
Towards Scalable Online Trajectory Generation for Multi-robot Systems

Carlos E. Luis, Marijan Vukosavljev, and Angela P. Schoellig

Abstract— We present a distributed model predictive control
(DMPC) algorithm to generate trajectories in real-time for
multiple robots, taking into account their trajectory tracking
dynamics and actuation limits. An event-triggered replanning
strategy is proposed to account for disturbances in the sys-
tem. We adopted the on-demand collision avoidance method
presented in previous work to efficiently compute non-colliding
trajectories in transition tasks. Preliminary results in simulation
show a higher success rate than previous online methods
based on Buffered Voronoi Cells (BVC), while maintaining
computational tractability for real-time operation.

I. INTRODUCTION

Online trajectory generation is key to execute missions
in dynamic or unknown environments. In particular, multi-
robot tasks are especially challenging due to a high number
of decision-making agents sharing the same space. In such
settings, the planning algorithms must compute collision-free
and goal-oriented trajectories, taking into account the state
of the environment and neighbouring agents.

There exists a wide variety of techniques to tackle
the multi-robot trajectory generation problem. Firstly,
optimization-based techniques such as Sequential Convex
Programming (SCP) [1] and Distributed Model Predictive
Control (DMPC) [2] have had success in generating the
trajectories offline. Secondly, discrete planning strategies like
Rapidly-exploring Random Trees (RRT) have been extended
to the multi-agent case [3]. Thirdly, a combination of discrete
planning and continuous optimization has been developed to
coordinate multiple robots in cluttered environments [4].

Despite the advances in scalability and safety of the
algorithms, online trajectory generation for large groups of
robots remains a challenge. Optimal Reciprocal Collision
Avoidance (ORCA) and all its variants have pushed towards
real-time trajectory generation [5], with convincing results
in various robotic platforms in planar environments [6]. A
similar approach achieves collision avoidance through the
concept of Buffered Voronoi Cells (BVC) [7], showing initial
results of online trajectory generation in 2D with multiple
quadrotors operating at a fixed height. The BVC concept
has been recently used in tandem with discrete planners [8],
primarily to avoid deadlocks in scenarios where plain BVC
would get trapped and fail the task.

In this work we propose an alternative framework for
online trajectory generation of robot teams that must tran-
sition between two configurations. As such, our framework
provides an essential functionality for higher level planners

All the authors are with the Dynamic Systems Lab (www.dynsyslab.org)
at the University of Toronto Institute for Aerospace Studies
(UTIAS), Canada. Email: carlos.luis@robotics.utias.utoronto.ca,
mario.vukosavljev@robotics.utias.utoronto.ca, schoellig@utias.utoronto.ca

Fig. 1. Simulation of six quadrotors performing an antipodal exchange task
with a static obstacle in the middle, using our online trajectory generation
strategy. Coloured triangles represent the initial location of each agent.

that specify complex team missions in terms of goal locations
to be visited by the agents.

The framework builds upon our previous DMPC algorithm
for offline computation [9]. Our approach contrasts from
current online methods (e.g., [8]) in that:

• It does not require any pre-computed trajectories or a
discrete planner that generates collision-free solutions
for the optimizer.

• It does not assume perfect trajectory tracking. Instead,
the algorithm leverages knowledge on the dynamics of
the system.

• It uses on-demand collision avoidance as in [9].
Our preliminary results show that our strategy avoids

deadlocks better than state-of-the-art methods in distributed
online motion planning based on BVC [7], without the need
of a high-level discrete planner as in [8]. Also, our method
takes into account the dynamics of the agents to generate
collision-free motion, as opposed to previous methods that
ignored the dynamics and only computed non-colliding ref-
erence signals.

This brief focuses on the main aspects of our method and
preliminary simulation results. Experiments with a quadrotor
swarm will come in the future.

II. APPROACH

Our formulation tackles the point-to-point trajectory gen-
eration problem for N labelled agents. Each agent is assigned
a goal location which must be reached without collisions. We
assume each agent i obeys some trajectory tracking dynamics
given by a discrete linear system:

xi[k + 1] = Aixi[k] + Biui[k]. (1)

For instance, we may consider the system (1) to rep-
resent a quadrotor with an underlying position controller,

www.dynsyslab.org

0 10 20 30 40

Time [s]

-1

-0.5

0

0.5

Y
P

o
s
it
io

n
[m

]

State

Reference

Fig. 2. Experimental data of a quadrotor flight when using online
trajectory generation based on DMPC [9] with replanning every second.
The discontinuities in the reference signal causes undesired behaviour.

for which the inputs are position reference signals and the
states are the position and velocity of the vehicle, i.e.,
xi[k] = (pi[k], vi[k]).

The approach is based on receding horizon control, mean-
ing that every tp seconds we recompute the input sequence
to be applied over a finite horizon. We parameterize the
continuous input signal ui(t) for t ∈ [t0, t0 + tp] as a
concatenation of l Bézier curves, similar to [4].

To compute the next optimal input sequence for each agent
we follow these steps:

1) Based on the current states of the agent, decide what
should be the initial condition for the input sequence.

2) Check for future collisions using the latest predicted
states of neighbouring robots.

3) Build and solve a convex optimization problem, where
the decision variables are the control points of the l
Bézier curves describing the input ui(t).

A. Event-triggered Replanning

Choosing the initial condition for the input to be equal
to the current state of the robot was proposed in [8], but it
has certain limitations. Firstly, if we require Cr-continuity
on the inputs, then we need to reliably measure the r-th
derivative of the robot’s position. Secondly, for imperfect
trajectory tracking this replanning strategy constantly causes
(potentially big) discontinuities of the input to match the state
of the robot, as shown in Fig. 2. Such discontinuities cause
undesired jittering in the robot and slows down its progress
to complete the task.

To address these concerns, we propose an event-triggered
replanning strategy, in which we reset the input to match
the states of the agent only whenever we detect the agent
has been perturbed. To detect such an event, we designed
a heuristic activation function that we threshold to detect
disturbances to the agent. An example of such an activation
function for second-order tracking dynamics is:

f [k] =
(pi[k]− ui[k])

5

−(vi[k] + sgn(vi[k])ε)
, (2)

where the term (pi[k]−ui[k]) is the trajectory tracking error,
and the term sgn(vi[k])ε with a small scalar ε << 1 is used
to avoid singularities in f [k]. We assume |vi[k]| > 0, which
is realistic in real-world operation.

Fig. 3. Trajectory generation for a simulated quadrotor using event-
triggered replanning with the activation function in (2). The robot was
perturbed during the highlighted segments in red.

The intuition behind (2) is that we want to reset our
reference signal whenever the tracking error grows large.
However, designing an appropriate threshold value for the
tracking error is tricky due to its high variability during
execution. Instead, f [k] is designed to detect whenever the
error is growing but the velocity is either small or growing in
the opposite direction of the error. To detect these scenarios,
we define the robot is operating normally if the inequality

fmin < f [k] < fmax (3)

holds for every element of f [k]. The values of fmin and
fmax must be chosen by extracting the extrema of f [k] under
normal operation. If (3) does not hold, then the agent is being
disturbed and we set the initial position and velocity of the
Bézier curve to match the states of the vehicle, while setting
higher-order derivatives to zero.

An example of our strategy is shown in Fig. 3, where a
simulated quadrotor is tasked to reach an x coordinate equal
to 1 meter. During the first red segment of the trajectory the
robot is unable to move, and during the second red segment
it is being pushed away by an external force. In both cases
the condition in (3) is eventually violated and the replanning
is triggered. Under normal operation (white segments) the
replanning is not required and we avoid the shortcomings
observed in Fig. 2.

B. On-demand Collision Avoidance

We adopted the on-demand collision avoidance method
of [9], where collision constraints are used only if we pre-
dict future collisions on the horizon. This strategy assumes
communicative agents that share with nearby neighbours a
representation of their future actions. More precisely, after
every input update the agents share a sampled representation
of their future states, as predicted by their known dynamics.
Leveraging this information, the agents are able to predict
and avoid collisions.

With imperfect trajectory tracking, we cannot guaran-
tee that non-colliding reference signals will generate non-
colliding motion for the dynamic agents. Therefore, our
avoidance strategy is aware of the trajectory tracking dy-
namics by imposing collision constraints on the states of the
agents, rather than the inputs of the system.

As shown in Fig. 1, preliminary results in simulation show
responsive 3D collision avoidance capabilities in environ-
ments with dynamic agents and static obstacles.

C. Convex Optimization

To update their optimal input sequence, each agent solves a
convex optimization problem with the following components:

1) Equality Constraints: they ensure Cr-continuity be-
tween the concatenated segments of the Bézier curve repre-
senting the input of the system.

2) Inequality Constraints: with them we wish to limit the
input of the system to obey physical boundaries, for instance,
workspace dimensions and actuation limits.

One option to implement these inequality constraints is to
exploit the convex hull property of Bézier curves. If we limit
the control points of the curve to lie within a convex region,
we know the curve will be contained within that region.
This may, however, impose overly conservative bounds [10].
A second option, as suggested in [8], is to not impose the
constraints at all and check afterwards if the solution satisfies
the constraints; if it does not, the problem needs to be
resolved one more time to guarantee constraint satisfaction.

To overcome the above mentioned limitations, we imposed
constraints on discrete samples of the Bézier curve and its
derivatives. We built a set of matrices Φr that transform
the decision vector into a sampled representation of the r-
th derivative of the Bézier curve along the horizon. With
this formulation we can limit more precisely the input and
its derivatives, without having to perform a post-solve check
for dynamic feasibility.

Additionally, if collisions are predicted on the horizon, we
include separating hyperplane constraints on the position of
the agents (not their reference signals), following the con-
struction in [9]. The constraints are relaxed (soft constraints)
to avoid infeasibilities of the optimization problem.

3) Cost Function: we search to i) minimize the error
between the agents’ positions and their respective goals, ii)
minimize a measure of energy along the trajectory (e.g.,
minimum snap for quadrotors) and iii) if collisions are
predicted, we want to minimize the constraint violation (as
soft constraints). Each term is weighted and added together
to obtain a scalar cost.

The end result is a convex optimization problem that is
solved simultaneously by each agent, leading to efficient
distributed computation. Each optimization has linear equal-
ity and inequality constraints and a quadratic cost function,
which can be efficiently solved with a QP solver.

D. Robust Safety Layer

Our optimization does not guarantee collision-free trajec-
tories. Instead, we search to minimize the magnitude of the
collision constraint violation given the actuation limits of
the agents. Although this has proven to be effective as an
offline method, during real-time execution we are striving
for resilient collision avoidance with our framework.

On-going work is focused on local strategies to deal with
collisions robustly, in the presence of constraint violation

(a) On-demand avoidance (b) BVC

Fig. 4. A position exchange task with 2 agents and an obstacle in the
middle. The triangles symbolise the initial location of each agent. The BVC
method gets trapped in a deadlock while on-demand collision avoidance
successfully completes the task, without any centrally pre-planned trajectory.

or disturbances. Our first attempt was to force the agents
to repel each other whenever they were trespassing their
safety distance. The way we implemented this strategy was to
temporarily change the goal location of the colliding agents
to be in opposite directions of their distance vector, creating
a repel effect. We tested the method in a wide range of
transition tasks and the results are inconclusive: it may avoid
collisions in certain scenarios, but in others it may indirectly
induce future collisions. However, more strategically chosen
temporary goal locations may have the potential to be an
effective method for resolving collisions.

III. RESULTS

We created a simulation environment in MATLAB where
the agents were modeled after the Crazyflie 2.0 quadrotor.
The trajectory tracking dynamics were identified by fitting
a second-order model to experimental data from the step
response of the system (quadrotor + on-board position con-
troller). For more realistic simulations, we added sensor noise
to the states resulting from applying input signals to the
identified model.

For the input sequence we chose Bézier curves of fifth
degree with l = 3 and tp = 3 s, where each segment
had a fixed duration of 1 second. Additionally, we imposed
continuity constraints up to the third derivative of the curve.

A. Performance in Transition Tasks

We implemented and compared our on-demand collision
avoidance strategy with the BVC method proposed on [8]. To
study the collision avoidance capabilities of both methods,
we first tested a simple scenario with two quadrotors in
2D. In Fig. 4 we show the trajectories of the two agents
exchanging their positions with an obstacle in the middle.
The on-demand strategy successfully finds a solution to the
problem, while the BVC method is unable to circumvent the
obstacle. Our method includes less hyperplane constraints
per iteration, which helps avoid the deadlock situation.

We thoroughly tested both methods on simulated transition
tasks with random initial and final locations for each agent.
A trial was declared successful if all agents were able to
reach their goals without collisions, within a maximum time
of 20 seconds in a 3×3×2m volume. In Fig. 5a we highlight
how the success rate using the BVC method quickly degrades

5 10 15 20 25 30

Number of Agents

0

20

40

60

80

100
S

u
c
c
e

s
s
 P

ro
b
a

b
ili

ty
 [

%
]

BVC

On-demand

(a)

5 10 15 20 25 30

Number of Agents

0

5

10

15

T
ra

n
s
it
io

n
 T

im
e

 [
s
]

BVC

On-demand

(b)

Fig. 5. Simulation performance comparison of our on-demand collision
avoidance strategy and the BVC method. We considered different number
of agents in a fixed volume of 3×3×2m. For each swarm size, 50 different
random test cases were generated.

as the number of agents increases. More specifically, as the
density of the agents in the environment increases, the BVC
method tends to fail in completing the transition within the
required time. As for our method, it has more than 85%
success rate with up to 30 vehicles, which represents a
density of 1.67 agents per cubic meter. The main reason
of failure of our method is due to collisions (12 out of 13
failures); further study is required to reduce the collision
scenarios observed in these experiments.

We also compared the average time required to complete
the transitions, as shown in Fig. 5b. On average, the BVC
method takes longer to complete the task than our on-
demand strategy. These results suggest that the collision
avoidance method in BVC reduces the mobility of agents,
which leads to slower transition times and in some scenarios
to deadlocks (as in Fig. 4). Instead, our paradigm based on
communicative agents achieves higher coordination, which
ultimately reduces the transition times.

B. Runtime Benchmark

We compared the computation time per agent to update
their input sequence. In Fig. 6 the results are presented,
where we divided the runtime into building the collision
constraint and solving the associated QP.

To formally analyze the scaling of both algorithms, define
K to be the number of time steps in the planning horizon,
and ni,k to be the number of nearby neighbours of agent
i to be considered for collision avoidance at time step k.
The constraint building time for agent i using BVC has a
complexity of O(ni,k) whereas the complexity using on-
demand collision avoidance is O(K(N + ni,k)). This is
supported by the linear scaling observed for the building
time of our method as N increases. Since ni,k is relatively
constant, the BVC curve has low fluctuations.

As for solving the QP, the amount of inequality constraints
on both methods scales with O(ni,k), but our method adds an
additional ni,k decision variables to the problem. The plots
in Fig. 6 suggest a quasi-constant scaling using BVC and
a linear growth using on-demand collision avoidance. The
average QP solving time of our method increases with the
agent density, since collisions must be constantly avoided,
and with potentially more neighbours.

To summarize, the computational cost of the proposed

5 10 15 20 25 30

Number of agents

0

2

4

6

8

10

R
u

n
ti
m

e
 p

e
r

A
g

e
n

t
[m

s
]

BVC solve QP

BVC build constraint

On-demand solve QP

On-demand build constraint

Fig. 6. Comparison of the average runtime per agent using our on-demand
collision avoidance and the BVC method. The data shown is the average
over 50 randomly generated tests for each swarm size considered.

method is higher than BVC, but with an overall better
performance in transition tasks (Fig. 5).

IV. CONCLUSION AND FUTURE WORK

We presented a framework for multi-robot online trajec-
tory generation based on DMPC. Our method takes into
account the trajectory tracking dynamics of the agents which
adds robustness to the system. The on-demand collision
avoidance strategy showed higher success rate than BVC
to solve a wide variety of transition tasks, while keeping
a runtime well-suited for real-time implementation.

Future work will focus on testing the framework with our
Crazyflie 2.0 swarm testbed and minimizing the probability
of collisions.

REFERENCES

[1] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of
collision-free trajectories for a quadrocopter fleet: A sequential convex
programming approach,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2012, pp. 1917–1922.

[2] R. Van Parys and G. Pipeleers, “Distributed model predictive forma-
tion control with inter-vehicle collision avoidance,” in Asian Control
Conference (ACC), 2017.

[3] M. Čáp, P. Novák, J. Vokrı́nek, and M. Pěchouček, “Multi-agent
rrt: sampling-based cooperative pathfinding,” in Proceedings of the
2013 international conference on Autonomous agents and multi-agent
systems. International Foundation for Autonomous Agents and
Multiagent Systems, 2013, pp. 1263–1264.

[4] W. Hönig, J. A. Preiss, T. S. Kumar, G. S. Sukhatme, and N. Ayanian,
“Trajectory planning for quadrotor swarms,” IEEE Transactions on
Robotics, vol. 34, no. 4, pp. 856–869, 2018.

[5] J. Van Den Berg, J. Snape, S. J. Guy, and D. Manocha, “Reciprocal
collision avoidance with acceleration-velocity obstacles,” in Interna-
tional Conference on Robotics and Automation, 2011, pp. 3475–3482.

[6] J. Alonso-Mora, P. Beardsley, and R. Siegwart, “Cooperative collision
avoidance for nonholonomic robots,” IEEE Transactions on Robotics,
vol. 34, no. 2, pp. 404–420, 2018.

[7] D. Zhou, Z. Wang, S. Bandyopadhyay, and M. Schwager, “Fast, on-
line collision avoidance for dynamic vehicles using buffered voronoi
cells,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 1047–
1054, 2017.

[8] B. Şenbaşlar, W. Hönig, and N. Ayanian, “Robust trajectory execution
for multi-robot teams using distributed real-time replanning,” in Dis-
tributed Autonomous Robotic Systems. Springer, 2019, pp. 167–181.

[9] C. E. Luis and A. P. Schoellig, “Trajectory generation for multiagent
point-to-point transitions via distributed model predictive control,”
IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 375–382,
2019.

[10] T. Mercy, R. Van Parys, and G. Pipeleers, “Spline-based motion
planning for autonomous guided vehicles in a dynamic environment,”
IEEE Transactions on Control Systems Technology, no. 99, pp. 1–8,
2017.

	Introduction
	Approach
	Event-triggered Replanning
	On-demand Collision Avoidance
	Convex Optimization
	Equality Constraints
	Inequality Constraints
	Cost Function

	Robust Safety Layer

	Results
	Performance in Transition Tasks
	Runtime Benchmark

	Conclusion and Future Work
	References

