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Abstract— Robots are being deployed in unknown and dy-
namic environments where they are required to handle distur-
bances, unmodeled dynamics, and parametric uncertainties. So-
phisticated control strategies can guarantee high performance
in these changing environments. In this work, we propose a
novel robust adaptive model predictive controller that combines
robust model predictive control (MPC) with an underlying
L1 adaptive controller to improve trajectory tracking of a
system subject to unknown and changing disturbances. The
L1 adaptive controller forces the system to behave close to a
specified linear reference model. The controlled system may still
deviate from the reference model, but this deviation is shown to
be upper bounded. An outer-loop robust MPC uses this upper
bound, the linear reference model and system constraints to
calculate the optimal reference input that minimizes the given
cost function. The proposed robust adaptive MPC is able to
achieve high-accuracy trajectory tracking even in the presence
of unknown disturbances. We show preliminary experimental
results of an adaptive MPC on a quadrotor. The adaptive MPC
has a lower trajectory tracking error compared to a predictive,
non-adaptive approach, even when wind disturbances are ap-
plied.

I. INTRODUCTION

Robots and automated systems are being deployed in
unstructured and changing environments. Small changes in
the environmental conditions may significantly deteriorate
the performance and cause instability in traditional, model-
based controllers (see [1] and [2]). Control methods designed
for robots deployed in changing environments must be ro-
bust against model uncertainties, unknown disturbances, and
changing dynamics. Certain control methods can provide the-
oretical pererformance guarantees, where the overall control
performance, even in the presence of unexpected changes
and unmodeled disturbances, is specified. These performance
guarantees can be leveraged by robust controllers to further
improve the performance of the overall system.

In this work, we present a robust adaptive controller that
achieves high-accuracy tracking performance and is robust to
unknown disturbances and changing dynamics. We extend
previous work [3] where we proposed an output feedback
L1 adaptive control and nominal model predictive control
(MPC) framework. In this work we robustify the previous
approach by combining state feedback L1 adaptive control
and robust MPC (see Fig. 1). The underlying L1 adaptive
controller forces a system to behave close to a specified
linear reference model, even in the presence of unknown
disturbances. The controlled system may still deviate from
the reference model behavior; however, this deviation is
shown to have an upper bound. Unlike [3], we leverage this
upper bound and the reference model with a robust MPC
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Fig. 1. The proposed robust adaptive model predictive control architecture.
The underlying L1 adaptive controller forces the system to behave close to
a specified linear reference model even in the presence of uncertainties and
disturbances. Performance guarantees specifying how far apart the controlled
system and the reference model can be are provided. A robust model
predictive controller using the aforementioned performance guarantees and
the specified linear reference model, calculates, at each time step, the
optimal input for the plant controlled by the L1 adaptive controller (which
now behaves as the specified reference model) such that the trajectory
tracking error is minimized.

module to compute the optimal reference input for the L1

adaptive controlled system. The robust adaptive MPC uses
performance guarantees in order to achieve high-accuracy
trajectory tracking of a system subject to unknown distur-
bances. We highlight the theoretical contributions of this
work and revisit a key experimental result presented in [3].
The preliminary results show that an adaptive MPC can
improve the trajectory tracking performance of a quadrotor
compared to a non-adaptive approach, even when unknown
disturbances are present. The video with the preliminary
results can be found here http://tiny.cc/q60e4y.

II. RELATED WORK

L1 adaptive control is based on the model reference
adaptive control (MRAC) architecture but includes a low-
pass filter that decouples robustness from adaptation [4]. It
has successfully been applied to fixed-wing vehicles [5], [6],
quadrotors [7], [8], a NASA AirSTAR flight test vehicle [9], a
tailless unstable aircraft [10], and hexacopter and octocopter
vehicles [11]. The L1 adaptive controller forces a system
subject to model uncertainties, to behave as a specified linear
reference model. Leveraging this characteristic, it was used
in combination with iterative learning control (ILC), where
ILC enabled the system to improve trajectory tracking over
iterations [8]. In [3], we proposed to replace ILC with a
MPC, which enabled the system to achieve high-accuracy
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trajectory tracking on the first iteration. In this work, we aim
to improve the controller performance by adding robustness
to the MPC to account for deviations between the real system
and the reference model behavior.

Model predictive control solves a finite horizon optimal
control problem at each time step to calculate a control
sequence that minimizes a given objective function. Model
uncertainties may significantly degrade the performance of
MPC implementations. Instead of relying on the inherent
robustness properties of standard MPC implementations, the
work in [12] combines a parameter update mechanism with
robust MPC algorithms. In this way, the optimization process
accounts for parameter adaptation until it converges to the
true system over time. Parameter uncertainty is decreased
at every time step to reduce conservativeness of the algo-
rithm. In [13], a robust adaptive MPC method for a class
of constrained linear, time-invariant systems is proposed.
This approach proposed a novel method to estimate the
parameters of a model suitable for MPC. The algorithm is
initially conservative due to large parameter uncertainties,
but performance is improved over time as the parameter
estimate’s uncertainty is reduced and the estimate converges
to the true value. However, the quality of the estimation
depends on the excitation of the state. Finally, learning-based
MPC approaches have used neural networks (see [14], [15]
and [16]) or Gaussian processes (see [17] and [18]) to learn
the dynamics of the system used in the controller. These
approaches require a significant amount of data in order to
build an accurate model and often do not adapt to changes
in the environment in real time and at high update rates.

In this work we combine a state feedback L1 adaptive
controller with a robust MPC and make the following key
contributions:

• use the performance guarantees provided by the L1

adaptive controller in a robust MPC to control systems
subject to disturbances and changing environments;

• remove the need for persistent excitation to achieve
accurate adaptation as in existing robust adaptive MPC
strategies [13]; and

• validate the proposed approach through extensive exper-
imental results that include external disturbances, (e.g.
wind).

III. PROBLEM STATEMENT

The objective of this work is to achieve high-accuracy
trajectory tracking in the presence of uncertain, and possibly
changing conditions on the first iteration. Consider a system
whose dynamics (‘Plant’ block in Fig. 1) are unknown and
can be described by a single-input, single-output (SISO)
system (this approach can later extended to multi-input,
multi-output (MIMO) systems) for state feedback:

x(k + 1) = Ax(k) + bm(u(k) + θTx(k) + ξ) , x(0) = x0

y(k) = cTmx(k) .

(1)

where x(k) ∈ Rn is the system state vector (assumed to
be measured); u(k) is the control signal; bm, cm ∈ Rn are
known constant vectors; A is the known n× n matrix, with
(A , bm) controllable; θ and ξ are the unknown parameters,
which belong to the compact convex sets θ ∈ Θ ⊂ Rn and
ξ ∈ Ξ ⊂ R; and y(k) ∈ R is the regulated output. We
introduce an assumption on the sets Θ and Ξ.

Assumption 1. The set Θ is a hypercube. The parameter ξ
is bounded by |ξ| ≤ Lξ where Ξ is the set that includes all
the values less than or equal to Lξ. The boundaries of Θ
and Ξ can be represented as:

eTθ θ = bθ , eTξ ξ = bξ ,

where eθ ∈ Rn×2n, eξ ∈ R1×2 have exactly one value per
column not equal to zero and bθ ∈ R2n and bξ ∈ R2 contain
the maximum and minimum values in a given dimension.

The system is required to accurately track a desired
trajectory x∗(k) defined over a finite number of steps
N < ∞ and assumed to be feasible with respect to the
true dynamics of the L1-controlled system (orange dashed
box in Fig. 1). The desired trajectory can be written as
x∗ = (x∗(1), . . . , x∗(N)), and the state of the plant as
x = (x(1), . . . , x(N)). The goal is to take into account sys-
tem disturbances when minimizing the tracking performance
criterion J defined as:

J , min
e

eTQe

where e = x− x∗ is the tracking error and Q is a positive
definite matrix.

IV. METHODOLOGY

We propose a robust adaptive control framework to achieve
high-accuracy trajectory tracking in the first iteration for a
system subject to unknown disturbances. We consider two
subsystems: (1) the discrete-time, state feedback L1 adaptive
controller (orange dashed box in Fig. 1) that makes the
system behave close to a predefined linear system, even in
the presence of disturbances; and (2) the robust MPC (blue
box in Fig. 1) that includes disturbances in the calculation
of the optimal input that minimizes the tracking error.

A. Discrete-Time, State Feedback L1 Adaptive Control

L1 adaptive control forces a system to behave close to
a specified reference linear model and provides transient
and steady-state performance guarantees. These performance
guarantees are upper bounds that, given certain disturbance
signals, specify how far the L1 controlled system can deviate
from the reference linear system. These upper bounds need to
be computed for the implementation of robust MPC, which
requires information on the disturbance present in the system.
In particular, the output feedback L1 adaptive controller used
in [3] has performance guarantees that depend on the system
transfer function A(s), which is strictly-proper but unknown;
therefore, the bounds cannot be calculated. For this reason,
we develop the performance guarantees for a discrete-time,
state feedback L1 adaptive controller. For this controller the



performance guarantees can be calculated as all the variables
are known. Finally, the robust MPC framework used in this
work [19] requires a discrete-time model of the system to
be controlled. Therefore, we present the discrete-time, state
feedback L1 adaptive controller.

The discrete-time, state feedback L1 adaptive controller
aims to design a control input u(k) such that the output
y(k) tracks a bounded reference input r(k). Consider the
following control structure for the system in (1):

u(k) = um(k) + uL1
(k) , um(k) = −kTmx(k) ,

where km ∈ Rn renders Am , A − bkTm Schur stable
[20], while uL1(k) is the adaptive component, which will
be defined shortly. The static feedback gain km leads to the
following partially closed-loop system:

x(k + 1) = Amx(k) + bm(uL1
(k) + θTx(k) + ξ) ,

x(0) = x0 , y(k) = cTmx(k) .
(2)

The equations that describe the implementation of the
discrete-time, state feedback L1 adaptive controller are:

State Predictor: We use the following state predictor:

x̂(k + 1) = Amx̂(k) + bm

(
uL1(k) + θ̂T (k)x(k) + ξ̂(k)

)
,

x̂(0) = x0 , ŷ(k) = cTmx̂(k) ,

(3)
where x̂(k) ∈ Rn is the predicted state and θ̂(k) and ξ̂(k)
are the adaptive estimate of parameters θ and ξ.

Adaptation Law: We use a projection algorithm estimator
[21], [22] that avoids division by zero:

ρ̂(k+1) = ρ̂(k)+
xext(k)

[
bT0 (θTx(k) + ξ)− ρ̂T (k)xext(k)

]
1 + xT (k)x(k)

,

(4)
where xext(k) = [xT (k), 1]T , ρ̂(k) = [θ̂T , ξ̂]T , ρ̂(0) =

ρ̂0 ∈ [Θ,Ξ]T , and b0 ,
bm
bTmbm

is a constant vector. State

measurements and the linear model (2) are used to calculate
θTx(k) + ξ = x(k + 1)−Amx(k)− bmuL1

(k).
If ρ̂(k+ 1) lies outside [Θ,Ξ]T , then we need to orthogo-

nally project ρ̂(k+ 1) on the boundary of [Θ,Ξ]T [22]. The
latter guarantees that the estimate ρ̂(k) remains in the set
[Θ,Ξ]T , which is needed for the performance guarantees.

Control law: The z-transform of the control law is:

u(z) = −C(z)(η̂(z)− kgr(z)) , (5)

where r(z) and η̂(z) are the z-transforms of command input
r(k) and η̂(k) = ρ̂T (k)xext(k), respectively, kg , (cTm(In−
Am)−1bm)−1, and C(z) is a bounded-input, bounded-output
(BIBO) stable, strictly-proper, discrete-time transfer function
with DC gain C(1) = 1, and its state-space realization
assumes zero initialization.

The discrete-time state feedback L1 adaptive controller is
defined via (3) – (5) with C(z) verifying the following L1-
norm condition:

λθ , ‖G(z)‖`1Lθ < 1 , λξ , ‖G(z)‖`1Lξ <∞ , (6)

where

G(z) , H(z)(1− C(z)) , H(z) , (zIn −Am)−1bm ,

Lθ , maxθ∈Θ ‖θ‖1 , Lξ , maxξ∈Ξ ‖ξ‖1 .
(7)

Ideally, the uncertainties are within the bandwidth of
the low-pass filter and the controller is able to cancel the
uncertainties in the system exactly. In this ideal scenario,
the system response is the following:

xid(k + 1) = Amxid(k) + bmkgr(k) . (8)

The system described above by Am, bm can be used as a
model in a robust MPC scenario. In reality not all uncertain-
ties are canceled and x(k) could deviate from xid(k). It can
be shown that for the system (2) and the controller defined
via (3) – (5) subject to the L1-norm condition in (6), there
exists an upper bound to this deviation, i.e., ‖x− xid‖`∞ ≤
Γ. In the discrete-time, state feedback case, Γ depends on
known system variables such as Am, bm; known disturbance
bounds Lθ, Lξ; and design parameters C(z). Hence, this
bound can be calculated.

B. Robust Model Predictive Control

Robust MPC is able to account for disturbances in the
calculation of the optimal input for a given system. In the
previous section, we showed that the proposed L1 adaptive
controller is able to make the real system x(k) behave close
to the ideal xid(k) system described in (8). However, there
could be a deviation from the ideal system and this deviation
is upper bounded by Γ. For this reason, we could rewrite the
behavior of the system as:

xMPC(k + 1) = AmxMPC(k) + bmkgr(k) + γ , (9)

where γ ∈ Γ is an additive disturbance affecting the ideal
system and Γ is the upper bound of the difference between
real and ideal system state. In this work, we propose a
robust MPC approach as described in [19]. This robust MPC
approach is for systems with bounded additive disturbance
as (9). This system is subject to state and input constraints

u ∈ U , x ∈ X , (10)

where U ⊂ Rm is compact, X ⊂ Rn is closed, and
each set contains the origin in its interior. The optimal
control problem for robust MPC modifies the conventional
optimal control problem by including the initial state x0 as
a parameter of the control law, instead of setting the initial
state as the current state x(k). Hence, the cost function can
be written as:

VN (x(k),u) ,
N−1∑
i=0

l(x(i), u(i)) + Vf (x(N)) , (11)

where l(x, u) ,
1

2
[xTQx + uTRu], Vf (x) ,

1

2
xTPx,

and Q, R and P are positive definite. We propose the
following control law, yielded by the minimization of the



cost function (11):

r(x(k)) , u∗0(x(k)) +K(x(0)− x∗0(x(k))) ,

where KT ∈ Rn is such that Am + bmK is stable, x(0)
is the measured state of the real system at the current
time step, u∗0(x(k)) is the first input in the optimal control
sequence and x∗0(x(k)) is the initial state calculated by the
robust MPC. Intuitively, this robust MPC implementation
finds an initial state that reduces the overall cost of (11)
and devises a control law that makes the system get closer
to the calculated optimal initial state. The calculated input
r(x(k)) is the reference signal r(k) for the underlying L1

adaptive controller.
Lessons learned: the bound Γ (from the L1 adaptive

controller) is too conservative to be used in a robust MPC.
However, an experimental bound can be obtained by ap-
plying a step function to the L1 controlled framework and
measuring the deviation from the ideal system.

V. PRELIMINARY EXPERIMENTAL RESULTS

In this section we present preliminary experimental results.
These results were presented in [3] where an adaptive MPC
that combines output feedback L1 adaptive control and
conventional MPC was used. The video with the results can
be found here http://tiny.cc/q60e4y. Note that a
conventional MPC instead of a robust MPC and an output
feedback instead of state feedback L1 adaptive controller
were implemented. However, we want to highlight that an
adaptive MPC that combines MPC with an underlying L1

adaptive controller is able to achieve high-accuracy trajectory
tracking even in the presence of disturbances.

The adaptive MPC framework is used to control a Parrot
Bebop 2 flying five different three-dimensional trajectories
where it may be subject to dynamic disturbances. We assess
two aspects to verify the effectiveness of the adaptive MPC
framework: (i) trajectory tracking capability, and (ii) ro-
bustness to external disturbances. To quantify the tracking
performance, an average position error along the trajectory
is defined by:

e =
1

N

N∑
i=1

√
e2
x(i) + e2

y(i) + e2
z(i) , (12)

where ej(i) = rj(i) − yj(i) and j = x, y, z, where r is the
desired trajectory and y is the output.

To assess the trajectory tracking capability, the adaptive
MPC framework MPC-L1 is compared to an MPC-PID
framework. The MPC-PID framework replaces the L1 adap-
tive controller with a PID controller. The system model
used in the MPC is obtained by applying a step input to
the x, y, and z directions separately and characterizing the
system response when the quadrotor is controlled by the
PID controller. The system is assumed to be a second-
order, linear system in each direction. The cost functions
used in the MPC-PID and MPC-L1 frameworks are the
same. The average position errors of both approaches are
shown in Fig. 2 in dark blue and dark red, respectively.
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Fig. 2. Average position tracking errors over five different trajectories
when using the MPC-PID and MPC-L1 controllers. The cases when no
disturbance is applied to the system are depicted in dark blue (MPC-PID)
and dark red (MPC-L1). A fan is used to apply a wind disturbance to
the system and the resulting errors are depicted in light blue (MPC-PID)
and light red (MPC-L1). The proposed MPC-L1 framework is able to
compensate for the disturbance applied and has a performance similar to
the case when no disturbance is applied. From [3].

In order to obtain the best performance, the system model
obtained through step response experiments for the MPC-
PID framework would need to be tuned to each trajectory.
However, in order to fairly compare both approaches, the
model used in the MPC-PID framework is kept constant
across trajectories. The MPC-L1 framework achieves a lower
error in all trajectories.

To assess robustness to disturbances, we introduce a wind
disturbance with a fan at different points in each trajectory.
The resulting average errors when the fan disturbance is
applied are shown in Fig. 2 in light blue and light red
for the MPC-PID and MPC-L1 frameworks, respectively.
The MPC-PID approach performs generally worse when
wind is applied. The MPC-L1 framework is able to keep
approximately the same performance when a disturbance
is applied since the underlying L1 adaptive controller is
able to compensate for it. However, we expect the tracking
performance to further improve by taking into account the
disturbance bound Γ in the optimal control problem.

VI. CONCLUSIONS

In this work, we presented a robust adaptive MPC frame-
work that combines a discrete-time, state feedback L1 adap-
tive controller and robust MPC to improve trajectory tracking
performance of a system subject to unknown disturbances.
The L1 adaptive controller forces systems to behave close to
a specified linear reference model. Performance guarantees
show that deviations from the ideal behavior, albeit bounded,
remain. A robust MPC takes into account the disturbance
remaining in the system to solve an optimal control problem
that improves trajectory tracking performance. Preliminary
experimental results using an output feedback and conven-
tional MPC show that an adaptive MPC is able to improve
the trajectory tracking performance of a quadrotor even in the
presence of unknown disturbances and unexpected changes.
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