
and3� bounding sequences using an Unscented Transform,
(iii) navigation based on vision only, and (iv) experimental
results on a 50 kg robot. To our knowledge, this paper is the
�rst to demonstrate a robust MM-LB-NMPC algorithm that
automatically transitions from robust to optimal control as
model uncertainty varies with experience.

II. RELATED WORK

MPC is a framework in which the current control action
is obtained by solving, at each sampling instant, a �nite-
horizon optimal control problem using the current state of
the plant as the initial state [7, 8]. Among a growing list of
examples, MPC has been demonstrated in several real-world
applications on ground robots [9�14]. However, in each of
these examples, the system model is �xed and assumed to
represent the system accurately. As a result, these controllers
achieve stability and good performance in operating regimes
limited in part by thea priori model and tuning parameters.
In contrast, our algorithm simultaneously includes the ability
to learn from experience and robustness to model uncertainty,
thus enabling reliable operation on robots of vastly different
masses and in a variety of terrains.

Learning-based control aims to improve performance over
time by correcting the system model using experience
(i.e., past measurements) [15�17]. Kocijan et al. [15] presents
a LB-MPC algorithm for a simulated pH neutralization
process. In addition to tracking errors and control input,
the cost function penalized model uncertainty resulting in
a controller that avoided uncertain states. In contrast, our
Min-Max approach uses the model uncertainty for robust
control, maintaining performance and stability despite model
uncertainty. Lehnert and Wyeth [16], and Park et al. [17]
present LB-MPC algorithms for an elastic joint manipula-
tor and an omni-directional mobile robot, respectively. In
each of these cases, the controllers considered only the
mean predicted disturbance. Our approach considers both
the learned mean and variance, enabling automatic shifts
between robust and optimal control as model uncertainty
varies. Finally, Tanaskovic et al. [18] present robust adaptive
MPC for constrained systems. While adaptive control is only
capable ofreacting to modelling errors, our approach is
based on a learned disturbance model and can therefore act
in anticipation of repeatable disturbances.

Min-Max MPC maintains controller stability and perfor-
mance despite model uncertainty by optimizing the perfor-
mance objective for a worst-case scenario [19�24]. Scokaert
and Mayne [21] present a Min-Max algorithm for robust
performance of systems with bounded disturbances. In con-
trast, we assume normally-distributed disturbances and use
an Unscented Transform [6] to predict a nominal sequence,
3� con�dence region, and the associated boundary scenarios
for the Min-Max algorithm. Bemporad et al. [22] and Ker-
rigan and Maciejowski [23] present algorithms that reduce
the computation time of Min-Max MPC. In our work, we
derive worst-case scenarios from the3� con�dence region
surrounding the predicted nominal sequence, representing a
small increase in computation relative to our original learning

algorithm [3]. Raimondo et al. [24] present a nonlinear
Min-Max algorithm that separates state-dependent and state-
independent disturbances to reduce conservativeness. In con-
trast, we reduce conservativeness over time by learning an
improved nominal process model. Effectively, our controller
naturally transitions to an optimal controller as model uncer-
tainty decreases. To our knowledge, our work is the �rst to
propose a MM-LB-NMPC algorithm.

Scenario MPC is a technique similar to Min-Max MPC
[25�27]. However, instead of identifying a relatively small
number of worst-case disturbance sequences, Scenario MPC
relies on a (typically) large number of randomly sampled
state sequences over the prediction horizon given the model
uncertainty. Unlike Scenario MPC, our algorithm relies on a
small number of worst-case scenarios bounding the nominal
3� con�dence region. This enables online operation and
integration into our existing LB-NMPC algorithm.

Otherwise, Berkenkamp and Schoellig [28] combine ro-
bust control with machine learning techniques to adapt the
model uncertainty over time. While they present a learning,
robust controller to stabilize an operating point, we derive
a controller for path-tracking. Aswani et al. [29] present
a robust, linear LB-MPC algorithm that guarantees perfor-
mance and stability by placing tube-shaped constraints on
predicted sequences. In this work, we use Min-Max MPC,
a less conservative approach to robust MPC, optimizing for
worst-case scenarios.

III. V ISUAL TEACH & REPEAT

Localization for the controller is provided by an on-board
Visual Teach & Repeat (VT&R) mapping and navigation
algorithm developed by Furgale and Barfoot [4] where
the sole sensor is an on-board stereo camera. In the �rst
operational phase, the teach phase, the robot is piloted
along the desired path. Localization in this initial phase is
obtained relative to the robot’s starting position by visual
odometry (VO). In addition to the VO pipeline, path vertices
are de�ned at short and regular intervals along the path
while simultaneously storing key frames composed of local
feature descriptors and their 3D positions. During the repeat
phase, the VT&R algorithm estimates the pose of the robot
relative to the nearest path vertex by re-localizing against the
stored key frames. Re-localization is achieved by matching
feature descriptors to generate feature tracks between the
current robot view and the teach-pass robot view. As long
as suf�cient correct feature matches are made, the system
generates consistent localization over trials and is able to
support a learning control algorithm.

IV. M ATHEMATICAL FORMULATION

A. MM-LB-NMPC Overview
NMPC �nds a sequence of control inputs that optimizes

the plant behavior over a prediction horizon based on the
current state. The �rst control input in the optimal sequence
is then applied to the system, resulting in a new system state.
The entire process is then repeated at the next sample time
for the new system state.
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