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Abstract— The use of model predictive control for quadro-
tor applications requires balancing trajectory tracking per-
formance and constraint satisfaction with fast computation.
This paper proposes a Flatness-based Model Predictive Con-
trol (FMPC) approach that can be applied to quadrotors,
and more generally, differentially flat nonlinear systems. Our
proposed FMPC couples feedback model predictive control
with feedforward linearization. The proposed approach has
the computational advantage that, similar to linear model
predictive control, it only requires solving a convex quadratic
program instead of a nonlinear program. However, unlike linear
model predictive control, we still account for the nonlinearity
in the model through the use of an inverse term. In simulation,
we demonstrate improved robustness over approaches that
couple model predictive control with feedback linearization.
In experiments using quadrotor vehicles, we also demonstrate
improved trajectory tracking compared to classical linear and
nonlinear model predictive control approaches.

I. INTRODUCTION

The growing interest in unmanned aerial vehicles (UAVs)
for applications such as infrastructure inspection [1], search-
and-rescue missions [2] and mapping operations [3] has
challenged researchers to develop controllers that can move
beyond lab demonstrations to real-world scenarios. Success-
ful controllers therefore must meet the following three crite-
ria: exhibit high-trajectory tracking performance; explicitly
account for input and state constraints; and demonstrate
robustness to unmodelled dynamics, disturbances and time
delays. Furthermore, the inherently fast dynamics of UAVs
require real-time operation, on-board, in a high-frequency
feedback loop.

Model predictive control (MPC) is a popular approach to
meet the first two criteria by optimizing over a prediction
horizon while still explicitly adhering to constraints on the
states and inputs of the system [4]-[6]. However, the practical
challenge is to balance this with the real-time computation
requirement.

The most common real-time MPC approach is a direct
method, which transforms the open-loop optimal control
problem into a finite-dimensional problem by first discretiz-
ing the model [8]. This model-based controller then generally
considers one of three model classes.

Nonlinear Model Predictive Control (NMPC) uses a non-
linear system model which, coupled with direct methods,
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Fig. 1. Overall architecture diagram of the proposed Flatness-based Model
Predictive Control (FMPC) approach.

results in solving a non-convex nonlinear program (NLP)
at each time step. Current real-time NMPC tends to find a
suboptimal solution of the NLP by performing often only
one iteration of a sequential quadratic program (SQP) with
Gauss-Newton approximation [7], [9]. This is often com-
bined with warm-starting, i.e., initializing using the estimate
from the previous time step [8]. For longer time horizons,
efficiency can be improved by using a multiple shooting
method, which considers both the system state and input
as optimization variables and adds the system dynamics
as equality constraints. When solving the NLP, the SQP
solver can then exploit the resulting sparse structure of the
problem [7].

Alternatively, Linear Model Predictive Control (LMPC)
uses a linearized model (often about hover for quadrotors
[4]), which, coupled with direct methods, results in a convex
quadratic program (QP) that can be efficiently solved at each
time step.

The final approach, Model Predictive Control combined
with Feedback Linearization (MPC+FBL), combines feed-
back linearization to cancel nonlinear terms with MPC that
considers a linear model [10], [11]. This idea was first
presented in the mid 1990s. It was shown that using a
representative, but modified cost function, can result in a
convex QP as in LMPC. MPC in our proposed approach in
Fig. 1 similarly solves such a convex QP. Initial work looked
promising as simulations showed comparable performance to
NMPC but with decreased computational cost [10]. However,
the practical implementation of MPC+FBL appears to be
stunted by both robustness issues [12] and the required input
constraint conversion (see Section IV) [10].

This paper tackles the following question: Can we make
the idea of MPC+FBL, where a linearization term is coupled
with linear MPC, practical and implementable?

To answer this question, we first consider when and
how feedback linearization can be applied. Many physical
systems, including cranes, cars with trailers and quadrotors,
can be described by nonlinear models exhibiting a property
known as differential flatness [13], [14]. Intuitively, differen-
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tial flatness allows us to separate the nonlinear model into a
linear dynamics component and a nonlinear transformation.
This property can be utilized in both feedback and feedfor-
ward linearization [15].

Feedforward linearization aims to overcome the robustness
issues of feedback linearization, which may be the result of
parametric model uncertainty leading to inexact pole-zero
cancellation [15]. In [16], feedforward linearization achieved
improved tracking performance over feedback linearization
for a ball-plate experiment. Given its robustness advantages,
our proposed approach, shown in Fig. 1, couples feedforward
linearization with MPC.

The contributions of this paper are three-fold. Firstly, we
propose a novel Flatness-based Model Predictive Control
(FMPC) architecture that couples feedback MPC with feed-
forward linearization. Practical advantages (in particular, an
ability to account for known input delays and improved
robustness to model parameter uncertainty) over MPC+FBL
are demonstrated in simulation in Section VI. Secondly,
we implement our FMPC architecture on a quadrotor UAV,
accounting for inner-loop dynamics and known input time
delays. Finally, in Section VII-C we demonstrate promising
results for FMPC as an outer-loop controller of a quadrotor
UAV with improved trajectory tracking performance over
NMPC and LMPC.

II. PROBLEM STATEMENT
Consider a system with a continuous-time, nonlinear

model of the form:
ẋ(t) = f(x(t),u(t)), x(0) = x0,

y(t) = h(x(t))
(1)

with t ∈ R+, x(t) ∈ X ⊆ Rn, u(t) ∈ U ⊆ Rm, y(t) ∈ Rm,
and f, h being smooth functions.

Given a reference trajectory yref (t), determine an optimal
control problem (OCP) for real-time MPC that can be used to
compute an input u(t) such that high-performance tracking
is achieved, i.e. ||y(t)− yref (t)|| remains small.

To achieve this, we assume that (1) is differentially flat, see
Section III-A, and propose a Flatness-based Model Predictive
Control (FMPC) that utilizes this property.

III. BACKGROUND
A. Differential Flatness

We recall the formal definition of differential flatness.
Definition 1: A nonlinear system model (1) is differen-

tially flat if there exists ζζζ(t) ∈ Rm, whose components are
differentially independent (that is, the components are not
related to each other through a differential equation), such
that the following holds [13]:

ζζζ = Λ(x,u, u̇, . . . ,u(δ)), (2)
x = Φ(ζζζ, ζ̇̇ζ̇ζ, . . . , ζζζ(ρ−1)), (3)
u = Ψ−1(ζζζ, ζ̇̇ζ̇ζ, . . . , ζζζ(ρ)), (4)

where Λ, Φ and Ψ−1 are smooth functions, δ and ρ are the
maximum orders of the derivatives of u and ζζζ needed to
describe the system and ζζζ = [ζ1, . . . , ζm]T is called the flat
output.

B. Feedforward Linearization

We briefly highlight a key result in feedforward lineariza-
tion that demonstrates how we can rewrite the nonlinear
model (1) as an equivalent linear one. As explained in [15],
every differentially flat system (1) can be represented using
a Brunovský state (or flat state):

z :=
[
ζ1, ζ̇1, . . . , ζ

(ρ1−1)
1 , . . . , ζm, . . . , ζ

(ρm−1)
m

]T
. (5)

Note that ρi is the maximum derivative of ζi found in (4).
Using the state transformation between the flat state z and
state x, obtained by differentiation of (2) and using (3), we
can transform (1) into the normal form:

ζ
(ρi)
i = αi(ζζζ, ζ̇̇ζ̇ζ, . . . , ζζζ

(ρ−1),u, u̇, . . . ,u(σi)) := vi, (6)

where αi, i = 1 . . .m, is a smooth function obtained as
a result of the transformation. Note σi is the maximum
derivative of u after ρi times differentiating ζi in (2). We
define the flat input v as:

v :=
[
v1, v2, . . . , vm

]T
. (7)

Using the definitions in (5) and (7), we rewrite (6) as:

ż = Az+Bv, (8a)
v = Ψ(z,u, u̇, . . . ,u(σ)), (8b)

where σ = maxσi. We term (8a) the linear flat model. By
substituting the definitions in (5) and (7), we can rewrite (4)
as u = Ψ−1(z,v).

Theorem 1: (obtained from [15]) Consider a desired tra-
jectory in the flat output ζζζd, including a corresponding
desired flat state zd (obtained by substituting ζζζd for ζζζ in
(5)) and desired flat input vd (obtained by substituting ζζζd
for ζζζ in (6) and (7)). Given ζζζd, if we apply the nominal
control,

u = Ψ−1(zd,vd), (9)

to a differentially flat system (1), provided that z(0) = zd(0),
this results in an equivalent, by change of coordinates, linear
system as given in (8a).

Theorem 1 allows trajectory generators or controllers, as
in our proposed approach in Fig. 1, to only consider the
equivalent linear flat model. The output of the trajectory
generator or controller, i.e., the desired flat state and flat
input, can then be fed through the inverse transformation (9)
to correct for the nonlinear part (8b) in the system. Feed-
forward linearization differs fundamentally from feedback
linearization in that the desired flat state, see (9), as opposed
to the measured flat state is used in the inverse term.

IV. RELATED WORK

Our proposed approach founds itself on an intuitive idea
presented in early work using MPC and feedback lineariza-
tion (MPC+FBL). In [10], the coupling of MPC and inner
loop feedback linearization, u = Ψ−1(z,vd), is proposed.
The idea is simply to cancel the nonlinear terms in (8b)
and be left with linear prediction dynamics (8a), where
v = vd. The resulting MPC considers (8a) instead of the
nonlinear model (1) with output y(t) = ζζζ(t). Despite this
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computational advantage, there are a few factors that must
be considered:

Factor 1 – Development of a new cost: The required
convexity of the resulting optimal control problem may force
us to develop a new cost function. Consider that even if
the original cost function used for the nonlinear system is
convex, the nonlinear transformation of the state x and input
u into flat state z and flat input v can result in a nonlinear,
non-convex cost for the new flat variables [10].

Factor 2 – Conversion of input constraints: Another criti-
cal consideration is that due to the nonlinear parametrization
in (4) convex constraints on the system input u may not map
to convex constraints on the flat input v. In general, there
are two approaches in the literature to obtain linear input
constraints on v. The first approach calculates the exact input
constraint on v at the current time step and then applies this
as a constant constraint for the entire prediction horizon [17].
The second approach uses the previously predicted solution
sequence for the flat state to construct a linear approximation
of the constraints on v [18], [19]. Our proposed FMPC also
suffers from this limitation. In practice, we apply conserva-
tive box constraints on the quadrotor flat states and flat inputs
as is done in [20] for trajectory generation. Determining less
conservative constraints in a comparably efficient way is left
for future work.

Factor 3 – Robustness: In [12], the authors conclude that
coupling linear MPC and feedback linearization relies on
cancellation of nonlinear terms, which makes its robustness
to noise, parameter uncertainty and disturbances difficult to
quantify. They suggest trying to incorporate plant uncertainty
into MPC+FBL. Another robustness issue that has not been
addressed for MPC+FBL is how to account for known
input time delays. Our proposed FMPC, similar to [21],
instead combines linear MPC with feedforward linearization.
However, we extend their initial results beyond single-input
single-output (SISO) simulations.

V. METHODOLOGY

Our proposed FMPC in Fig. 1 still requires careful con-
sideration of Factor 1 and Factor 2 of MPC+FBL. However,
it attempts to address some of the issues related to Factor 3.
We select output y(t) to be the flat output ζζζ(t). Similarly,
the reference trajectory yref (t) is defined in the flat output
space, i.e., ζζζref (t). The implementation steps of our pro-
posed FMPC are:

Feedforward Linearization: The proposed coupling of
feedforward linearization and MPC, as seen in Fig. 1, allows
us to use the linear flat model (8a) in a feedback MPC. The
MPC outputs zd and vd, which are then fed through the
inverse term (9). We take advantage of the robustness of
feedforward linearization to parameter uncertainties, where
unlike feedback linearization the inverse term does not try
to explicitly cancel nonlinear terms. Further, unlike feedback
linearization, we can only use feedforward linearization to
reduce the nonlinear model (1) to an equivalent linear flat
model (8a) because we satisfy the initial condition require-
ment in Theorem 1. We continuously ensure adherence

to the initial condition requirement by feeding back our
measured flat state z into the MPC where we re-optimize
for our updated desired trajectory, zd and vd. This means
that feedback MPC and feedforward linearization have a
symbiotic relationship: feedforward linearization allows us
to use a simplified model in MPC, while using MPC as our
feedback controller allows us to satisfy the conditions for
feedforward linearization.

Model Predictive Control: A standard direct method MPC
strategy is considered. At each sampling time, we solve an
open-loop OCP by minimizing a convex quadratic cost func-
tion J(·), which is dependent on the sequence of predicted
flat states ẑ and flat inputs v̂. This is subject to both the
discretized linear flat model of the system (8a) and linear
constraints on the flat state and input, which approximate
state x(t) ∈ X and input u(t) ∈ U constraints. The resulting
OCP is a convex QP which can be efficiently solved for a
global minimum.

Time Delays: Our proposed FMPC, which couples MPC
and feedforward linearization, can easily be extended to
systems with known input time delays. Consider the non-
linear system model (1) but now the input has a known
time delay td, i.e. ẋ(t) = f(x(t),u(t − td)). In our dif-
ferential flatness definition, (4) now becomes u(t − td) =
Ψ−1(ζζζ(t), ζ̇̇ζ̇ζ(t), . . . , ζζζ(ρ)(t)) or more compactly, using (5)
and (7), u(t− td) = Ψ−1(z(t),v(t)). This gives an inverse
term:

u(t) = Ψ−1(z(t+ td),v(t+ td)).

Notice that this relies on forward predicted states and so
feedback linearization using the current flat state z(t) would
not cancel the nonlinear terms. Our proposed FMPC instead
feeds forward zd(t+ td) and vd(t+ td).

VI. SIMULATION EXAMPLE
We compare our proposed FMPC, coupling MPC with

feedforward linearization, with MPC+FBL in simulation for
a SISO system. We consider a nonlinear system with the
following nominal SISO model (taken from [15]):

ẋ = −x− x3 + u, (10)
where, utilizing its differential flatness property, we can
define flat state and flat output z = ζ = x and flat input v =
ẋ. Equivalently, we rewrite the nonlinear model as a linear
flat model ż = v and a nonlinear term v = −z − z3 + u. In
the simulation, we consider the following MPC formulation:

min
ζ1...N ,v0...N�1

1

2

N∑
k=1

Q̃(ζk − ζref,k)
2 +

1

2

N−1∑
k=0

R̃v2k,

subject to the discretized linear flat model, zk+1 = zk+∆tvk.
We use a discretization of 70 Hz, prediction horizon N = 70
and weight matrices Q̃ = 100 and R̃ = 0.1. We consider
a reference trajectory, in the flat output space, ζref (t) =
2 sin(3t) + 6 sin(10t). The difference between our proposed
FMPC and MPC+FBL is that the desired state (output from
MPC) zd, instead of the current flat state z, is used in the
inverse term, Ψ−1(·), i.e., u = zd+ z

3
d + vd in FMPC versus

u = z + z3 + vd in MPC+FBL.
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Fig. 2. Tracking of reference ζref (t) = 2 sin(3t) + 6 sin(10t) using
FMPC and MPC+FBL for: (a) Model Parameter Sensitivity: with model
parameter mismatch; (b) Input Time Delay: with known input time delay of
5 time steps.

We compare results for three cases:
Nominal Case: We consider a nonlinear system with the

same dynamics as our nominal model (10). FMPC and
MPC+FBL exhibit comparable performance with root mean
square (RMS) error of 0.5547 and 0.3854, respectively. In
this case, MPC+FBL is slightly better as exact cancellation
of the nonlinearity is possible.

Model Parameter Sensitivity Case: To test robustness to
parametric uncertainty, we use model (10) but consider a
nonlinear system with dynamics ẋ = −0.9x − 0.9x3 + u
(taken from [15]). FMPC, with RMS error 0.4826, has
improved performance over MPC+FBL, with RMS error
1.0969. This is observed in Fig. 2(a) where inexact cancel-
lation in MPC+FBL (light blue) results in the addition of
unstable terms leading to poorer tracking performance.

Input Time Delay Case: We consider a nonlinear system
with dynamics ẋ = −x−x3+u(t− td) where td is a known
time delay. We simulate the case td = 5/70. To compensate
for this delay, our FMPC feeds forward zd(t+td) and vd(t+
td) (computed by the MPC) as the desired flat state and flat
input. In MPC+FBL, we similarly attempt to compensate
by sending vd(t + td). FMPC achieves an RMS error of
0.6956 while MPC+FBL achieves 2.3150. Fig. 2 shows the
success of such time delay compensation in FMPC (red),
while the same approach cannot be used for MPC+FBL (light
blue). Alternative approaches for time delay compensation in
MPC+FBL may require an additional state predictor.

VII. EXPERIMENTS

A. Application to Quadrotors

We consider a cascaded control structure with a low-
level onboard controller and an MPC outer-loop controller
that can send commands (żcmd, φcmd, θcmd, ψ̇cmd), where
żcmd is commanded velocity in the z direction, φcmd is the
commanded roll angle, θcmd is the commanded pitch angle
and ψ̇cmd is the commanded yaw rate. We compare LMPC,
NMPC, MPC+FBL and FMPC.

To enhance trajectory tracking, we first perform a simple
system identification, as in [6], to approximate the inner-loop

attitude dynamics by:

φ̇ =
1

τφ
(kφφcmd − φ), (11a)

θ̇ =
1

τθ
(kθθcmd − θ), (11b)

ψ̇ = ψ̇cmd, (11c)

where τφ, τθ are identified time constants, kφ, kθ are identi-
fied gains and φ, θ, ψ are the roll, pitch and yaw angles of
the vehicle. Unlike in [6], we do not directly send a thrust
command Tcmd. Consequently, we perform a similar system
identification to approximate the z-velocity dynamics by a
second-order response with a time delay of td = 0.1s:

...
z (t) = − 1

τz
ż(t)− 1

τIz
z̈(t) +

1

τCz
żcmd(t− td), (12)

where τz, τIz, τCz are identified time constants. Ignoring
drag and other external forces, we can describe the lateral
motion using the standard model [15], [5]:

ẍ =
R13

R33
(z̈ + g), (13a)

ÿ =
R23

R33
(z̈ + g), (13b)

where x, y, z represent the linear position, R the rotation of
the quadrotor body frame with respect to an inertial frame
and g the gravitational constant. We use the notation R13 to
refer to the (1, 3) entry of R.

Nonlinear Model: In our NMPC model formulation, we
consider the nonlinear model ẋ = f(x,u) described by
(11a)-(11c), (12) and (13a)-(13b) with state and input:

x = (x, y, z, ẋ, ẏ, ż, z̈, φ, θ, ψ),

u = (żcmd, φcmd, θcmd, ψ̇cmd).

Linearized Model: The only nonlinearity in our model
formulation for NMPC comes from (13a)-(13b). In LMPC
we consider the linearization of (13a)-(13b) about hover
(φ = 0, θ = 0, z̈ = 0) where at each time step we assume
that our current yaw angle remains constant.

Linear Flat Model: The differential flatness of the standard
quadrotor model for flat outputs ζζζ = (x, y, z, ψ) is found in
[14]. In a similar procedure, we can show the differential
flatness, with the same flat outputs, of our nonlinear model
governed by (11a)-(11c), (12) and (13a)-(13b). Our FMPC
model formulation considers the linear flat model (8a) with
flat state and flat input:

z = (x, ẋ, ẍ, y, ẏ, ÿ, z, ż, z̈, ψ), v = (
...
x,

...
y ,

...
z , ψ̇).

Optimal Control Problem: In the cost function in (14),
ζζζk = (x, y, z, ψ)k is our flat output at time step k,
the positive semi-definite matrix Q̃ � 0 weights the er-
ror with our reference trajectory and the positive-definite
R̃ � 0 regulates both the size and change in inputs u =
(żcmd, φcmd, θcmd, ψ̇cmd). In the LMPC OCP in (14), we
optimize for uk subject to the discretized Linearized Model.
In NMPC, we similarly optimize for uk using the cost in
(14) but instead subject to the discretized Nonlinear Model.
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In LMPC, we use a direct method to set up an OCP that is
repeatedly solved at each time step:

min
u0...N�1

1

2

N∑
k=1

(ζζζk − ζζζref,k)
T Q̃(ζζζk − ζζζref,k) +

1

2

N−1∑
k=0

uT
k R̃uk

subject to xk+1 = Axk +Buk, ζζζk = Cxk,

xk ∈ Ωx.
(14)

For both LMPC and NMPC, we consider the constraint set
in (14) to be:

Ωx = {x ∈ R10 | |z̈| < 0.5; |θ| ≤ 0.4; |φ| ≤ 0.4;ψ ∈ [0, π]}.

In the FMPC OCP, our cost is subject to the Linear Flat
Model. To apply FMPC with a similar quadratic cost that
is convex in vk (discrete flat inputs) we use the Linearized
Model to obtain a linear relationship between input u and
our flat state z and flat input v: u = Mz + Nv. We then
use this linear relationship to obtain a similar representative
convex cost function for FMPC by replacing u with its linear
relationship in z and v. Consequently, in FMPC we solve the
following OCP at each time-step:

min
v0...N�1

1

2

N∑
k=1

(ζζζk − ζζζref,k)
T Q̃(ζζζk − ζζζref,k) +

1

2

N−1∑
k=0

uT
k R̃uk

subject to zk+1 = Azk +Bvk, ζζζk = Czk,

uk = Mzk +Nvk,

zk ∈ Ωz,
(15)

where, similar to [20], we approximate the state constraint
set Ωx with the constraint set:

Ωz = {z ∈ R10 | |z̈| < 0.5; |ẍ| ≤ 7; |ÿ| ≤ 7;ψ ∈ [0, π]}.

Time Delay Compensation: To compensate for the time
delay in the z-direction in (12), both LMPC and NMPC
output żcmd(t+ td). As described in Section V, FMPC feeds
forward zd(t+ td), żd(t+ td), z̈d(t+ td),

...
z d(t+ td) through

the inverse term (9).

B. Experimental Setup

The experiments are conducted on a Parrot AR.Drone
quadrotor with an overhead motion capture system esti-
mating the state of the quadrotor. We interface with the
quadrotor using the open-source Robot Operating System
(ROS). Outer-loop MPC approaches are run off-board on a
ThinkPad P50 with Intel Core i7-6700HQ Processor. We use
the formulations described in Section VII-A, to compare five
different off-board outer-loop model predictive controllers
running at 70 Hz, namely: nonlinear model predictive control
using a first-order Euler discretization for forward simulation
(NMPC E1); nonlinear model predictive control using a
fourth-order explicit Runge-Kutta discretization for forward
simulation (NMPC RK4); linear model predictive control
(LMPC); model predictive control and feedback linearization
(MPC+FBL); and our proposed flatness-based model predic-
tive control (FMPC). All controllers consider a prediction at
10 Hz and a look-ahead time of 1 s, where the prediction

horizon is N = 10 in (14) and (15). For NMPC, a single iter-
ation of an SQP, with Gauss-Newton Hessian approximation,
is performed at each iteration. It is initialized using warm-
starting. Furthermore, all optimization problems are solved
using a single-shooting method whereupon the resulting QP
is solved using CVXOPT in Python. For each controller we
perform three trials of three different trajectories: Trajec-
tory 1: The quadrotor follows a circular reference with radius
1 m and angular frequency 0.4π rad/s in the x-y plane. There
is no yawing and the vehicle remains at a constant altitude.
Trajectory 2: The quadrotor performs a 2 s step in x and
z. There is no motion in the y-direction and no yawing.
Trajectory 3: The quadrotor follows the circular reference
from trajectory 1, but now also simultaneously yaws to π/2
while performing a step in z. We do this for both a good
parameter estimation (τφ = τθ = 0.25, kφ = kθ = 1.4) and
a poor parameter estimation (τφ = τθ = 0.5, kφ = kθ = 1.0)
of the time constants and gains in the inner-loop dynamics
model in (11a)-(11b).
C. Results

While all model predictive controllers solve one QP at
each time step, as seen in Fig. 3, our proposed FMPC (red)
and MPC+FBL (light blue) have an average computation
between that for LMPC (purple) and NMPC (grey and
green). The additional computation used in our proposed
FMPC over LMPC leads to reduced RMS error for Tra-
jectory 2 and Trajectory 3 in Fig. 3. This reduced error
is attributed to FMPC accounting for the nonlinear effects
of yawing and vertical acceleration on lateral motion in
(13a)-(13b). In Trajectory 1 this effect is negligible since the
trajectory requires no yawing or vertical motion. Comparable
performance is observed for LMPC and our proposed FMPC.

0 2 4 6

RMS Computation Time per Timestep [ms]

Trajectory 1 Trajectory 2 Trajectory 3
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NMPC E1, Poor Param. Est. NMPC E1, Improved Param. Est. 
MPC+FBL, Poor Param. Est. MPC+FBL, Improved Param. Est.
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Fig. 3. Comparison of RMS computation per time step and RMS
error for Trajectory 1, Trajectory 2 and Trajectory 3 (averaged over three
trials per trajectory). Four key observations: (i) Our proposed FMPC and
MPC+FBL require more computation than LMPC but less computation
than NMPC (both NMPC E1 and NMPC RK4). (ii) However, for more
aggressive trajectories (Trajectory 2 and Trajectory 3), when good inner-
loop parameter estimates are used, FMPC outperforms LMPC. (iii) Even
with poor parameter estimates, FMPC shows comparable performance with
LMPC. (iv) The relatively poor performance, for both good and poor
parameter estimates, of NMPC RK4 and MPC+FBL is likely attributed to
their sensitivity to nonlinear model accuracy.
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Fig. 4. Comparison of tracking Trajectory 2: Improved performance in x-
direction tracking by FMPC as a result of modified pitch command. Unlike
LMPC, FMPC considers the effect of z-acceleration on lateral tracking.
FMPC determines a larger pitch command for a longer period of time in the
first 1 s allowing increased x acceleration before making a more substantial
negative change than the other controllers.

As seen in Fig. 4, FMPC (red) accounts for the nonlinear
effect of vertical acceleration on lateral motion in Trajec-
tory 2 by modifying the pitch command such that greater
lateral acceleration is achieved in the first 1 s before allowing
for a more dramatic change in pitch command to slow the
vehicle down as it reaches x = 1m. This tends to provide a
tracking improvement of 5-15% over LMPC (purple). NMPC
RK4 (green) achieves similar performance to LMPC poten-
tially suggesting that for Trajectory 2 linearization along
the simulated trajectory (as is done for NMPC) provides
little overall performance advantage over linearization about
hover (as is done for LMPC). Interestingly, MPC+FBL
tries to execute a similar tracking to our proposed FMPC
but its performance is limited by its sensitivity to model
inaccuracies and delays.

VIII. CONCLUSION

Results show that our proposed Flatness-based Model
Predictive Control (FMPC) applied to quadrotor trajectory
tracking is promising. Its advantages include:

• unlike LMPC, it is able to account for nonlinearities
while still solving a convex QP;

• unlike NMPC, it is not sensitive to initial trajectory
choice or susceptible to converging to local minima;

• using feedforward linearization instead of feedback lin-
earization improves robustness to modelling errors and
can account for known input time delays.
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