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Abstract— Inertial sensors aided by Ultra-wideband can
provide accurate positioning in environments where Global
Positioning Systems are unavailable. The positioning accuracy
however, is contingent on accurate calibration of sensor ex-
trinsics. This procedure is generally time consuming, requires
specialized hardware and is prone to error. In this paper, we
perform an observability analysis of the full state and sensor
extrinsics. Based on this analysis we propose a method that
simultaneously estimates system state and sensor extrinsics
without any additional hardware or sensors using an indirect
formulation of the Extended Kalman Filter. Experimental
results demonstrate that the proposed method can estimate
the sensor extrinsics to centimeter-level accuracy and estimate
heading to milliradian-level accuracy.

I. INTRODUCTION

The advent of Global Positioning System (GPS) revolu-
tionzed positioning technology as the world moved from
using map charts to using coordinates from handheld devices
for navigation. Increased urbanization and industrialization
has resulted in many economic activities moving to indoor
environments such as factories, warehouses and shopping
malls. Unfortunately, the performance of GPS degrades sev-
erly and in some cases is unavailable in indoor environments.
This has warranted positioning systems similar to GPS but
for indoor environments. The last few decades have seen
the emergence of many different technologies as options
for indoor positioning systems [1]. Ultra-wideband (UWB),
on account of its high signal bandwith, general robustness
to obstacles and long range, shows particular promise for
accurate indoor localization [2], [3], [4].

A system equipped with a single UWB radio can estimate
3D position only. To obtain a full 6 degree-of-freedom
(DOF) pose, inertial measurement units (IMU) are used in
conjunction [4]. Additionally, one of the factors affecting
UWB-based positioning systems is non-line-of-sight (NLOS)
transmission. NLOS signals arise when the direct signal path
is interrupted by physical objects resulting in longer trans-
mission times. This is especially detrimental in applications
requiring smooth and accurate tracking. The combination
of IMU and UWB has been shown to imporve tracking
performance in such applications [4].

Generally, IMU and UWB radios are not colocated. It is
important to compensate for the sensor extrinsics or the lever-
arm. This process is known as sensor extrinsic calibration.
If uncalibrated, the offset will result in poor positioning
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performance. Current calibration techniques involve measur-
ing the lever-arm manually, using specialized equipment,
such as survey total station, or additional sensors. These
methods are either prone to error or expensive. In this paper
we first analyze the theoretical viability of estimating the
sensor extrinsics between IMU and UWB using observability
analysis. We then demonstrate experimentally the estimation
of sensor extrinsics without additional hardware or sensors.

Moreover, in cases where a system has multiple UWB
radios, the lever-arms can be used to estimate heading (within
a local reference frame) without a magnetometer. Estimation
of heading in this manner has many benefits. Unlike heading
computed from integration of angular velocities from gyro-
scope data, the heading from multiple UWB radios is not sus-
ceptible to drift. Heading estimates from a magnetometer are
vulnerable to interference from external magnetic fields. This
can be problematic especially in factories and warehouses
that have large metal structures and/or high voltage lines. On
the contrary, heading computed from multiple UWB radios
is unaffected in such conditions. Furthermore, this approach
does not require any motion for aligning heading and thus
enables true power-on-and-go systems.

In summary, the main contributions of this paper are:
1) We study the observability of the full state of an UWB-

aided INS including the sensor extrinsics.
2) We estimate the full state and the sensor extrinsics

using an indirect formulation of the Extended Kalman
Filter (EKF) known as the Error State Kalman Filter
(ESKF).

3) We show that accurate estimation of sensor extrinsics
can be used to estimate heading in the presence of
two or more mobile radios that are not co-located. We
present experimental data that validates our approach.

In section II we review the most relevant works in liter-
ature. Section III provides the background material. Section
IV and V provide a formal treatement of the problem. Section
VI analyses the observability of the proposed system. An
implementation of the ESKF as a realization of the system
is presented in section VII. A discussion of the experimental
results is presented in section VIII. Section IX concludes the
paper.

II. RELATED WORK

Observability of combined visual and inertial sensor sys-
tems has been studied in [5], [6]. A similar treatement
for visual-inertial navigation system (VINS) is provided in
[7]. Observability of states in a multi-robot cooperative 2D
localization setting is presented in [8] and [9].
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The application of GPS in aiding INS has many parallels
to UWB-aided INS as both GPS and UWB operate by
estimating the time-of-flight. The effect of lever-arm and
observability of GPS-aided INS has received much attention.
The observability of piece-wise constant linear systems is
presented in [10], [11]. The study of observability of si-
multaneous localization and mapping (SLAM) using GPS-
aided INS is presented in [12]. The lever-arm however is not
explicitly considered in this work. An explicit treatement of
estimation of lever-arm is done in [13]. The observability
of the error states under loosely coupled systems is studied
which reduces the system and measurement models to linear
functions and thus the linear matrix observability tests are
used. In contrast, we consider a tightly coupled framework
and study the obseravbility of the full non-linear model.

The use of UWB for indoor positioning has been demon-
strated in the literature. A tightly coupled approach to
localization using UWB and IMU is shown in [4] and [14].
The use of non-parametric estimation method, particle filter,
for localization using UWB and wheel odometry is presented
in [2]. An alternative to filtering-based methods employs
graph optimization. UWB range measurements are treated as
constraints on nodes of a graph and IMU measurements are
used to generate relative pose constraints between nodes of a
graph [3]. Other notable works which use different operating
modes of UWB for positioning include [15] where wheel
odometry is fused with time-difference-of-arrival (TDoA)
measurements and [16] where only TDoA meausrements
are used. However, none of these works treat the estima-
tion of sensor extrinsics. An approach similar to the one
followed in this paper is presented in [17]. However, in this
case additional sensors such as cameras and GPS are used
to estimate sensor extrinsics. To the best of the authors’
knowledge, observability analysis of a tightly coupled UWB-
aided INS for full 3D pose estimation including sensor
extrinsics has not been done yet. Additionally, the estimation
of magnetometer free heading using multiple UWB radios
has does not have a precedence.

III. BACKGROUND

In this section we introduce notation, methods and defini-
tions used throughout the rest of the paper.

A. Differential Geometry and Non-Linear Observability

We provide a brief introduction to observability analysis of
non-linear systems using a differential geometric approach as
outlined in [18]. For a more rigorous treatement, we refer the
reader to [19] and [18]. We introduce the following notation
for the Lie derivative of a smooth function, h along a smooth
vector field f : M → TM , where TM is the tangent bundle
of the manifold M :

Lfh(x) =
∂h(x)

∂x
f(x). (1)

The corresponding gradient vector is denoted by:

∇Lfh(x) =

[
∂Lfh(x)

∂x1
, ...,

∂Lfh(x)

∂xn
,

]
. (2)

Higher-order Lie derivatives are defined recursively as:

Lk
fh(x) = ∇Lk−1

f h(x)f(x),

with the zeroth-order Lie derviative defined as L0
fh(x) =

h(x).
We consider causal non-linear systems that are affine in

the control input:

Σ :

ẋ = f0(x) +
∑
i

fi(x)ui,

y = h(x),
(3)

where u ∈ Ω ⊂ Rm and x ∈M , which is a smooth manifold
of dimension n and y ∈ Rp. The functions f0 and fi are
assumed to be smooth or as having derivatives of all orders
in their domains denoted as C∞. The observability test is
based on the concept of distinguishability [18]. Two states
x0, x1 ∈M are said to be indistinguishable, denoted x0Ix1,
if the same input-output map is realized for every admissible
input u(t) for system Σ. This however does not imply that
every combination of inputs can help distinguish between
states in M . Instead, there might exist a combination of
inputs that can distinguish between two states in M .

In this paper we focus on the concept of local weak
observablility. The system Σ is locally weakly observable
at x0 if there exists an open neighbourhood U in M of x0
such that for every open neighbourhood V of x0 contained
in U , the only point indistinguishable from x0 is x0, i.e.
I{x0} = x0. Let O denote the matrix formed by stacking
the gradients of Lie derivatives of the observation function
h. The system Σ is said to satisfy the observability rank
condition if O is full rank. Furthermore, Σ is said to be
locally weakly observable if it satisfies the observability rank
condition.

B. Ultra-wideband

Common modes of operation of an UWB radio are:
time-of-arrival (TOA), time-difference-of-arrival (TDoA) and
two-way ranging (TWR). In TWR mode, the mobile radio
actively pings the anchors in order to measure the distance.
In constrast, in TOA and TDoA mode, the mobile radio
passively listens to anchors and measures the arrival times
from one or more anchors to localize. Operation in TOA
and TDoA mode requires synchronization between clocks of
anchors. In TDoA the performance outside the convex hull of
anchors deterioates rapidly. In contrast, TWR mode does not
require synchronization of clocks between the anchors and
the performance deteriotes more slowly outside the convex
hull of the anchors. For a more detailed survey of the
scalability of TWR and TDoA we refer the reader to [20].
We use the TWR mode of operation in this paper.

We define some terms that will be used throughout the
rest of the paper.

1) anchor, an UWB radio that is mounted in the sur-
rounding environment. It is assumed that the position
of anchor is known and fixed with respect to a local
frame of reference. A collection of multiple anchors is
referred to as a constellation.
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Fig. 1: The relationship between different frames involved in calibration
of sensor extrinsics. Frame {W} corresponds to a gravity-aligned world
reference frame. IMU and mobile radio reference frames are represented by
{I} and {U}, respectively. The offset of mobile radio in the IMU frame is
pI
U . The frame affixed to the phase center of jth anchor is {A}j and its

position in world reference frame is pW
j . The pose of the IMU in world

frame is {pW
I , qW

I }.

2) mobile radio, an UWB radio mounted on a mobile
system. In general, the mobile system can be any
body that is to be tracked. Here, the mobile system
corresponds to the sensor wand as shown in Figure 2.

Additionally, we define the following reference frames for
this setup:

1) mobile radio frame {U}, a frame affixed to the phase
center of the mobile radio antenna.

2) IMU frame {I}, frame corresponding to the IMU
body center, in which the body accelerations and
angular velocities are measured.

3) world frame {W}, a gravity-aligned absolute refer-
ence frame. The positions of individual anchors are
expressed in this frame. The IMU is tracked with
respect to this reference frame.

4) anchor frame {A}j , a frame affixed to the phase
center of the jth anchor.

IV. PROBLEM FORMULATION

In this work we estimate the sensor extrinsics between
the mobile radio and the IMU along with relevant states.
Further, in the presence of two or more mobile radios we
exploit the lever-arms to compute drift-free heading without
using a magnetometer. Simultaneous estimation of sensor
extrinsics and relevant states precludes the need for a seperate
calibration step thus enabling power-on-and-go systems. This
also enables accurate localization in cases where the sensor
positions change due to servicing, replacement or other
activities.

Since the UWB radio is a point source, the orientation
of the radio is irrelevant. Hence, the sensor extrinsics to be
estimated reduces to the 3D position offset between the UWB
radio and the IMU, henceforth also referred to as lever-arm.
It is assumed that the mobile radio and IMU are mounted on
a rigid body and therefore, the lever-arm is fixed and does not
change over time. It is assumed that the mobile radio ranges

to Nanc anchors in the constellation and that the position of
the anchors is known with respect to the origin of a gravity-
aligned reference frame.

V. SYSTEM MODELLING

1) System State: The system is parameterized by the
following 19x1 state vector:

x(t) = (pW
I (t),qW

I (t), vWI (t),ba(t),bg(t),pI
U (t)), (4)

where, pW
I (t) is the position of the IMU in the world frame,

qW
I (t) is orientation of the IMU frame with respect to the

world frame expressed as a unit quaternion, vWI (t) is the
velocity of the IMU in the world frame, ba(t) and bg(t)
are the IMU accelerometer and gyroscope biases, pI

U (t) is
the position of the mobile radio in the IMU frame. The first
three terms constitute the core state and the last three terms
correspond to the system parameters.

2) System Model: The system model adopted in this work
is a 3D kinematic motion model similar to the one in [21],
[22]. In this model the accelerometer measurements, am, and
gyroscope measurements, ωm are used as control inputs:

ṗW
I = vWI , q̇W

I =
1

2
qW
I ⊗ ωm, (5)

v̇WI = RW
I a

m + gW , ḃa = naw, (6)

ḃg = ngw, ṗI
U = 03, (7)

where, gW = [0, 0, 9.8]Tm/s2 represents the acceleration
due to gravity in the world frame and RW

I := R{qW
I } is the

direction cosine matrix (DCM) corresponding to the nominal
orientation qW

I . The sensor models for accelerometer and
gyroscopes are similar to [21], [22]. In this model the
measurements are influenced by two terms: a high frequency
noise term and a slowly varying bias term. The high fre-
quency noise terms are modelled as zero-mean Gaussian
white noise processes. The biases are modeled as Guassian
random walk processes, driven by zero-mean Gaussian white
noise process:

am = aI + ba + na, (8)

ωm = ωI + bg + ng, (9)

where, aI and ωI denote the true linear acceleration and
angular velocities expressed in body frame. The noise terms
are represented by na and ng , with covariances Qa and Qg

respectively i.e. na ∼ N (0,Qa) and ng ∼ N (0,Qg). The
biases ba and bg are driven by zero-mean Gaussian noise,
naw and ngw, with covariances Qaw and Qgw respectively
i.e. naw ∼ N (0,Qaw) and ng ∼ N (0,Qgw).

3) Observation Model: A simple and tractable model is
assumed for the UWB range measurements. In this model the
measured distance between the jth anchor pW

j and mobile
radio pI

U is:

rj = ‖pW
j − pW

I RW
I − pI

U‖2 + nr, (10)

where, ‖.‖2 denotes the l2 norm or the euclidean norm
and the meaurement error nr is assumed to be a zero-
mean Gaussian noise process, with covariance Qr i.e. nr ∼
N (0,Qr).
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VI. OBSERVABILITY OF SENSOR EXTRINSICS

We study the observability of the full state, including the
lever-arm, as defined in (4) under the observation model (10)
by employing the observability rank condition as defined in
section III-A. The system dynamics from (5)-(7) and (9) are
rearranged to have a control affine form:

ẋ =



vW
I

−RW
I ba + gW

− 1
2Ξ{q

W
I }bω

03

03

03


︸ ︷︷ ︸

f0

+



03×3

RW
I

03×3
03×3
03×3
03×3


︸ ︷︷ ︸

f1

am +



03×3
03×3

1
2Ξ{q

W
I }

03×3
03×3
03×3


︸ ︷︷ ︸

f2

ωm,

(11)

where we omit the dependency on time for brevity and

Ξ{qW
I } =


q1, −q2, −q3
q0, −q3, q2
q3, q0, −q1
−q2, q1, q0

 .
Without loss of generality, the measurement function (10)

can be rewritten as:

h1(x) =
1

2
‖pW

j − RW
I pI

U − pW
I ‖22. (12)

We consider measurements to Nanc = 3 non-collinear an-
chors i, j and k which results in the following measurement
function:

h1(x) =
1

2

‖pW
i − RW

I pI
U − pW

I ‖22
‖pW

j − RW
I pI

U − pW
I ‖22

‖pW
k − RW

I pI
U − pW

I ‖22

 . (13)

For the system (11) to be locally weakly observable, the
observability matrix O should have a rank of 19, which
corresponds to the size of state (4). To this end we compute
gradients of higher order Lie derivatives of the measurement
function along the vector fields f1, f2 and f3 to construct a
rank 19 matrix. We start with the zeroth-order Lie derivative
of h1 which is the function itself:

L0h1(x) = h1(x). (14)

The corresponding gradient is:

∇L0h1(x) =
[
−δpijk, 03×3,−δpijkF0, 03×3

03×3,−δpijkRW
I

]
, (15)

where F0 is a 3x4 matrix and is given by,

F0 =
∂
(
RW

I pI
U

)
∂qW

I

, (16)

and δpijk = [δpT
i , δpT

j , δpT
k ]T is a matrix of residuals with:

δpi = pW
i − RW

I pI
U − pW

I ,

δpj = pW
j − RW

I pI
U − pW

I ,

δpk = pW
k − RW

I pI
U − pW

I .

Now, we compute first order Lie derivatives. First, we
consider the Lie derivative of h1 along the vector field f0:

L1
f0h1(x) = ∇L0h1(x) · f0

=

[
−δpijkvWI +

1

2
δpijkF0Ξ{qW

I }bω

]
. (17)

The gradient of L1
f0

h1(x) is:

∇L1
f0h1(x) =

[
F1,−δpijk, F2, 03×3, δpijkF3, F4

]
.
(18)

with F1, F2, F3 and F4 defined as:

F1 =


(
vW
I − 1

2F0Ξ{qW
I }bω

)T(
vW
I − 1

2F0Ξ{qW
I }bω

)T(
vW
I − 1

2F0Ξ{qW
I }bω

)T
 , (19)

F2 =
∂{−δpijkFT

1 }
∂qW

I

, (20)

F3 =
1

2
F0Ξ{qW

I }, (21)

F4 =
∂{−δpijkFT

1 }
∂pI

U

. (22)

We note that the first order Lie derivative of h1 along f1
is identically zero and so we proceed to take the first order
Lie derivative of h1 along f2.

L1
f2h1(x) = ∇L0h1(x) · f2

=

[
−1

2
δpijkF0Ξ{qW

I }
]
. (23)

The matrix L1
f2

h1(x) is of dimension 3x3. We compute
the gradient by stacking the gradients of individual columns
to generate a 9x19 matrix:

∇L1
f2h1(x) =

∇L1
f2

h1(x)[:, 1]

∇L1
f2

h1(x)[:, 2]

∇L1
f2

h1(x)[:, 3]


=
[
F5, 09×3, F6, 09×3, 09×3, F7

]
, (24)

where, F5, F6, F7 are formed by stacking the the partial
derivatives of individual columns of L1

f2
h1(x) with respect

pW
I ,qW

I and pI
U respectively.

Now, we compute the second order Lie derivatives. We
first consider the second order Lie derivative of h1 along f0.
This can be computed recursively:

L2
f0h1(x) = ∇L1h1(x) · f0

=

[
F1vWI + δpijk

(
RW

I ba + gW
)

− 1

2
F2Ξ{qW

I }bω

]
, (25)

The gradient of L2
f0

h1(x) is:

∇L2
f0h1(x) = [F8, F9, F10, δpijkRW

I , F11, F12]. (26)
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O =


∇L0h1

∇L1
f0

h1

∇L1
f2

h1

∇L2
f0

h1

∇L1
f2
L1
f0

h1

 =


−δpijk 03×3 −δpijkF0 03×3 03×3 −δpijkRW

I

F1 −δpijk F2 03×3 δpijkF3 F4

F5 09×3 F6 09×3 09×3 F7

F8 F9 F10 δpijkRW
I F11 F12

F13 F14 F15 09×3 F16 F17

 , (29)

Finally, we compute the the Lie derivative of L1
f0

along
the vector field f2:

L1
f2L

1
f0h1(x) = ∇L1

f0h1(x) · f2 =

[
1

2
F2Ξ{qW

I }
]
, (27)

which is a 3x3 matrix. As before, we compute the gradient
by stacking the gradients of individual columns:

∇L1
f2L

1
f0h1(x) =

∇L1
f2
L1
f0

h1(x)[:, 1]

∇L1
f2
L1
f0

h1(x)[:, 2]

∇L1
f2
L1
f0

h1(x)[:, 3]


=
[
F13, F14, F15, 09×3, F16, F17

]
.
(28)

Stacking the gradients of the zeroth order, first order and
second order Lie derivatives, we obtain a matrix of dimension
27x19 as shown in (29). Note that addition of Lie derivatives
of higher order will not affect the rank of the matrix O. If
the matrix as defined by (29) is full rank, then the state (4)
is locally weakly observable.

Given the dense nature of the observability matrix, block
Gaussian elimination cannot be applied to determine the rank
of the matrix. Instead, we perform a rank test on the symbolic
matrix. Recall that the rank of a submatrix is always less than
or equal to the rank of the original matrix and so it suffices
to test the ranks of submatrices of increasing dimension. To
that effect, we perform a rank test on the matrix Os which
is of dimension 21x19 using Mathematica 1. The matrix Os

is obtained by dropping the bottom 6 rows from O. The
symbolic rank test reveals that Os is full rank suggesting
that the system is locally weakly observable with range
measurements to three non-collinear anchors.

VII. ERROR-STATE KALMAN FILTER

The analysis in the previous section sugges that the full
state is observable. We use the ESKF [21], [22] to estimate
the sensor extrinsics and the core state simultaneously. In
this formulation, inertial navigation based dead reckoning
is used to propogate the state forward using the model (3)
and IMU measurements as control inputs. The associated
uncertainity is estimated in the prediction step of the ESKF.
Since the accelerometer and gyroscope measurements are
used as control inputs, the system noise covariance matrix,
Qp, for the prediction step is generated from the covariances
of the noise and bias terms as defined in section V and (9).
Concretely, Qp = diag

(
Qa,Qg,Qaw,Qgw

)
. Upon receipt

of UWB range measurements the correction step of the
ESKF is triggered. During this step the error between the

1http://tiny.cc/k6iqkz

dead reckoned state and the state consistent with range
measurements is estimated. The estimated error state is:

δx = (δpW
I , δvW

I , δθWI , δba, δbω, δpI
U ), (30)

where, δpW
I represents the error between dead reckoned po-

sition and the position consistent with range measurements.
A similar interpretation holds for other error states. The
angular error δθWI is related to small differential rotations
δqW

I as:

δq =

[
1
δθ

]
, |δθ| � 1. (31)

The estimated error state is then added to the dead reck-
oned state to compensate for accumulated error on account
of drift:

x = x⊗ δx, (32)

where ⊗ is a generic composition operator that refers to
quaternion multiplication for orientation error and addition
for other error states. We refer the reader to [22] for a
thorough description of the ESKF prediction and correction
steps.

VIII. EXPERIMENTS AND DISCUSSION

A. Experimental Setup

In this section we present the setup used in the experi-
ments. The setup consists of a sensor wand, a constellation
of 6 anchors and a motion capture system. The sensor wand
is equipped with an Xsens IMU and two Decawave UWB
radios mounted as shown in Figure 2. The IMU outputs
linear accelerations and angular velocities at 100Hz. Range
measurements are acquired at 18Hz (9Hz for individual
mobile radio) by pinging the individual anchors. The posi-
tion of anchors in the constellation is measured manually
using a survey Total Station. The IMU and UWB range
measurements are then input into an ESKF that estimates
the core state as well as the lever-arms between both the

Fig. 2: The sensor apparatus consists of a wand equppied with an Xsens
IMU mounted in the middle. Two UWB mobile radios are mounted on the
left and right side of the IMU respectively. Reflective markers are mounted
purely for evaluation against ground truth.
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Fig. 3: Sensor extrinsic estimation error with corresponding 3σ covariance bounds for Trial #1. ∆x, ∆y and ∆z denote residual error between the
estimated mobile radio position and the ground truth, along x,y and z axis respectively. Error plots for the left mobile radio are shown in the first row
and error plots for the right mobile radio are shown in the second row.
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Fig. 4: Sensor extrinsic estimation error with corresponding 3σ covariance bounds for Trial #2. ∆x, ∆y and ∆z denote residual error between the
estimated mobile radio position and the ground truth, along x,y and z axis respectively. Error plots for the left mobile radio are shown in the first row
and error plots for the right mobile radio are shown in the second row.

mobile radios and the IMU. Reflective markers mounted on
the IMU and the mobile radios are used to acquire ground
truth pose information of the wand from the motion capture
system (at 300Hz) as it moves through the constellation. The
Decawave UWB modules used in this experiment claim a
range precision of ±10cm.

B. Experimental Results

We performed multiple experiments to mainly test 1) esti-
mation accuracy of the lever-arm, and 2) heading estimation
using multiple radios. In all of the experiments the sensor

TABLE I: Residual error in estimation of sensor extinsics along the body
x, y and z axis shown as ∆x,∆y and ∆z respectively. The corresponding
3σ bounds are plotted as well.

Left Mobile Radio Right Mobile Radio

Error (cm) Trial #1 Trial #2 Trial #1 Trial #2

∆x± 3σ -0.3±0.6 1.1±1.0 -2.14±0.6 -0.72±1.1
∆y ± 3σ -0.2±0.5 1.9±0.9 -2.9±0.5 -0.6±0.9
∆z ± 3σ 1.1±0.5 0.07±0.5 -0.3±0.5 -0.03±0.5

RMSE 1.2 2.2 3.6 0.9

wand was moved manually in different trajectories.

1) Lever-arm Estimation: Results of lever-arm estimation
are shown in Table I including the root-mean-square error
(RMSE) for two experiments. The corresponding error plots
are shown in Figure 3 and 4. The vector (∆x, ∆y, ∆z)
represents the error between the estimated lever-arm and
the ground truth position of the mobile radios. The corre-
sponding covariance estimates are obtained from the process
covariance matrix of the ESKF.

The initial error in both the lever-arms was ∼ (∆x =
0.16m,∆y = 0.30m,∆z = 0.1m). The results show that
the lever-arms are estimated to within centimeter to sub-
centimeter level accuracy with sufficient excitation along all
the axis within 30-40 seconds. This shows that it is possible
to estimate lever-arm using just an IMU and an UWB radio
without additional hardware.

2) Heading Estimation with Multiple UWB Modules:
Errors in estimation of position and orientation are presented
in Table II. The position error vector (∆px,∆py,∆pz) rep-
resents the difference between the estimated position pW

I of
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TABLE II: Position and orientation error of the IMU in the world frame with 3σ covariance bounds. The mean position error (∆px,∆py ,∆pz) is
the difference between the estimated position pW

I and the corresponding ground truth in the world frame. The orientation error vector (∆θ,∆φ,∆ψ)
represents the mean roll, pitch and yaw error between the estimated orientation qW

I and the ground truth orientation.

Position Error(m) Trial #1 Trial #2 Orientation Error(rad) Trial #1 Trial #2

∆px ± 3σ 0.051 ± 0.229 -0.003 ± 0.328 ∆φ± 3σ 0.007 ± 0.162 0.008 ± 0.177
∆py ± 3σ 0.013 ± 0.243 -0.019 ± 0.352 ∆θ ± 3σ 0.002 ± 0.055 -0.0051 ± 0.105
∆pz ± 3σ -0.015 ± 0.309 -0.109 ± 0.307 ∆ψ ± 3σ -0.034 ± 0.186 -0.066 ± 0.1401

the IMU and the corresponding ground truth. The orientation
error vector (∆θ,∆φ,∆ψ) represents the mean roll, pitch
and yaw error between the estimated orientation qW

I and
ground truth. We focus on heading estimation in this work.
In all of the experiments the wand was held static for an
initial period of 10 seconds. Without heading from multiple
modules, the heading drifts on account of dead-reckoning.
However, it can be seen from Table II that with multiple
mobile radios, this is not the case. This suggests that drift-
free heading can be estimated in the presence of multiple
non-colocated mobile radios.

C. Discussion

The analysis presented in this work is applicable to
systems equipped with any number of mobile radios as the
estimation of lever-arm for an individual radio is done inde-
pendent of other radios. Furthermore, while the analysis pre-
sented here is specific to UWB measurements, the proposed
approach is agnostic to UWB sensors and is applicable to
any sensor that provides point-to-point range measurements.

IX. CONCLUSION AND FUTURE WORK

In this work we analyzed the observability of core state
and lever-arm for UWB-aided inertial navigation systems.
Both, the analysis and the experiments show that online
calibration of the lever-arm can be achieved without using
any additional hardware or equipment and using only the
available sensors. Also, the estimated sensor extrinsics can
be exploited to estimate precise heading in the local reference
frame thus enabling power-on-and-go localization.

One of the factors limiting the estimation accuracy is the
precision of the measurements. Another contributing factor is
any uncompensated bias that accomponies the measurement.
This may arise due to various factors such as incorrect anchor
locations or inherent bias in the mobile radio. As a part of the
future work, we aim to estimate the biases in anchor locations
and the biases inherent in the mobile radio to achieve better
performance.
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