pair (A, b) in (A36) is controllable, then there exists c0 ∈ ℝn, such that cT0
N(z)
D(z)

has relative degree one, i.e.,
deg(D(z)) − deg(cT0N(z)) = 1, and c

T
0N(z) has all its zeros in the unit disk.

Proof. It follows from (A37) that for arbitrary vector c0 ∈ ℝn:

cT0 (zI − A)
−1b =

cT0N[z
n−1…1]T

D(z)
, (A40)

where N ∈ ℝn×n is the matrix with its itℎ row jtℎ column entry Nij introduced in (A38). Since (A, b) is controllable, N is full
rank, from Lemma 6. Consider an arbitrary vector c̄ ∈ ℝn such that c̄[zn−1…1]T is a stable n − 1 order polynomial, and let
c0 = (N−1)T c̄. Then

cT0 (zI − A)
−1b = c̄T [zn−1…1]T

D(z)
(A41)

has relative degree 1 with all its zeros in the unit disk.

Lemma 7. Let the pair (A, b) be controllable and F (z) be an arbitrary strictly-proper BIBO stable transfer function. Then, there
exists a proper and stable G1(z), given by

G1(z) ≜
F (z)
cT0 G(z)

cT0 , (A42)

where c0 ∈ ℝn, and cT0 G(z) is a minimum phase transfer function with relative degree 1, such that

F (z)u(z) = G1(z)x(z) . (A43)

Proof. From Corollary 1, it follows that there exists c0 ∈ ℝn such that cT0 G(z) has relative degree one, and c
T
0 G(z) has all its

zeros in the unit disk. Hence,

F (z)u(z) = F (z)
cT0 G(z)

cT0 G(z)
u(z) = G1(z)x(z) , (A44)
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where the properness of G1(z) is ensured by the fact that F (z) is strictly-proper, while stability follows immediately from its
definition.

Since the pair (Am, bm) in (1) is controllable, Lemma 7 implies that

H1(z) ≜ C(z) 1
cT0H(z)

cT0 , (A45)

is proper and BIBO stable.
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