
Revisiting Ball Catching with a Mobile Manipulator: A Discrete
Trajectory Planning Approach

Ke Dong1, Florian Shkurti2 and Angela P. Schoellig1

Abstract— Catching a ball with a mobile manipulator is a
classic robotics benchmark that requires continuously interleav-
ing prediction and re-planning in order to make a successful
grasp mid-air. Existing solutions to this problem typically make
use of sequential quadratic programming, which is sensitive to
initial conditions. We revisit this task by showing that the num-
ber of degrees-of-freedom that are relevant to the optimization
problem is small enough to search via a simple, two-step, grid
search and verification scheme. Through extensive simulations
and experiments on a real robot manipulator we show that
our method leads to at least as high catching success rate as
sequential quadratic programming, while being much simpler
to implement and without relying on heuristics for initializing
the optimizer. Our findings suggest that this classic benchmark
should be updated to more high-dimensional scenarios and
arbitrary objects.

I. INTRODUCTION

Real-time trajectory planning for catching an object mid-
air is a task that robots are expected to perform in a fraction
of a second, while interleaving the prediction of the object’s
trajectory with the optimization of the desired catching time
and catching pose of the end-effector. Catching is perceived
to be difficult because every component of the state, includ-
ing the mobile base, the robot arm, and the object in the
environment, are all in motion, and there is little room for
error in prediction and control. In addition, there are complex
trajectory constraints that need to be resolved in real-time,
including joint motion limits and collision avoidance, both
in terms of the body of the robot and in terms of avoiding
dynamic obstacles in the environment.

Catching has served as an interesting benchmark in
robotics because it is a prerequisite skill for other fast
and dynamic robot movements such as juggling, playing
table tennis or other similar games, and fluid human robot
interaction in general.

Existing solutions [1], [2] address the problem of catching
by formulating it as a Sequential Quadratic Programming
(SQP) problem, constrained by non-linear equality and in-
equality conditions. Owing to the nature of non-linear op-
timization, these algorithms are computationally expensive,
sensitive to initialization, and suffer from local minima, due
to the non-convex kinematics constraint functions.

1 Ke Dong and Angela P. Schoellig are with the Dy-
namic Systems Lab (www.dynsyslab.org) at the University
of Toronto Institute for Aerospace Studies (UTIAS), Canada.
Email: ke.dong@robotics.utias.utoronto.ca,
schoellig@utias.utoronto.ca

2 Florian Shkurti is with Department of Computer Science at the
University of Toronto, Canada. Email: florian@cs.toronto.edu

Fig. 1. A human throws a ball from a distance of about 4 m towards
the robot with a typical speed of 6 m/s. The duration of the flying ball’s
trajectory is around 1 second. Video of the mobile manipulator catching
the ball with a cup supported by a three-finger gripper is available at
http://tiny.cc/udpscz.

In this paper we present and evaluate a simple discrete
search trajectory planning algorithm, which is fast, robust
to initial conditions, and easy to implement. We show that
the number of unconstrained optimization variables that are
required to generate catching motions is small enough that
simple grid search is sufficient to produce good catching
solutions, without resorting to nonlinear optimization. The
key ideas here are to first generate a large number of catching
configuration samples via discrete search and analytic Inverse
Kinematics (IK) solvers, and then check the feasibility of
every catching configuration, at the end selecting to execute
the one that has the lowest cost.

A. Related work

A large body of work has been devoted to the trajec-
tory generation and autonomous control of fast manipulator
movements, such as for object catching and hitting. Early
pioneering work in this field used heuristic methods for
selecting the catching point and generating the joint trajec-
tory via interpolation [3], [4]. Recent work uses non-linear
optimization methods to solve this problem. In some of the
most compelling experiments in this area [1], a ball catching
system from DLR consisting of a 7DOF arm and a four-
finger hand is presented. Later, an omni-directional mobile
base with two identical manipulators is shown in [5], which
can catch two balls, thrown simultaneously. To the best of our
knowledge, this is the only other work on mobile manipulator
ball catching in recent years. These two papers from DLR use
sequential quadratic programming for optimization, which is
computationally expensive and requires careful initialization



of the optimization parameters. This system also requires
32-core parallel programming for real-time performance.

Other types of high-speed catching and manipulation
systems were shown in [6] as well as [7]. The presented
system in [7] was able to catch fast-moving objects softly
via a dynamical systems (DS) based control law. Arbitrary-
shaped object catching is another interesting and more
challenging task. The motion of complex objects like a
hammer or a tennis racket can not be simply modelled as
ballistic movement. Different methods have been used to
learn the arbitrary-shaped object trajectory including rigid
body dynamics model [8], learning from demonstration [9]
and Gaussian mixture model [10]. The latter, in particular,
was able to catch arbitrarily-shaped objects, as long as they
had been seen during an offline modeling and training phase.

A similar sample-verification framework as ours is pro-
posed in [11]. But it is used for quadrotor trajectory planning
where no complex forward kinematics constraints are needed
to be considered. Note that our method is also different
from sampling-based trajectory planning algorithms such as
probabilistic roadmaps (PRM) [12] and rapidly exploring
random trees (RRT) [13]. They aim to find a sequence of
feasible way-points to form the trajectory, and are usually
time-consuming when finding an optimal trajectory is re-
quired. Our method, on the other hand, aims to find only one
optimal point in the solution space and real-time performance
is required.

B. Contributions

The contribution of this paper is two-fold. First, we
provide a much simpler trajectory generation algorithm,
compared to existing methods, for the task of catching balls
with a mobile manipulator. Our method first use analytic IK
solvers to reduce the number of optimization variables to
just four, and then decomposes the problem into generating
possible catching samples and checking for their feasibility.
This approach is fast, robust to different initial conditions
and considerably easier to implement than existing methods
based on nonlinear optimization.

Our second contribution is an extensive evaluation and
comparison of the proposed algorithm against the SQP
planner, both in simulation and in real robot experiments.
We note that SQP has been the method of choice for ball
catching experiment in existing works. In these comparisons
we show that our simple method can achieve at least as high
catching success rate as SQP with slightly less computation
time on average, both in simulation and in real robot experi-
ments. This finding suggests that the ball catching benchmark
task should be updated to more high-dimensional scenarios,
e.g. catching arbitrarily-shaped objects mid-air using RGBD
images or other similar observations.

II. SYSTEM OVERVIEW AND PROBLEM FORMULATION

This section first presents the overview of our system,
including the mobile manipulator and the flying ball. A
formal statement of the optimal trajectory planning problem
is then given.

A. System Overview

The mobile manipulator system considered in this paper
consists of a 6-DOF manipulator rigidly mounted on a 3-
DOF omnidirectional mobile base. The yaw rotation of the
mobile base is not used in this paper since rotating a mobile
base is usually slow. Thus the system has 8 DOF in total.
The joint configuration vector of the robot is q = [qa,qb]

>,
where qa = [θ1,θ2, ...,θ6]

> is the arm joint angles and qb =
[xb,yb] represents the Cartesian position of the mobile base.
The kinematics model of the mobile manipulator is shown
in Figure 2, and is assumed to be known.

Fig. 2. The kinematics model of the mobile manipulator. The world frame
wF , base frame bF , the arm frame aF and the end-effector frame eeF are
presented. Adapted from [14].

The flying ball’s movement is modeled as free-fall motion
without air drag:

b̈ =−g, (1)

where b = [bx,by,bz]
T is the ball’s position, and g = 9.81 is

the gravitational acceleration. Then, the ball’s trajectory in
the x,y,z axis can be fitted with parabola curves:

bx(t) = a0,xt2 +a1,xt +a2,x,

by(t) = a0,yt2 +a1,yt +a2,y,

bz(t) = a0,zt2 +a1,zt +a2,z

(2)

where a0,a1,a2 are curve coefficients and can be estimated
via online least squares methods. Though air drag is reported
to have non-negligible influence on the ball’s trajectory pre-
diction [1], [5], its influence on the trajectory can be handled
during the online trajectory coefficient fitting process.

B. Problem Statement

To successfully catch the ball, the trajectory planner needs
to first select the catching configuration z = [q f , t f ]

> where
q f is the final robot joint configuration and t f is the catching
time, and then generate joint trajectories in the joint space
that lead the end-effector to the desired pose. Pre-selected
trajectory parameterization methods are usually used in this
field so that given the initial and final joint position, the joint
trajectory can be uniquely generated and determined [1], [5],
[15]. In this way, the only problem left here is to find the
catching configuration.

Following this line of work, the main problem to be
addressed in this paper is to search for the optimal catching
configuration z, given joint motion limits, collision avoidance
requirements, a trajectory parameterization method, and a
user-defined cost function. This can be formulated as the
following optimization problem:



q∗f , t
∗
f = argmin

q f ,t f

C(q f , t f )

s.t. ee
w FKp(q f ) = bp(t f ),
ee
w FKn(q f ) =−bv(t f ),

gbox(q f , t f )≤ 0,
gcoll(q f , t f )≤ 0,

(3)

where ee
w FKp(·), ee

w FKn(·) are the robot’s forward kinematics
functions that return the end-effector’s position and normal
vector in the world frame, while bp(·),bv(·) are the ball’s
trajectory prediction functions that return the ball’s position
and velocity vector. We impose box constraints gbox to
restrict the robot’s joint position, velocity and acceleration
within safe ranges:

qim ≤ qi(t)≤ qiM,

q̇im ≤ q̇i(t)≤ q̇iM,

q̈im ≤ q̈i(t)≤ q̈iM,

(4)

where qim, q̇im, q̈im and qiM, q̇iM, q̈iM are minimum and max-
imum joint position, velocity and acceleration respectively.
We also set gcoll to be the collision avoidance constraints,
determined by a geometric model of the robot and environ-
ment.

III. METHODOLOGY

This section presents our discrete search trajectory plan-
ning algorithm. It starts with the trajectory parameterization
method and constraint simplification used in this paper for
real-time performance. Then the detailed procedure of the
trajectory planning algorithm is presented.

A. Trajectory Parameterization and Constraint Simplifica-
tion

Many trajectory parameterization methods have been used
in literature for different considerations, such as minimal
acceleration, path smoothness, and maximal reachable space
[1], [5], [2]. In this paper, we use the trapezoidal velocity
ramp to maximize the reachable space.

This trapezoidal velocity ramp trajectory consists of an
acceleration phase and a cruise phase. For the i-th robot
joint, it will first accelerate to the cruise velocity q̇i, f with
the maximum joint acceleration q̈iM , and then maintain this
speed until the catching time. A dedicated stopping trajectory
will be appended after the catching to make the robot stop.
This happens after catching and is not considered in the
optimization problem.

The trapezoidal velocity ramp trajectory is parameterized
by two parameters: the duration time ti,a and cruise velocity
q̇i, f . To determine these two parameters and generate the
joint trajectory, the kinematics equations in Eqn 5 need to
be solved, which is obtained from the relationship between
position, velocity and acceleration for an uniform accelera-
tion motion [1].

qi,0 +
1
2
(q̇i, f + q̇i,0)ti,a + q̇i, f (t f − ti,a) = qi, f ,

q̇i, f − q̇i,0 = q̈iMti,a,
(5)

where qi,0, q̇i,0 are the initial joint position and velocity, qi, f
is the final joint position at the catching time, and t f is the
catching time.

The box constraints over the entire joint trajectory in Eqn
4 can be simplified due to this parameterization approach.
The joint’s maximum acceleration is used in the acceleration
phase, thus the acceleration limit is automatically satisfied.
The initial point and end point of the trapezoidal curve are
the position and velocity extrema points. Thus, only the end
point are necessary for checking, since the initial position
and velocity are given. Then, the box constraints in Eqn 4
can be simplified as below:

qim ≤ qi, f ≤ qiM,

q̇im ≤ q̇i, f ≤ q̇iM,
(6)

A complete collision avoidance check is very time-
consuming and unnecessary here since no obstacles are
considered. We do, however, use a similar collision heuristic
as [1], namely only the origin of the end-effector’s frame is
tested for whether it is inside the collision-free space, and
even that is done only for the final catch configuration q f .
The collision-free space is a semi-cylinder with its bottom
centered in the arm frame’s origin as shown in Figure 3,
which is to prevent the end-effector from colliding with the
ground floor and the mobile base:

aP2
ee,x + aP2

ee,y ≤ R2
coll

0≤ aPee,z ≤ Hcoll ,
(7)

where [aPee,x,aPee,y,aPee,z] is the end-effector’s position in
the arm frame, Rcoll is the cylinder’s radius and Hcoll is
the height. Though self-collision is not considered here, it
never happens during the real robot experiment, which is
also reported in [1].

Fig. 3. The geometric model of the collision-free space. This is a semi-
cylinder with its bottom centered in the arm frame’s origin.

B. Discrete Search Trajectory Planning Algorithm
1) Searching over Catching Times and Poses: The most

direct way to solve the optimization problem in Eqn 3 is
to take uniform samples on the nine-dimensional catching
configuration space, which suffers from the curse of di-
mensionality. The equality constraints, namely, the three-
dimensional position specification and the two-dimensional



orientation requirement of the end-effector, manage to reduce
the dimension of the solution space from 9 to 4. This fact
can be explicitly used by an analytic IK solver, which can
help us determine five joint variables in the kinematics chain
given the five-dimensional end-effector specification. In other
words, we only need to take samples on the catching time
t f and three robot joint variables.

Though different selection choices exist, this paper
chooses the sixth joint of the arm q6 and mobile base’s
Cartesian position q7, q8. As can be seen in Figure 2,
changing the sixth joint will make the end-effector rotate
along its z axis, which has no influence on the ball catching
task. Thus, the sixth joint of the arm is fixed to a constant
value q̄6.

Given the sample space S = [q7m,q7M]× [q8m,q8M]×
[0,Tmax], we uniformly take samples sk = [qk

7,q
k
8, t

k
f ]
> with

step size δx,δy,δ t f . Here Tmax is a parameter for maximum
catching time and q7m, q7M, q8m, q8M are the mobile base’s
position limits. Then the IK solver can determine the arm
joint position:

qk
a = IK(bp(tk

f ),−bv(tk
f ),s

k), (8)

If an IK solution is found, sk and qk
a are put together to form

the catching configuration sample zk. Otherwise, sample sk

is discarded. Then, for every catching configuration sample,
Eqn 5 is solved to generate the corresponding trapezoidal
joint trajectories.

2) Feasibility Verification: This step checks the feasibility
constraints of every catching configuration sample. By feasi-
bility constraints, we refer to the inequality constraints in Eqn
3. Though a check over the entire trajectory should be done
to ensure feasibility, only the final catching configuration is
checked herein, due to the simplification made in Section
III-A. Thus, given the catching configuration sample zk, the
simplified inequality constraints in Eqn 6 and 7 are calculated
to determine feasibility. If there is more than one feasible
sample, the cost function is used to select the optimal one,
otherwise, no output is generated and the algorithm fails
to find a catching configuration. Our trajectory planning
algorithm is summarized in Algorithm 1.

C. Discussion on Analytic IK Solutions

Though the general inverse kinematics solution is still
an open problem in the robotics field, the analytic inverse
kinematics solutions for common types of end-effector pose
specification and robot kinematics chains can be obtained,
via kinematic decoupling and geometric analysis. For exam-
ple, for manipulators having six joints with the last three
joints intersecting at a point, an analytic IK solution is
available [16]. Some toolbox libraries, such as IKFast [17],
also provide analytic solutions for common end-effector pose
specification such as 6D transformation, 3D rotation and 3D
translation. Thus, having an analytic IK solution for a specific
manipulator platform without kinematic redundancy should
not be an unreasonable assumption.

Algorithm 1 Discrete Search Trajectory Planning
Input: Robot’s initial joint position q0 and velocity q̇0,

sample space S , sampling step size δx,δy,δ t f , ball tra-
jectory prediction function bp(·),bv(·), IK solver IK(·).

Output: the optimal catching configuration z∗ or None.
1: Initialize set S← /0, Z← /0 and Q← /0.
2: Take uniform samples sk = [qk

7,q
k
8, t

k
f ] on S with step

size δx,δy,δ t f , and add them to the set S.
3: for the k-th element sk in S do
4: if IK(bp(tk

f ),−bv(tk
f ),s

k) has a solution qk
a then

5: zk = [qk
a,sk]>, and add zk into the set Z

6: end if
7: end for
8: for the j-th element z j in Z do
9: Calculate joint trajectory parameters (Eqn 5)

10: Verify feasibility constraints (Eqn 6 and 7)
11: if feasible then
12: add z j into the set Q
13: end if
14: end for
15: if set Q is not empty then
16: return z∗ = minC(z j)
17: else
18: return None
19: end if

IV. COMPUTATION TIME AND TRAJECTORY COST

This section presents the computation time and trajectory
cost evaluation of the proposed discrete-search planning
algorithm under different ball trajectories, and its comparison
with the SQP planning algorithm.

A. General Setup

We first start by fully specifying the nonlinear optimization
problem in Eqn 3, where the cost function and constraint
parameters are left to be determined. Different cost functions
can be used for this ball catching task, but here we choose
to penalize the movement of the arm and the mobile base:

C(q f , t f ) = w1‖qa,0−qa, f ‖2
2 +w2‖qb,0−qb, f ‖2

2, (9)

where ‖·‖ is the Euclidean distance, and w1,w2 are weight
parameters. The catching time t f is not used here. Since the
control performance of the mobile base is usually worse
than the arm, we let w1 = 1,w2 = 5 to further limit the
mobile base’s movement. The forward kinematics model,
joint motion limits and collision-free space of the robot
presented in Sec V-A are used here as nonlinear constraints.

To evaluate the planning algorithms, the robot’s mobile
base is put in the origin with a fixed arm joint configuration.
9000 different ball trajectories are generated in such a way
that they will fly to a sphere centered on the end-effector
after 0.7s, which is reachable for the mobile manipulator
within 0.7s. During the test, all 9000 ball trajectory predic-
tion functions are called by the planning algorithms. If the
algorithm can output a catching configuration within a given



computation threshold for a ball trajectory input, and this
configuration can generate a valid joint trajectory, i.e. Eqn 5
has a valid solution, then this is regarded as a success.

Both our search-based planning algorithm and the SQP-
based algorithm are implemented in C++. For our search al-
gorithm, the candidate sample space is S = [−0.35,0.35]×
[−0.35,0.35]× [0,1] with sampling step size δx = 0.05,δy=
0.05,δ t f = 0.05, and we fix the sixth arm joint angle to
be π/2. This will generate at most 3920 raw catching
configurations at every run.

The analytic IK solver IK(·) used here is based on the
analytic IK solution IKur10(·) for the UR10 arm in [18].
It can output the six-dimensional joint configuration qa =
IKur10(Ta

ee) when given the homogeneous transformation
matrix from the end-effector to the arm base frame Ta

ee.
The SQP-based planning algorithm is implemented with

the Nlopt library. For a fair comparison, the same trajectory
generation method and constraint simplification stated in Sec
III-A are also used here. For the initial guess to the SQP
algorithm, the initial catching configuration is set to be the
current robot configuration, while the initial catching time
is manually set to be 0.5s. Different initial catching times
were tested and there was no obvious influence on the SQP
algorithm’s result. This initialization approach is reported to
have reasonable performance in [2].

All experiments below, including the real robot experiment
in Sec V-B, are running on a laptop computer with an Intel
Core i7-8850H CPU running at 2.6 GHz.

B. Evaluation results

TABLE I
PERFORMANCE COMPARISON BETWEEN OUR DISCRETE SEARCH

ALGORITHM AND THE SQP PLANNER.

Algorithm Success rate Computation
time(s)

Trajectory
cost

DS(0.05,0.05,0.05)* 99.49% 0.0070 1.0931
DS(0.10,0.10,0.05) 99.33% 0.0022 1.1080
DS(0.05,0.05,0.01) 99.60% 0.0385 1.0608

SQP 99.27% 0.0016 1.0223
* DS(0.05,0.05,0.05) refers to our discrete search trajectory planning

algorithm with sampling step size δx = 0.05,δy = 0.05,δ t f = 0.05.

The performance of the two algorithms is shown in Table
I. It can be seen that the discrete search algorithm enjoys
slightly higher success rate than the SQP algorithm, but also
has slightly higher cost. The reason is that the discrete search
algorithm will traverse the whole solution space in a discrete
fashion. This can make it find a reasonable solution but it
may not the best solution. As for the computation time, the
SQP is the fastest one and the discrete search algorithm
does not scale well when the step size is small. But with
appropriate step size like DS(0.10,0.10,0.05), the simple
discrete search algorithm can achieve similar performance
to the SQP.

V. ROBOT EXPERIMENT AND RESULTS

This section presents the setup of the real robot exper-
iments results. The system architecture is first introduced,

Fig. 4. The diagram of the whole robot system. It consists of three modules
including ball estimation, trajectory planning and joint control. These three
modules are running on the same laptop to avoid the time synchronization
problem.

then the experimental results are presented.

A. System architecture

Our system consists of three modules including ball es-
timation, trajectory planning and joint control. The whole
diagram is shown in Figure 4. The ball is made visible to
the Vicon motion capture system via retro-reflective tapes.
Its position and velocity are estimated by a Kalman filter.
A buffer of N = 30 ball states is kept for fitting the ball’s
trajectory.

The mobile manipulator used in this experiment includes a
6-DOF UR10 arm and a 3-DOF Ridgeback omni-directional
mobile base. The joint motion limits of the arm and the
base are presented in Table II, and the collision-free model
parameters are Rcoll = 1.36m,Hcoll = 2m. PD controllers are
used to control the arm and the base via velocity commands,
which are then translated into joint torques and wheel
velocities via the arm and the base’s on-board controllers,
respectively.

The optimization problem settings in Sec IV-A are used
here for trajectory generation. The sample space for the
discrete search algorithm here is S = [−0.21,0.21] ×
[−0.21,0.21]× [0,Tmax]. The maximum catching time Tmax
is the time left for the ball to fall into the ground, which can
be solved by the free-fall motion model in run time:

bz,0 + ḃz,0Tmax−0.5gT 2
max = 0 (10)

The sample step size used in the experiment is δx =
0.05,δy = 0.05,δ t f = 0.05. With the reduced sample space
for the mobile base (the maximum x position reduced from
0.36 to 0.21), the DS(0.05,0.05,0.05) here has similar com-
putation time as DS(0.10,0.10,0.05) in Table I.

TABLE II
JOINT LIMITS OF THE MOBILE MANIPULATOR PLATFORM

Joint qmin qmax q̇max q̈max

arm 1 −180(◦) 180(◦) 86(◦/s) 458(◦/s2)
2 −180(◦) 180(◦) 86(◦/s) 458(◦/s2)
3 −180(◦) 180(◦) 86(◦/s) 458(◦/s2)
4 −180(◦) 180(◦) 115(◦/s) 458(◦/s2)
5 −180(◦) 180(◦) 115(◦/s) 458(◦/s2)
6 −180(◦) 180(◦) 180(◦/s) 458(◦/s2)

base x −2(m) 2(m) 0.9(m/s) 1.5(m/s2)
base y −2(m) 2(m) 0.9(m/s) 1.5(m/s2)



B. Robot Experimental Results

The geometric setup in Figure 1 is used for testing. The
robot is placed around (−1,−1,0) in the world frame, and
the ball is thrown around (2.5,2.5,0) towards the robot.
A half-cut bottle is mounted on the gripper for catching
the ball. To test the two algorithms, the ball is thrown 75
times for each of the two algorithms 1. All 150 throws in
total, are made by a human operator, and the distribution of
ball trajectories is shown in Figure 5. Figure 6 and 7 show
the arm and the mobile base’s desired and actual position
trajectory for a flying-ball trajectory when using the discrete
search planning algorithm. The success rate and average
computation time are presented in Table III. Videos of the
experiment are available at http://tiny.cc/udpscz.

TABLE III
PERFORMANCE COMPARISON OF THE DISCRETE SEARCH AND SQP

TRAJECTORY PLANNING ALGORITHMS ON REAL ROBOT EXPERIMENTS.

Success rate Computation time(s)

DS(0.05,0.05,0.05) 76.00% 0.00608
SQP 69.33% 0.00657

Surprisingly, the simple discrete search planning algorithm
achieves higher success rate and slightly smaller computation
time than the SQP planner. The reason for the smaller
computation time of the discrete search algorithm, which
is in contrast to the result presented in Table I, is that as
the ball flies, the maximal catching time Tmax decreases,
and thus fewer samples over the catching time are needed.
This accelerates the discrete search algorithm for real robot
experiments.

The results here experimentally validate that a simple
discretization-based method can achieve similar performance
as an non-linear optimization algorithm. This mainly results
from the embedding of an analytic IK solver which reduces
the number of optimization variable and accelerates the
computation process. The comparison here also shows that
ball catching with only position and orientation specification
under reasonable simplification does not really require a so-
phisticated approach. Upgrade on this classical ball catching
benchmark problem should be made.

VI. CONCLUSION

We re-examined the classic robotics benchmark problem
of catching a ball, this time with an off-the-shelf mobile
manipulator. The main insight brought forth by our paper
is that due to the structure of the optimization problem,
the solution space is 4- and not 9-dimensional, as it has
been traditionally modeled. Therefore, a simple search-based
trajectory optimization method, together with an analytic
inverse kinematics solver are sufficient to plan dynamic ball
catching trajectories in real time. In fact, we compare this
simple method with existing approaches based on sequential
quadratic programming and we find that it performs equally

1More than 75 throws are made in the experiment since some of the ball
trajectories are infeasible for the robot to catch.

x (m)

−0.5
0.0

0.5
1.0

1.5
2.0

y (m)

−2

−1

0
1

z
(m

)

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 5. The 75 ball trajectories for testing the discrete search sampling
algorithm.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Time (s)

−2.5

−1.5

−0.5

0.5

1.5

Jo
in

ta
ng

le
(r

ad
)

arm 1 desire
arm 1 actual
arm 2 desire
arm 2 actual
arm 3 desire
arm 3 actual

arm 4 desire
arm 4 actual
arm 5 desire
arm 5 actual
arm 6 desire
arm 6 actual

Fig. 6. The arm’s desired and actual trajectory of a thrown ball when using
the discrete search sampling algorithm.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Time (s)

−1.20

−1.15

−1.10

−1.05

−1.00

−0.95

C
ar

te
si

an
po

si
tio

n
(m

)

base x desired
base x actual

base y desired
base y actual

Fig. 7. The mobile base’s desired and actual trajectory of a thrown ball
when using the discrete search sampling algorithm.

well in simulation, and surprisingly, outperforms existing
methods in real robot experiments, both in terms of com-
putation time, and in terms of success rate. Our findings
suggest that the community should revise the definition of
this classic benchmark problem, by raising the bar to more
high-dimensional catching scenarios, where the goal is to
catch arbitrary objects, or use high-dimensional observations.

ACKNOWLEDGMENT

The authors would like to acknowledge the Natural Sci-
ences and Engineering Research Council (NSERC) for their
generous support.



REFERENCES

[1] B. Bäuml, T. Wimböck, and G. Hirzinger, “Kinematically optimal
catching a flying ball with a hand-arm-system,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2010, pp. 2592–2599.

[2] O. Koç, G. Maeda, and J. Peters, “Online optimal trajectory generation
for robot table tennis,” Robotics and Autonomous Systems, vol. 105,
pp. 121–137, 2018.

[3] U. Frese, B. Bauml, S. Haidacher, G. Schreiber, I. Schäfer, M. Hahnle,
and G. Hirzinger, “Off-the-shelf vision for a robotic ball catcher,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), vol. 3. IEEE, 2001, pp. 1623–1629.

[4] C. Smith and H. I. Christensen, “Using cots to construct a high per-
formance robot arm,” in IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2007, pp. 4056–4063.

[5] B. Bäuml, O. Birbach, T. Wimböck, U. Frese, A. Dietrich, and
G. Hirzinger, “Catching flying balls with a mobile humanoid: Sys-
tem overview and design considerations,” in IEEE-RAS International
Conference on Humanoid Robots. IEEE, 2011, pp. 513–520.

[6] A. Namiki, Y. Nakabo, I. Ishii, and M. Ishikawa, “High speed grasping
using visual and force feedback,” in IEEE International Conference on
Robotics and Automation (ICRA), vol. 4, May 1999, pp. 3195–3200.

[7] S. S. Mirrazavi Salehian, M. Khoramshahi, and A. Billard, “A dynam-
ical system approach for catching softly a flying object: Theory and
experiment,” IEEE Transaction on Robotics, 2016.

[8] K. S. Bhat, S. M. Seitz, J. Popović, and P. K. Khosla, “Computing the
physical parameters of rigid-body motion from video,” in European
Conference on Computer Vision. Springer, 2002, pp. 551–565.

[9] S. Kim and A. Billard, “Estimating the non-linear dynamics of free-
flying objects,” Robotics and Autonomous Systems, vol. 60, no. 9, pp.
1108–1122, 2012.

[10] S. Kim, A. Shukla, and A. Billard, “Catching objects in flight,” IEEE
Transactions on Robotics, vol. 30, no. 5, pp. 1049–1065, Oct 2014.

[11] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally
efficient motion primitive for quadrocopter trajectory generation,”
IEEE Transactions on Robotics, vol. 31, no. 6, pp. 1294–1310, 2015.

[12] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[13] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

[14] M. Jakob, “Position and force control with redundancy resolution
for mobile manipulators,” Master’s thesis, University of Stuttgart,
Stuttgart, Germany, 2018.

[15] R. Lampariello, D. Nguyen-Tuong, C. Castellini, G. Hirzinger, and
J. Peters, “Trajectory planning for optimal robot catching in real-time,”
in IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2011, pp. 3719–3726.

[16] M. W. Spong, S. Hutchinson, and V. Mathukumalli, Robot Modeling
and Control. John Wiley and Sons, 2006.

[17] “Ikfast: The robot kinematics compiler,” http://openrave.org/docs/0.8.
2/openravepy/ikfast/, [Online; accessed 13-September-2019].

[18] K. P. Hawkins, “Analytic inverse kinematics for the universal robots
ur-5/ur-10 arms,” Georgia Institute of Technology, Tech. Rep., 2013.

http://openrave.org/docs/0.8.2/openravepy/ikfast/
http://openrave.org/docs/0.8.2/openravepy/ikfast/

	Introduction
	Related work
	Contributions

	System Overview and Problem Formulation
	System Overview
	Problem Statement

	Methodology
	Trajectory Parameterization and Constraint Simplification
	Discrete Search Trajectory Planning Algorithm
	Searching over Catching Times and Poses
	Feasibility Verification

	Discussion on Analytic IK Solutions

	Computation Time and Trajectory Cost
	General Setup
	Evaluation results

	Robot experiment and results
	System architecture
	Robot Experimental Results

	Conclusion
	References

