Fast and In Sync: Periodic Swarm Patterns for Quadrotors

Xintong Du, Carlos E. Luis, Marijan Vukosavljev, and Angela P. Schoellig

Abstract—This paper aims to design quadrotor swarm performances, where the swarm acts as an integrated, coordinated unit embodying moving and deforming objects. We divide the task of creating a choreography into three basic steps: designing swarm motion primitives, transitioning between those movements, and synchronizing the motion of the drones. The result is a flexible framework for designing choreographies comprised of a wide variety of motions. The motion primitives can be intuitively designed using a few parameters, providing a rich library for choreography design. Moreover, we combine and adapt existing goal assignment and trajectory generation algorithms to maximize the smoothness of the transitions between motion primitives. Finally, we propose a correction algorithm to compensate for motion delays and synchronize the motion of the drones to a desired periodic motion pattern. The proposed methodology was validated experimentally by generating and executing choreographies on a swarm of 25 quadrotors.

I. INTRODUCTION

In recent years, robots have gradually found their way into the entertainment industry. Due to the advancements in both software and hardware, autonomous quadrotors, for example, have become active participants in art work and entertainment activities, showing off their exceptional agility in navigating in the three-dimensional space. Companies such as Intel and SKYMAGIC have delivered dazzling drone shows, where hundreds or even thousands of drones equipped with dedicated LEDs were coordinated to display enormous shows, where hundreds or even thousands of drones equipped with dedicated LEDs were coordinated to display enormous animations in the sky. Other companies, such as Verity Studios and ElevenPlay, have taken their shows to a different level, involving coordinated movements of drones with human performers, light effects, and music.

Drones shows where visual effects dominate the audience’s experience have been pushed to an unprecedented scale and flown as many as 2018 drones [1]. However, shows that primarily rely on the effect of highly dynamic motions and fully leverage the motion capabilities of quadrotors remain at a much smaller scale. One reason is that drone swarms performing highly dynamical motions demand fast and accurate state estimates, motion planners and controllers, as well as an efficient and reliable overall flight control system architecture (e.g. with little or predictable time delays). Moreover, from a producer’s perspective, the design and choreography of attractive, highly dynamic, swarm-like motion patterns for a large troupe of drones becomes more challenging due to inter-agent collision constraints and spatial constraints, as well as aerodynamic effects. Therefore, our work aims to provide motion planning and control strategies that enable a quadrotor swarm to act as an integrated entity and display highly dynamic motion patterns, as shown in Fig. 1.

In the context of motion planning for complex task specifications, motion primitives have proven to be a successful framework. Motivated by creating theatrical performances, we aim to design a library of motion primitives, from which choreographers can then choose and combine motion primitives to form a coherent story. First, individual motion primitives must be designed. Rhythmic motion primitives for individual vehicles were proposed in [2]. A set of representative behaviour descriptors in [3] was designed to enable online interaction with a small group of robots. However, a unified framework for encoding a library of motion primitives for swarms is lacking.

Next, to concatenate swarm motion primitives, we develop an algorithm for smooth and safe transitions. Many techniques in the robot planning and control literature already exist to transition vehicles from one configuration to another. Of particular interest is a simultaneous goal assignment and trajectory planning algorithm with a simple collision avoidance scheme proposed in [4], which has been applied in the context of drone performances [5]. Despite its scalability to large swarms and its consideration of vehicle dynamics at an early stage in the planning process, this method does not immediately apply to our situation. Namely, it does not guarantee a common start and end time for all vehicles, and it assumes the vehicles are at rest at the start and end, which makes designing smooth trajectories difficult for our dynamic motions.

Finally, once motion primitives and their transitions are designed, they need to be executed reliably by the real system. To this end, a phase comparator was proposed in [6] to eliminate the phase error in tracking the desired
position trajectories. Moreover, a correction method was taken to compensate for the predictable delay in sensing and communication. In this work, we directly apply the correction method to quadrotors with standard position and attitude controllers. We demonstrate that this method can reliably minimize tracking errors of periodic signals for quadrotor swarms.

The contributions of this paper are as follows. First, we present a generic formulation for swarm motion primitives that is suitable for describing periodic, highly dynamic motion patterns, where drones appear as a coordinated unit embodying moving and deforming objects. Second, we adapt and combine various state-of-the-art trajectory planning methods to safely and smoothly connect arbitrary swarm motion primitives and, additionally, preserve patterns in the swarm behaviour that could emerge from strategic goal assignment. Third, we show that a simple correction algorithm is capable of compensating for amplitude and phase errors that arise when trying to synchronize a swarm’s motion to a desired periodic motion pattern. Finally, results are demonstrated experimentally on a large swarm of drones.

II. DYNAMIC, PERIODIC MOTION PATTERNS

This section presents our design of dynamic, periodic motion primitives for drone swarms. These motion primitives embody moving and deforming objects and are inspired by natural particle phenomena such as wave motions or rigid body rotations. The goal is that vehicles appear as an integrated entity.

A. Generic Formulation

We define a motion primitive for a swarm of N drones as a tuple

$$\mathcal{MP}^N = (t_0, t_f, \{r^n\})_{n=1}^N, \mathcal{T}_d(r, t),$$

(1)

which consists of the start time $t_0 \in \mathbb{R}$ and end time $t_f \in \mathbb{R}$ of the motion primitive, a unique characteristic configuration vector $r^n \in \mathbb{R}^3$ for each drone $n = 1, \ldots, N$, and a desired position trajectory generator $\mathcal{T}_d(r, t) : \mathbb{R}^3 \times [t_0, t_f] \rightarrow \mathbb{R}^3$. Then, the desired position evolution for the n-th drone over the interval $t \in [t_0, t_f]$ is given as $x^n_0(t) = \mathcal{T}_d(r^n, t)$.

As in [2], we parameterize the trajectory generator \mathcal{T}_d as a finite sum of periodic functions to encode rhythmic motions. Moreover, we use the configuration vectors r^n to emphasize how each drone’s motion is related to the overall display. Specifically, trajectory function is defined as

$$\mathcal{T}_d(r, t) = \mathcal{C}(r) + \sum_{m=1}^M (A_m(r) \sin(\omega_m t) + B_m(r) \cos(\omega_m t)),$$

(2)

with frequencies $\omega_m \in \mathbb{R}$ as well as parameter functions \mathcal{C}, A_m, and $B_m : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ that define the centre and amplitude of the sinusoidal functions in 3D. Here m indexes motions with different frequencies and parameter functions.

The parameters in (2) reflect desired rhythmic and visual effects. The temporal components ω_m describe intervals of repeated patterns. The spatial components \mathcal{C}, A_m, B_m, and $\{r^n\}$ are responsible for the spatial pattern collectively demonstrated by the swarm. In particular, the parameter functions determine the overall picture presented to the audience, where each drone’s contribution is reflected by their unique characteristic configuration vector.

Some possible choices for spatial patterns are given as below. In our experiments, we demonstrate two specific representations of (2), where vehicles represent the particle movement seen in waves and rigid body rotations.

B. Wave Patterns

Wave motions are ubiquitous in nature. Typical examples include surface water waves, sound traveling through air, and electromagnetic field propagation. They can be modeled by the wave propagation equation [7]. Consider a two-dimensional rectangular elastic surface with bounded edges as shown in Fig. 2. Suppose the equilibrium location of each point P on the surface is parameterized by $s = (s_1, s_2) \in [0, a] \times [0, b] \subset \mathbb{R}^2$. The disturbance to a point at time t, $u(s, t) \in \mathbb{R}^3$, by a three-dimensional wave propagating through the surface at speed $c > 0$ is governed by

$$c^2 \nabla^2 u(s, t) = \frac{\partial^2 u(s, t)}{\partial t^2},$$

(3)

where ∇^2 is the spatial Laplacian. Its solution can be expressed as a product of spatial and temporal components:

$$u = \sum_{(\mu_1, \mu_2)} a_{\mu_1, \mu_2} \sin\left(\frac{\mu_1}{a} \pi s_1\right) \sin\left(\frac{\mu_2}{b} \pi s_2\right) \sin(\omega_{\mu_1, \mu_2} t) + \sum_{(\mu_1, \mu_2)} b_{\mu_1, \mu_2} \sin\left(\frac{\mu_1}{a} \pi s_1\right) \sin\left(\frac{\mu_2}{b} \pi s_2\right) \cos(\omega_{\mu_1, \mu_2} t),$$

(4)
C. Rigid Body Rotation

A rigid body rotation can also be expressed in the form (2). Consider a rigid body \(\mathcal{V} \) rotating in an inertial frame \(\mathcal{F}_I \) at a constant angular velocity, for example, the tilted cone in Fig. 3. First we attach a body frame \(\mathcal{F}_B \) with origin \(\rho_0 \) relative to the inertial frame \(\mathcal{F}_I \). Next, we define an inertially fixed frame \(\mathcal{F}_{B,o} \) which overlaps with \(\mathcal{F}_B \) at time \(t_o = 0 \).

Let \(\mathbf{r} \in \mathbb{R}^3 \) be the position of a point expressed in \(\mathcal{F}_B \). Then this point is expressed in the inertial frame \(\mathcal{F}_I \) as

\[
\mathbf{r}^I = \rho_0 + \mathcal{R}_{IB,o} \mathcal{R}_{B,I} \mathbf{r},
\]

where \(\mathcal{R}_{IB,o} = [e_1, e_2, e_3] \) is the rotation matrix from \(\mathcal{F}_{B,o} \) to \(\mathcal{F}_I \) and, without loss of generality, \(\mathcal{R}_{B,I} \) is a principle rotation along the \(z \) axis of \(\mathcal{F}_B \), given by \(\mathcal{R}_{B,I} = \mathcal{R}_Z(\omega_z t) \). Expanding (5), we obtain the trajectory generator of a rigid body rotation:

\[
\mathcal{T}_d(\mathbf{r}, t) = \rho_0 + e_3 r_3 + (e_2 r_1 - e_1 r_2) \sin(\omega_z t) + (e_1 r_1 + e_2 r_2) \cos(\omega_z t).
\]

This may now be compared with (2) to obtain the parameters and frequencies.

Since \(\omega_z \) determines the periodicity and \((\rho_0, \mathcal{R}_{IB,o}) \) simply denotes the pose of the rotating object, the characteristic vectors \(\{\mathbf{r}^n\}_{n=1}^N \) are the only parameters to be designed. Given the availability of only \(N \) drones as well as the constraints on the minimum distance among them, \(\{\mathbf{r}^n\}_{n=1}^N \) should be strategically chosen in order to have the audience recognize the shape of the body. For instance, it is easier to identify a cone if the drones outline a helix lying on the surface of the cone, as opposed to spacing them uniformly.

III. TRANSITION TRAJECTORY PLANNING

This section presents our transition trajectory planner that coordinates the swarm to make smooth and safe transitions and preserves geometric features in this process. We formulate the problem in Sec. III-A followed by our proposed method in Sec. III-B and III-C and justification in Sec. III-D.

A. Problem Statement

Consider two consecutive motion primitives \(\mathcal{MP}_1 \) and \(\mathcal{MP}_2 \) defined as

\[
\mathcal{MP}_1 = (t_{0,1}, t_{f,1}, \{\mathbf{r}_n\}_{n=1}^N, \mathcal{T}_{d,1}(\mathbf{r}, t)), \quad \mathcal{MP}_2 = (t_{0,2}, t_{f,2}, \{\mathbf{r}_n\}_{n=1}^N, \mathcal{T}_{d,2}(\mathbf{r}, t)).
\]

We aim to compute:

- A common start time \(t_s \) and end time \(t_e \) for all drone actors that satisfy \(|t_s - t_{f,1}| \leq \epsilon_1 \) and \(|t_e - t_{f,2}| \leq \epsilon_2 \) for some small numbers \(\epsilon_1 \) and \(\epsilon_2 \).
- An assignment \(\mathcal{M} : \{\mathbf{r}_1^n\}_{n=1}^N \rightarrow \{\mathbf{r}_2^n\}_{n=1}^N \) that assigns each drone identified by \(\mathbf{r}_1^n \) in \(\mathcal{MP}_1 \) a unique characteristic configuration vector \(\mathbf{r}_2^n \) in \(\mathcal{MP}_2 \).
- For each drone identified as \(\mathbf{r}_1^n \) in \(\mathcal{MP}_1 \), a smooth trajectory \(\mathcal{T}_s^n(t) \) from \(\mathcal{MP}_1 \) to \(\mathcal{MP}_2 \) that respects the quadrotors’ motion constraints, the flight space boundary and inter-agent collision constraints.
Our preliminary results showed that it is possible to optimize t_a and t_c for energy consumption. In this work, however, we assume t_a and t_c are given and focus on the goal assignment and trajectory generation problem.

B. Goal Assignment

We formulated the goal assignment problem as a combinatorial optimization problem. In our application, the assignment \mathcal{M} aims to maximize the smoothness of trajectories generated in the next step. More complicated swarm transition objectives can be defined, such as minimizing the likelihood of collisions. However, in this case, the cost function of one assignment depends on how other assignments are made, making it a challenging nonlinear optimization problem.

If we denote the cost of assigning r_1^α to r_2^β as $J_a(r_1^\alpha, r_2^\beta)$, the mapping \mathcal{M} can be found by solving the linear assignment problem

$$\mathcal{M} = \arg\min_{\mathcal{M}(\cdot)} \sum_{n=1}^{N} J_a(r_1^n, M(r_1^n))$$ \hspace{1cm} (7)

using the Hungarian algorithm [8]. To obtain the assignment cost $J_a(r_1^n, M(r_1^n))$, we solve a simplified minimum snap trajectory generation problem as in [9], for which only state continuity constraints are enforced. We then take the optimal cost function value of that problem as the assignment cost, namely,

$$J_a(r_1^n, r_2^n) = \min_{\mathcal{M}(\cdot)} \int_{t_a}^{t_c} \left(T_{a,\beta}(-4)(\tau) \right)^2 d\tau$$

s.t. \hspace{1cm} $T_{a,\beta}(p) = T_{d,1}(p)(r_1^n, t_a)$,

$T_{a,\beta}(p) = T_{d,2}(p)(r_2^n, t_c)$,

with $p = 0, 1, 2, 3, 4$. Note that $T_{a,\beta}(t) : [t_a, t_c] \to \mathbb{R}^3$ is the transition trajectory assigning r_1^n to r_2^n parametrized with a single polynomial curve of Pth order in each direction

$$T_{a,\beta}(t; x_{a,\beta}) = \left[\sum_{p=0}^{P} a_{p,x} t^n \sum_{p=0}^{P} a_{p,y} t^n \sum_{p=0}^{P} a_{p,z} t^n \right]^T, \hspace{1cm} \text{ (9)}$$

where $x_{a,\beta} = [a_{0,x} \ldots a_{P,x} a_{0,y} \ldots a_{P,y} a_{0,z} \ldots a_{P,z}]^T \in \mathbb{R}^{3(P+1)}$ is the coefficient vector.

Following [10], the optimization problem in (7) can be written in quadratic form, given as

$$\min_{x_{a,\beta}} \frac{1}{2} x_{a,\beta}^T H x_{a,\beta}$$

s.t. \hspace{1cm} $H(x_{a,\beta}, r_1^n, r_2^n) = 0$, \hspace{1cm} \text{ (10)}

where $H \in \mathbb{R}^{3(P+1) \times 3(P+1)}$ is the hessian of the minimum snap cost function with respect to the decision variable $x_{a,\beta}$ and H denotes the state continuity constraints in (7). Note that this problem is fast to solve, making it a suitable cost function for the linear assignment problem.

C. Collision-Free Smooth Trajectory Generation

Given $\mathcal{M}\mathcal{P}^N_1$, $\mathcal{M}\mathcal{P}^N_2$ and the assignment \mathcal{M}, we aim to find a smooth and collision-free trajectory T^n_c for each drone. Inspired by [11], we couple the problem into N sub-problems to avoid accounting for the collision constraints in a large joint space. However, our proposed algorithm consists of two steps: (i) find a dynamically feasible candidate trajectory for each drone denoted as T^n_c and (ii) iteratively resolve collisions in $\{T^n_c\}_{n=1}^N$ in a sequential manner to obtain $\{T^n_c\}_{n=1}^N$. In what follows, we parametrize both candidate and collision-free trajectory as in (9) denoted as $T^n_c(t; x^n_c)$ and $T^n_c(t; x^n_s)$ respectively.

1) Generating Candidate Trajectories: To generate candidate trajectories $\{T^n_c\}_{n=1}^N$ for the assignment \mathcal{M}, we solve the full minimum snap problem in [9] for each drone. This problem is the same as (10) if we let $r_1^n = r_1$ and $r_2^n = M(r_1^n)$ but with an additional set of state constraints $F_k(x^n_s) \leq 0, k = 1, 2, \ldots, K$ that bound each drone’s position and higher order states at each discrete time step $t_k = t_a + k(t_c - t_a)/K$.

2) Iterative Collision Resolution: Given the candidate trajectories $\{T^n_c\}_{n=1}^N$, we construct a directed collision graph $G = \{V, E\}$. A vertex $v_n \in V$ represents the drone identified by r_1^n, and an edge $e_{nm} \in E, n > m$ points from v_n to v_m, indicating a collision between T^n_c and T^m_c. For any edge e_{nm}, we force the collision avoidance maneuver to be executed solely by drone n, while drone m follows its intended path. Our goal is to remove all edges $e_{nm} \in E$ by finding a collision-free trajectory T^n_c for drone n.

In particular, we find T^n_c by penalizing its difference from T^n_a with additional ellipsoid collision constraints, given as

$$\text{min}_{x^n_s} \sum_{k=1}^{K} e^n_k^T W e^n_k$$

s.t. \hspace{1cm} $H(x^n_s, r_1^n, M(r_1^n)) = 0$, \hspace{1cm} \text{(11)}

$$f_{k}(x^n_s) \leq 0, k = 1, 2, \ldots, K; \hspace{1cm} ||E^{-1}(T_{k}^{m}(t_k) - T_{k}^{a}(t_k))||^2_2 \geq 2,$$

where $m = 1, 2, \ldots, n-1, n+1, \ldots, N$, $E \in \mathbb{R}^{3 \times 3}$ specifies the ellipsoid collision boundary as in [12], and (H, F_k) are as previously defined. The deviation of drone n at time t_k is given by $e^n_k = T_{k}^{m}(t_k; x^n_m) - T_{k}^{a}(t_k; x^n_a)$. The weighting matrix $W \in \mathbb{R}^{3 \times 3}$ is a positive definite diagonal matrix matrix trading off the deviation in each direction. Note that we can write $T(t_k) = A_k x$ for any polynomial trajectory $T(t; x)$ with a suitable matrix A_k that depends only on t_k. Therefore, the cost function and collision constraints in (11) can be written in quadratic form in x^n_s.

We solve (11) sequentially for drones in V in decreasing order of the amount of outbound edges. If an optimal solution is found for v_n, we remove all of its outbound edges; otherwise, in cases where the problem is temporarily infeasible or hard to find a solution (e.g., other drones are not in favourable positions), we skip to the next drone. This procedure is repeated until either E is empty or the maximum iteration is exceeded.

D. Design Considerations

In order to generate smooth transition trajectories, a few key design decisions were made that differentiate our method.
from those in previous work. First, the vehicle dynamics and transition time are incorporated into the assignment cost function \mathcal{J}_a to facilitate smooth trajectory generation in the following steps. Second, trajectories are parameterized with a single polynomial curve instead of concatenated polynomials to minimize unnecessary curvature. Finally, in contrast to [4], [5], continuity in trajectories at t_s and t_e is guaranteed in the collision resolution step. We illustrate the first design feature in the top two figures of Fig. 4, which highlights the difference between two different choice of \mathcal{J}_a, the minimum snap function proposed in this work and the Euclidean distance used in [3]. The former assignment cost function induces smooth, fluid, and energy-saving candidate trajectories as compared to the latter.

Our choice of the cost function in (11) allows us to preserve geometric features in the transition process. As an example, the bottom figure in Fig. 4b shows a human-designed goal assignment \mathcal{M}, where rotational symmetry of the initial and final motion primitives were incorporated. Consequently, it introduces nice geometric properties, for example rotation symmetry in this particular example, in the candidate trajectories $\{T_{c,i}\}_{i=1}^N$ that enable a coordinated transition process. However, incorporating these strategic assignments into our framework is non-trivial and would result in a nonlinear assignment problem. Nonetheless, if we do have particular features in the candidate trajectories, we are able to preserve them during the collision resolution step by penalizing the difference between the final and candidate trajectories in (11). Moreover, we introduced the weighting matrix W to optionally preserve the swarm transition patterns in some dimensions while relaxing them in the others. An example is shown in Fig. 4b, where patterns in the $x-y$ plane are preserved during collision avoidance by encouraging motion in the z direction.

IV. Motion Synchronization

To execute the proposed highly-dynamic motion patterns in tight formations and in sync with the desired periodic motion pattern, a high-accuracy controller for periodic motions is required. In practice, one major issue that was observed is the phase shift and amplitude amplification or attenuation [6] due to the delay in communicating vehicle commands, the inherent delay in dynamical systems, as well as the delay in sensor measurements. Although it is possible to reduce delay and amplitude error by adding feed-forward terms to the drones’ position and attitude controllers, the communication overhead it incurs is undesirable for a large swarm. Similarly to [6], we actively adjust the desired trajectories $T_d(r, t)$ in (2) by scaling their amplitude and shifting them in time to obtain a new reference trajectory.

If we approximate the quadrotor as a linear system in each spatial direction with transfer functions $H_i(s)$, $i = 1, 2, 3$, we can estimate the amplitude attenuation and phase shift at each oscillating frequency ω_m from the system’s frequency response to sinusoidal reference signals. The compensated reference trajectory in the i^{th} direction is given as

$$T_{r,i}(r, t) = \tilde{C}_i(r) + \sum_{m=1}^{M} \kappa_{m,i}A_{m,i}(r) \sin(\omega_m t + \phi_{m,i})$$

$$+ \sum_{m=1}^{M} \kappa_{m,i}B_{m,i}(r) \cos(\omega_m t + \phi_{m,i}),$$

(12)

where the amplitude scalings $\kappa_m \in \mathbb{R}^3$ and phase shifts $\phi_m \in \mathbb{R}^3$ can be determined from the closed-loop system’s transfer function observed in experiments, $H_i(s)$. That is, we compute $\kappa_{m,i} = |H_i(j\omega_m)|^{-1}$, $\phi_{m,i} = -\arg H_i(j\omega_m)$. We only compensate for the motion primitives but not for the transition trajectories since the latter has an infinitely wide frequency spectrum while the former’s is finite.
V. EXPERIMENTAL RESULTS

We demonstrate our algorithms using the small-sized quadrotor platform Crazyflie 2.0 in a multi-agent testbed at the Dynamic Systems Lab (inspired by the Crazyswarm [13]). From a central computer, we gathered position data from all the drones in the fleet using an overhead motion capture system. The state information was sent via radios to each drone’s onboard computer, along with the desired position, which is tracked using an onboard position controller.

A. Motion Synchronization

We empirically determined the Crazyflie’s closed-loop transfer functions $H_i(j\omega)$, $i = 1,2,3$, by commanding sinusoidal position trajectories at different frequencies ω in the x and z directions. Based on the phase shift and amplitude attenuation between the desired and actual trajectories, we found the system’s frequency response characterized by amplitude attenuation $|H_i(j\omega)|$ and phase shift $\arg H_i(j\omega)$ as shown in Fig. 5. Based on the data, we constructed a look-up table from which the scaling factors for motion primitives, κ_m and ϕ_m, are determined by linearly interpolating points in the magnitude and phase mapping, respectively. We constructed the look-up table using data from one drone but validated it on another 8 drones. As shown in Fig. 6, the tracking performance was greatly improved with negligible variances among the 8 drones being tested.

B. Transition Trajectory Planning

The optimization problems in trajectory planner are solved using the nonlinear optimizer IPOPT [14]. We used $P = 14$ as the polynomial order and $K = 10$ as a starting point for partition intervals, which may be doubled in the next iteration if a feasible solution is found but a collision occurs in between two time steps t_k and t_{k+1}. To avoid numerical issues, we nondimensionalized the minimum snap cost function as in [9].

We evaluated the transition trajectory planner in both simulation and experiments. In simulation, we tested with 25 drones transitioning in a $5\times5\times2$ m3 volume with a collision radius of 0.14m in the x-y plane and 0.35m in the z direction. Our algorithm found a feasible solution in 85% of 1800 randomly generated motion primitive pairs. The main reason for failure are numerical difficulties in solving [11] when the transition time is long. One repair strategy is to parameterize the trajectories with a few concatenated polynomials, instead of just one polynomial.

C. Choreographed Drone Performance

The video at http://tiny.cc/fast-periodic presents a one-minute drone performance where 25 drones are choreographed to fly in tight formations and perform fast and dynamic motions. We seamlessly concatenate five wave motions and one rigid body rotation to create a cohesive performance. The peak velocity and pitch angle reached 2.65m/s and 32 degrees, respectively. Since the motion primitives are aggressive, we used a larger collision ellipsoid than in [12], with 0.28m in x $-$ y and 0.85m in z, which are the radii of the smallest ellipse in x-z plane that two drones can trace at a moderate angular velocity with π phase shift. These parameters were coarsely estimated and worked well in our experiments. However, to fully exploit the spatial and the vehicles’ physical limits, more sophisticated methods should be used to explicitly model the rotors’ aerodynamics.

VI. CONCLUSIONS

In this paper, we provide guidelines for creating performances with quadrotor swarms that fully leverage their motion capabilities to create appealing visual effects. The swarm motion primitives are formulated as coupled periodic motions, which are described by a single equation indicating the overall motion pattern and the relationship between the individual actors of the swarm. The geometric properties of parameter functions in this formulation were discussed. Moreover, we provided a hierarchical transition trajectory planner to seamlessly connect motion primitives together and preserve geometric characteristics. Lastly, a correction algorithm is proposed to improve the quadrotors’ tracking performance of the periodic motions, which allows the swarm to perform synchronously and in close proximity to each other. The method is validated with a swarm performance of 25 drones in a compact space.
REFERENCES

