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Abstract—A time-optimal speed schedule results in a mobile
robot driving along a planned path at or near the limits of
the robot’s capability. However, deriving models to predict the
effect of increased speed can be very difficult. In this paper, we
present a speed scheduler that uses previous experience, instead
of complex models, to generate time-optimal speed schedules.
The algorithm is designed for a vision-based, path-repeating
mobile robot and uses experience to ensure reliable localization,
low path-tracking errors, and realizable control inputs while
maximizing the speed along the path. To our knowledge, this
is the first speed scheduler to incorporate experience from
previous path traversals in order to address system constraints.
The proposed speed scheduler was tested in over 4 km of path
traversals in outdoor terrain using a large Ackermann-steered
robot travelling between 0.5 m/s and 2.0 m/s. The approach
to speed scheduling is shown to generate fast speed schedules
while remaining within the limits of the robot’s capability.

Keywords-Speed Scheduling; Experience-based; Mobile
Robotics;

I. INTRODUCTION

Trajectory planning through large-scale, unstructured en-

vironments is a challenging task for autonomous mobile

robots. The goal is to generate feasible and safe trajectories

despite effects from unknown terrain and unknown robot

dynamics. In order to reduce the complexity of the problem,

the problem is often divided into two subproblems: 1) path

planning, where an algorithm identifies a safe path through a

static environment, and 2) speed scheduling, where another

algorithm plans the speeds at which the spatial path should

be traversed [1]. Even once the path-planning problem is

solved, calculating a time-optimal speed schedule is still a

challenge. The main issue is in predicting the performance of

robot subsystems, such as vision-based localization systems,

as a function of variables such as speed and robot state in

order to identify a constraint-satisfying speed schedule.

In this paper, we assume there exists a safe planned

path. We present a speed scheduling algorithm that mini-

mizes travel time and simultaneously guarantees feasibility

of the trajectory despite unknown effects by incorporating

experience from previous path traversals. For example, the

speed scheduler uses localization experience to selectively

increase the speed of sections of the path where localization

reliability can be guaranteed. Motion blur at high speeds

Stereo Camera

Figure 1. Experiments are performed using a large Defence Research and
Development Canada (DRDC) Mule Research Vehicle (DMRV) where the
sole sensor used for localization is a Point Grey Bumblebee stereo camera
(highlighted in red). The experience-based speed scheduler presented in
this paper is able to identify speed limits that maintain the reliability of the
vision-based localization system.

is one cause of reduced localization reliability and is very

difficult to predict a priori. To our knowledge, this is the

first algorithm to incorporate experience from previous path

traversals when producing a speed schedule.

There are many speed scheduling approaches in the lit-

erature. For schedulers seeking minimum-time trajectories,

the general approach is to identify limits on the robot speed

and acceleration as a function of constraints, such as actuator

limits, then plan a schedule to operate at the highest speed

possible. As a result, most approaches differ primarily in

which constraints are addressed and at what point in the

planning process they are included.
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Classic speed schedulers for mobile robots concen-

trate on generating smooth speed profiles prior to com-

mencing path traversal while incorporating electromechan-

ical constraints on speeds and accelerations [2, 3]. For

example, Munoz et al. [4] derive the maximum robot speed,

acceleration, and deceleration from motor and brake system

specifications. Prado et al. [5, 6] include speed and acceler-

ation limits resulting from predicted motor temperature and

battery power. Other schedulers predict lateral accelerations,

friction forces, and weight transfers to constrain the speed

based on slip and path-tracking error limits [5, 7, 8]. In

each of these papers, detailed models of the robot and

environment are required to generate the appropriate speed

or acceleration limits. In this paper, in addition to simple

a priori speed and acceleration limits, we use past observa-

tions of vision-system performance, path-tracking errors, and

control inputs to iteratively identify speed and acceleration

limits.

Other approaches schedule the speed while tracking a

path, using experiences in real-time to identify speed limits.

For example, the Stanley robot, designed for the 2006

DARPA Grand Challenge, slows down after encountering

rough sections along a planned path [9]. Path roughness is

identified using measurements of the vertical acceleration

of the vehicle [10]. The approach is shown to decrease

the damage to the robot caused by shock and vibration,

thereby increasing the long-term system reliability. While

the approach employed by Thrun et al. [9] is designed for

systems traversing a path for the first time, it nevertheless

results in the robot experiencing serious shock and vibrations

at the start of rough patches along a path. Our approach, on

the other hand, schedules speed based on experience from

previous path traversals. This gives our system the ability

to slow down before encountering challenging sections of

the path, rather than behaving reactively. Finally, in some

speed schedulers, the speed is also determined in real-time in

order to prevent collisions with dynamic obstacles [1, 5, 7].

In these cases, it is assumed that the dynamic obstacle

is travelling across the path and therefore waiting a few

moments will result in a clear path. An investigation into

the sensing, control, and actuation requirements for real-time

obstacle avoidance is presented by Kelly and Stentz [11, 12].

In this paper, we assume the environment is free of dynamic

obstacles and the planned path avoids static obstacles.

In summary, the key contribution of this paper is a speed

scheduling algorithm that incorporates both a priori speed

and acceleration limits, and experience-based constraints.

The algorithm starts with a conservative speed schedule,

then over sequential path traversals the algorithm increases

the speed in sections of the path where it is feasible.

By incorporating experience, we are able to address limits

on speed arising from complex vision-based localization

systems and path-tracking controllers in challenging off-road

terrain.

Figure 2. A visual representation of re-localization in our VT&R
framework. Each feature track represents the translation between a feature
identified during the teach phase and re-identified during a repeat phase.

II. VISUAL TEACH AND REPEAT

Localization for the mobile robot used in this paper is

provided by an on-board Visual Teach & Repeat (VT&R)

algorithm developed by Furgale and Barfoot [13] where the

sole sensor is an on-board stereo camera (see Fig. 1). In the

first operational phase, the teach phase, the robot is driven

along the desired path manually by an operator. Localization

in this initial operation is obtained relative to the robot’s

starting position by visual odometry (VO). In addition to

the VO pipeline, path vertices are defined along the path

by storing keyframes composed of local feature descriptors

and their 3D positions. During the second operational phase,

the repeat phase, the robot re-localizes against the stored

keyframes, generating an estimate of the pose of the robot

relative to the nearest path vertex. Re-localization depends

on matching features and can be visualized by feature tracks

between the current robot view and the teach-pass robot view

(Fig. 2). As long as sufficient correct feature matches are

made, the system generates consistent localization and has

the ability to support an iterative speed scheduling scheme.

III. SPEED PLANNING

A. Path-Tracking Control

The mobile robot path-tracking controller follows a tra-

jectory consisting of a set of N desired poses (Fig. 3),

Pd := {xd,i | i ∈ 1 . . . N},
each defining a translation (x, y, z) and rotation (roll, pitch,

yaw), xd,i := (x, y, z, r, p, y), relative to the origin of the

path, and N scheduled speeds,

Vj
sched := {vjsched,i | v ∈ R, i ∈ 1 . . . N},

generated for the jth trial by the speed scheduler defined

in Sec. III-B. At a given time k, the VT&R algorithm

produces an estimate of the robot’s pose, xk, relative to the
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Figure 3. Definitions of the robot velocities, vk and ωk , and three path-
tracking errors, εX,k , εL,k and εH,k , defined relative to the nearest path
vertex by Euclidean distance. The role of the speed scheduler is to assign
linear speeds, vsched,i, for the robot to use while in the neighbourhood of
each path vertex.

nearest path vertex by Euclidean distance. The path-tracking

controller then sets the commanded linear velocity of the

robot, vcmd,k, based on the scheduled speed at the nearest

path vertex, vsched,i, and computes a commanded angular

velocity, ωcmd,k, using feedback control. The controller

aims to minimize the heading and lateral path-tracking

errors (Fig. 3), εH,k and εL,k, respectively, using feedback

linearization [14].

B. Speed-Scheduler Algorithm Overview

The automated speed scheduler proceeds in several steps:

1) Initiate the first schedule, V1
sched, with a safe speed

2) Travel the path and collect experience:

• Vision-based experience

• Path-tracking experience

• Control-input experience

3) Suggest a speed schedule for the next trial based on

experience

4) Limit the suggested speed schedule based on a priori
speed and acceleration constraints

5) Repeat 2) - 4)

C. Collected Experience

During each trial, the robot drives the full path and ac-

cumulates experience. Specifically, we collect vision-based

localization, path-tracking, and control-input experience for

use in speed scheduling. Here we introduce ki as the time

index at which the ith vertex is passed.

1) Vision-based Localization Experience: When using

vision-based localization systems, there exists a speed limit

above which localization becomes unreliable and the safety

of the robot can no longer be assured. This speed limit may

come as a result of low light conditions, a degraded scene

(relative to when the path was taught), large deviations from

the path, or perhaps motion blur. Instead of trying to predict

the effect of these conditions, we record the number of

features matched by the VT&R system, mj
i , when passing

the ith vertex during the jth trial as an indicator of the

conditions faced by the localization system,

Mj := {mj
i | i ∈ 1 . . . N}.

Intuitively, we make the assumption that there exists a

relationship such that as the speed of the robot increases,

the number of matched features at a given path vertex

decreases. While this relationship is not known a priori, we

use experience to judge whether the speed at the ith path

vertex during the next trial can be increased further.

2) Path-tracking Experience: We also record the lateral

and heading path-tracking errors (Fig. 3), εjL,i and εjH,i,

respectively,[
εjL,i

εjH,i

]
=

[
0 1 0 0 0 0
0 0 0 0 0 1

]
xki

, (1)

when passing the ith vertex during the jth trial,

εjL := {εjL,i | i ∈ 1 . . . N},
εjH := {εjH,i | i ∈ 1 . . . N}.

We do this for two reasons. First, we have assumed that the

planned path is safe and free of obstacles (Sec. I). Therefore,

it is important to maintain low path-tracking errors since we

can only guarantee that the terrain near the planned path is

free of obstacles. In the case that the path planner provides

additional information about the lateral distance to obstacles,

our speed scheduler could restrict the robot speed so as to

ensure sufficiently low lateral path-tracking errors. Second,

the vision system is sensitive to perspective changes between

the teach pass and any repeat pass. Perspective changes

are the direct result of path-tracking errors and reduce the

reliability of the localization system. Prediction of path-

tracking errors as a function of speed is challenging. Thus we

use experience to judge the effect of speed on path-tracking

errors.

3) Control-input Experience: Finally, the scheduled lin-

ear speed must also address constraints on angular velocities

resulting from actuator limits. As a result, we record the

commanded angular velocity, ωj
cmd,i = ωcmd,ki , during the

jth trial when passing the ith path vertex,

Ωj := {ωj
cmd,i | i ∈ 1 . . . N}.

In order to track the desired path at a velocity, vk, the robot

must be capable of turning at an angular velocity, ωk, as

shown in Fig. 3. In order to achieve this actual angular

velocity, the robot path-tracking controller commands a com-

manded angular velocity, ωcmd,k, compensating for wheel

slip, side slopes, and other model discrepancies through state

feedback. As the commanded linear velocity is increased

over trials, so too the commanded angular velocity will

increase in order to track the path. In practice, detailed
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Figure 4. Experience-based speed scheduling occurs in two steps: 1) modifications to the previous speed schedule are suggested based on experience (Green),
2) the suggested speeds are constrained by a priori speed and acceleration constraints (Blue).

models of wheel slip including the effects of side-slopes and

ground texture are generally not available for every situation.

For example, when a robot is required to traverse a straight

path across a sideslope, wheel-ground interaction models are

still under development [15]. However, by using experience,

we are able to predict that the commanded angular velocities

remain within the actuator limits when generating new speed

schedules.

D. Experience-based Speed Schedule Modification

The next step in the speed-scheduler algorithm (Step 3) is

to suggest new desired speeds for the next trial for each path

vertex (Fig. 4) based on the desired speeds during the jth

trial and the collected experience described in Sec. III-C. Us-

ing tuned values for increasing and decreasing the scheduled

speed, γ1 > 0, γ2 > 0, respectively, and thresholds, λL ≥ 0,

λH ≥ 0, λω > 0, and λfeat ≥ 4, the scheduler follows rules

to generate the suggested speeds for each path vertex:

vj+1
sugg,i = (2)⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vjsched,i+γ1 if (|εjL,i| < λL) ∧ (|εjH,i| < λH)∧
(|ωj

cmd,i| < λω) ∧ (mj
i > λfeat),

vjsched,i−γ2 if (|εjL,i| > λLλdb) ∨ (|εjH,i| > λHλdb)∨
(|ωj

cmd,i| > λωλdb)∨(mj
i < λfeat/λdb),

vjsched,i otherwise.

We use λdb > 1 to produce a deadband where the speed at

a vertex is neither increased nor decreased. After generating

suggested speeds for all path vertices in the next trial,

isolated increases are then pruned, vj+1
sugg,i ← vjsched,i, to

encourage a smooth speed profile (Fig. 4). An isolated

increase occurs when too few path vertices in a section of

the path are eligible for increased speeds. Finally, for the

first trial, when there is no experience from which to draw,

the scheduled speed for all path vertices is set to a fixed

speed, v1sched,i = vinit.

E. A Priori Speed and Acceleration Constraints

The final step in our experience-based speed scheduler

(Step 4) is to incorporate several a priori constraints on

linear speed, acceleration, and deceleration. Firstly, the

robot has a known actuator-based linear speed constraint.

In addition, the robot must respect speed limits for safety,

particularly during key sections of the path such as the start

and end of the path. The combination of actuator and safety

constraints results in a set of speed limits,

Vmax := {vmax,i | i ∈ 1 . . . N},
as shown in Fig. 4. These speed limits are applied to the

suggested scheduled speed,

vj+1
sched,i ← min{vj+1

sugg,i, vmax,i}. (3)

Finally, we limit the acceleration and deceleration to account

for robot capability and safe operation. The scheduled speed

must satisfy the acceleration and deceleration constraints,

amax > 0 and amin < 0, respectively, at every path vertex,

vj+1
sched,i ← min

{
vj+1
sched,i, (4)√(

vj+1
sched,i−1

)2

+ 2 di−1,i amax,√(
vj+1
sched,i+1

)2

− 2 di,i+1 amin

}
,

where di,j is the distance between two path vertices, xd,i

and xd,j , in the ground plane (neglecting the z component),

di,j =
√
(xd,j − xd,i)2 + (yd,j − yd,i)2. (5)

The resulting speed schedule satisfies all a priori speed

and acceleration constraints, and also takes into account

localization performance requirements and path-tracking

performance requirements.
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IV. EXPERIMENTAL RESULTS

A. Overview

The speed-scheduling algorithm presented in Sec. III was

tested in two experiments with 10 trials each, resulting in

over 4 km of testing in outdoor environments. The test

vehicle (Fig. 1) was manually taught the two paths including

sharp turns, a variety of slopes, and a variety of surfaces.

Both paths were taught at the DRDC Experimental Proving

Grounds in Suffield, Alberta, Canada. The resulting speed

schedules varied in speed from 0.5 m/s to 2.0 m/s.

B. Tuning Parameters

The speed scheduler was set to maintain matched feature

counts greater than 30, heading errors less than 10◦, lateral

errors less than 15 cm, and commanded angular velocities

less than 1.0 rad/s. The speed scheduler increments, γ1 and

γ2, were set to increase a scheduled speed by 0.2 m/s or

decrease a scheduled speed by 0.24 m/s. The vehicle speed

was limited to 0.4 m/s during the start and end segments,

and 2.0 m/s otherwise. Finally, the vehicle acceleration was

limited to 0.2 m/s2 and the vehicle deceleration was limited

to -0.05 m/s2. The parameter settings were based on expert

knowledge of the robot’s sensor and actuator capabilities.

The scheduling algorithm then maximized the speed along

a path while respecting these limits.

C. Results

During the first experiment, the vehicle travelled the

desired 100-m-long path (Figs. 5 and 6) 10 times, resulting

in 1 km of testing. During the first four trials, the number of

matched features, path-tracking errors, and desired angular

speeds were all within the specified limits. As a result, the

scheduled speed was increased equally for all path vertices

except those near the start and end of the path (Figs. 7 and 8).

In the fifth trial, the path-tracking error began limiting

the scheduled speed at 50 m along the path (Fig. 9). In

general, the path-tracking errors coincided with the path

slopes and curvatures (Figs. 5 and 6). Finally, as the speed

of the vehicle increased, the number of matched features de-

creased (Fig. 9). However, the reduction in matched features

was not high enough to limit the speed of the vehicle.

During the second experiment, the vehicle travelled a

375-m-long path 10 times, resulting in over 3 km of test-

ing (Figs. 10 and 11). As in the first experiment, the number

of matched features, path-tracking errors, and commanded

angular speeds were all within the specified limits for the

first few trials resulting in a rapid increase in scheduled

speeds (Fig. 10). In this case, we were able to initialize the

vehicle at a relatively safe speed of 0.5 m/s and the speed

scheduling algorithm was able to autonomously reduce the

travel time significantly (Fig. 11).

0 10 20 30 40 50 60 70 80 90 100
−10

0

10

20

A
ng

le
 (

de
g)

Desired Path Roll and Pitch Angles

 

 

Roll Pitch

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

C
ur

va
tu

re
 (

m
−

1 )

Distance Along Path (m)

Desired Path Curvatures

Figure 5. Experiment 1 Path Conditions: The test path for the first
experiment included slope angles up to 10◦, side-slope angles up to 10◦,
and path curvatures up to 0.2 m−1.
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Figure 6. Experiment 1 Test Route: The path for the first experiment was
approximately 100 m long and included gravel and grassy terrain.
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Figure 7. Experiment 1 Travel Time vs Trial: The strategic increases in
scheduled speed (Fig. 8) resulted in a significantly reduced travel time by
the 10th trial. Once the speed schedule had converged, variations in the
travel time were due largely to non-repeatable disturbances affecting the
vehicle speed and path-tracking errors.

D. Discussion and Future Work

The algorithm proved to make appropriate decisions with

respect to the localization system and path-tracking errors.

In retrospect, however, it may have been possible to estimate

the available speed increase more accurately by regressing

from experience, including more than just the previous

trial. This may have increased the speed increments during
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maximizes speed while taking into account limits derived from the vision
system, path-tracking errors, and control inputs (Fig. 9). During the 10th
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path-tracking error is largest.
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Figure 9. Experiment 1 Matched Features and Path-tracking Errors vs
Distance: The number of matched features in trial 10 were reduced due
to motion blur (Fig. 8) and variations in lighting relative to the first trial.
Heading errors also did not affect the scheduled speed. On the other hand,
increased speed resulted in increased lateral path-tracking errors, which
ended up being the most common cause of limited speed.

the early trials. Furthermore, it may be useful to maintain

experience as a function of time. For example, it is quite

common for vision-based localization systems operating

outdoors to experience periodic lighting changes affecting

the reliability of the system to localize. In such a case, one

could imagine the system anticipating a poorly lit section
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Figure 10. Experiment 2 Scheduled Speed vs Distance: During the
second experiment, the experience-based speed scheduler generated a
profile ranging from 0.5 m/s to 2.0 m/s after 10 trials, resulting in a
significant reduction in travel time (Fig. 11).
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Figure 11. Experiment 2 Travel Time vs Trial: During the first four
trials, the number of matched features, path-tracking errors, and commanded
angular speeds were all within the specified limits resulting in a significant
decrease in travel time.

of a path as a function of time-of-day and slowing down in

advance. This may be especially beneficial for a system that

does not repeat a path frequently enough to see the lighting

change gradually. Finally, it may also be of interest to

address the possibility of dynamic obstacles in general, and

possible recurring dynamic obstacles. Dynamic obstacles are

generally addressed in real-time. However, in some cases

dynamic obstacles cross paths at predictable times.

V. CONCLUSION

In summary, this paper presents an experience-based

speed scheduler for path-repeating mobile robots. The algo-

rithm collects localization, path-tracking, and control-input

experience then generates a speed schedule for the next

trial in two broad steps. First, the algorithm suggests a

new speed profile based on the collected experience and the

previous speed schedule. Second, the alogorithm limits the

suggested profile based on a priori speed and acceleration

limits. The algorithm was implemented and tested on a large

DMRV (Fig. 1) in two experiments with 10 trials each,

resulting in over 4 km of driving. The algorithm proved to

be effective at maximizing the robot speed while taking into

account limits that are very difficult to predict in advance,

such as those imposed by vision-based localization systems.
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