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Abstract— Iterative learning control (ILC) has proven to
be an effective method for improving the performance of
repetitive control tasks. This paper revisits two optimization-
based ILC algorithms: (i) the widely used quadratic-criterion
ILC law (QILC) and (ii) an estimation-based ILC law using an
iteration-domain Kalman filter (K-ILC). The goal of this paper
is to analytically compare both algorithms and to highlight
the advantages of the Kalman-filter-enhanced algorithm. We
first show that for an iteration-constant estimation gain and an
appropriate choice of learning parameters both algorithms are
identical. We then show that the estimation-enhanced algorithm
with its iteration-varying optimal Kalman gains can achieve both
fast initial convergence and good noise rejection by (optimally)
adapting the learning update rule over the course of an exper-
iment. We conclude that the clear separation of disturbance
estimation and input update of the K-ILC algorithm provides
an intuitive architecture to design learning schemes that achieve
both low noise sensitivity and fast convergence. To benchmark
the algorithms we use a simulation of a single-input, single-
output mass-spring-damper system.

I. INTRODUCTION

Iterative learning control (ILC) algorithms have been in-
troduced as a mean to reduce the tracking error of systems
that repeatedly execute the same task. In contrast to adaptive
control schemes, which use ‘learned’ information to adapt
an underlying feedback controller, ILC algorithms adapt the
feed-forward input to the system (which may be the reference
signal to a feedback-controlled system) as a function of
past tracking errors. Since the initial work of Arimoto et
al. in 1984 [1], many variations of the algorithm have been
published, and ILC has proven to be effective in a variety of
application areas ranging from robotic manipulators [2]–[5]
and chemical reactors [6], [7] to quadrocopter maneuver-
ing [8]–[10]. A good overview over the field of ILC is given
in the survey papers [7], [11], [12].

More recently, starting with the work by Buchheit et al.
in 1994 [13], researchers have begun to formulate the ILC
input update step as an optimization problem minimizing the
predicted tracking error of the next iteration. Some recent
examples of optimization-based (also called ‘norm-optimal’)
ILC approaches are [3], [7], [8], [14]. The optimization
formulation enables the integration of input and output
constraints as shown in [7], [8], [15].

In the recent years standard ILC algorithms have been ex-
tended with Kalman filter estimators to improve the learning
performance, especially for non-repetitive noise. In [8]–[10],

Nicolas Degen is with the Autonomous Systems Lab, ETH Zurich,
Switzerland. nidegen@ethz.ch

Angela P. Schoellig is with the University of Toronto Institute for
Aerospace Studies, Canada. schoellig@utias.utoronto.ca

LEARNING STEP:

SYSTEM
ej

yd

yj

uj+1

uj + −
QILC

Input Update: uj+1 = argminu′
j+1
{Jj+1(u′j+1)} with

Jj+1 = ēT
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Fig. 1. Typical learning algorithm setups. Top: The widely-used quadratic
optimal ILC (QILC) [11]. Middle: ILC algorithm with integrated estimation
step (E-QILC) as presented by Lee et al. [7]. Bottom: Kalman-filter-based
algorithm (K-ILC) presented by Schoellig et al. [8]. The dashed lines
represent the input for the next iteration.

a Kalman-filter-enhanced ILC scheme was presented that is
used to improve the prediction of the next iteration’s tracking
error. In contrast to time-domain Kalman-based estimation,
which has been proven to not be beneficial in combination
with ILC [16], the approach in [8]–[10] applies the Kalman
filter to iteration-domain variables. Similar iteration-domain
estimation-based ILC schemes have also been proposed by
Norrlöff et al. in [5], [17]–[19].

The goal of this paper is to analytically compare three
optimization-based algorithms (see Figure 1): (i) the common
quadratic-criterion ILC (QILC) [11], [14], (ii) an estimation-
enhanced quadratic-criterion ILC scheme (E-QILC) [7], and
(iii) the Kalman-filter based optimal ILC algorithm (K-ILC)
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as introduced in [8]. The main difference between these
algorithms is the method used to predict the next iteration’s
tracking error, which is in turn used in the minimization
problem of the input update step. In (ii) and (iii) (E-QILC
and K-ILC, respectively), an estimation algorithm is used
for the error prediction, taking into account measurements
of all past iterations. While (ii) uses an estimation gain that
is constant for all iterations, the algorithm in (iii) uses a
Kalman filter, in which the estimation gain is changing over
iterations in an optimal way (based on the assumed noise
characteristics). We aim to understand the influence of using
an estimation algorithm on the overall performance of the
learning algorithm.

In the following, we describe algorithms (i)-(iii) in two
steps, an error prediction step (A) and an input update
step (B) (Section II). We then compare the algorithms ana-
lytically (Section III) and finally highlight the found results
in a simulation example (Section IV).

II. ILC ALGORITHMS

We consider three different optimization-based iterative
learning approaches: (i) quadratic optimal ILC (QILC),
(ii) estimation-enhanced quadratic optimal ILC scheme (E-
QILC), and (iii) the Kalman-filter based optimal ILC al-
gorithm (K-ILC). We characterize these optimization-based
iterative learning schemes by the methods used for (A)
the error prediction and (B) the input update. The error
prediction step predicts the next iteration’s tracking error (see
Figure 1) as a function of the new input ēj+1(uj+1) taking
into account all past measured tracking errors and inputs
ej , .., e0,uj , ..,u0. The input update step then computes the
input for the next iteration as an optimal solution of a cost
function that uses the previously stated error prediction.

In this section, we first introduce the nominal system
model and then state the error prediction (Section II-B) and
input update algorithms (Section II-C) used in (i)-(iii).

A. Nominal System Model

We assume that the nominal behavior of the system
(cf. Figure 1) is modelled by the following input-output
relationship

ỹ = F̃u, (1)

which maps a discrete-time input signal
u = [u[1]T, ..., u[N ]T]T to the corresponding lifted
output y = [y[m]T, ..., y[m+N ]T]T via a static, nominal
matrix F̃. In this context, (N + 1) samples represent the
values at all times for a single iteration j and m the relative
degree of the system [10], [11], [20]. We use (̃·) to denote
signals calculated via the nominal model F̃. In practice, (1)
may be derived from a first principles model of the system
using linearization and discretization [10], [11], [20].

The goal of ILC is to track a desired output trajectory
yd. We introduce unom as the input that results in the
desired output calculated with the nominal model, yd =
F̃unom. However, when applying unom to the real system, we
typically measure a tracking error e = y−yd, where y and e
denote measured values. The tracking error is usually a result

of unmodeled dynamics, unmodeled external disturbances
and noise. The learning algorithm iteratively adapts the input
uj to decrease the tracking error ej , where the index j
indicates the input and error of iteration j, j = 0, 1, 2, . . . .
The nominal, i.e. modelled, error dynamics are given by

ẽj = ỹj − yd = F̃(uj − unom) = F̃vj , (2)

where ej = yj − yd represents the error between the
measured and the desired output1 and vj the deviation of
the input uj from the nominal input unom. Typically, we
choose u0 = unom as initial input.

B. Error Prediction

1) QILC Error Prediction: In general, the predicted error
of the next iteration, ēj+1, is a function of the new input
uj+1 and all previous iterations’ errors (e0, ..., ej), and is
indicated by a bar (̄·). The QILC algorithm uses the most
straightforward method to predict the error based on (2),

ẽj+1 − ẽj = F̃(vj+1 − vj) = F̃∆uj+1, (3)

where∆uj+1 := uj+1 − uj = vj+1 − vj . The model-
predicted change of the error (3) added to the measured error,
ej , then results in

QILCēj+1 = F̃∆uj+1 + ej . (4)

2) E-QILC Error Prediction: E-QILC extends the pre-
diction procedure of QILC by adding an estimation step [7].
The QILC prediction as given in (4) is used, substituting the
measured error ej with an estimated error êj :

E-QILCēj+1 = F̃∆uj+1 + êj . (5)

The estimated error is obtained from

êj = (I−K)(êj−1 + F̃∆uj︸ ︷︷ ︸
ēj

) + Kej , (6)

where an estimation gain K weighs the influence of the mea-
sured error and the previous prediction. In [7], an iteration-
constant gain, K = λI, λ ∈ R and I representing the identity
matrix of matching dimension.

3) K-ILC Error Prediction: The K-ILC algorithm as
proposed in [8] estimates a disturbance vector dj+1, which
represents the difference between nominal model and the real
system:

K-ILCēj+1 = F̃vj+1 + d̂j+1, (7)

where F̃vj+1 is the error according to the nominal model,
cf. (2).

The disturbance estimate is obtained from a Kalman filter
based on the following model:

dj+1 = dj + ωj
ej = F̃vj + dj + µj ,

(8)

with ωj ∼ N (0,Ej) and µj ∼ N (0,Hj). The covariances
Ej and Hj may be seen as design parameters to adapt the

1In the literature, the error is often defined as e′j = yd−yj in contrast
to ej = yj − yd as used here.
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learning rate of the algorithm. A common choice are diagonal
covariances; that is, Hj = ηI,Ej = εI, where η, ε ∈ R and
I represents an identity matrix of appropriate size.

The Kalman filter [8], [21] provides the optimal distur-
bance estimate d̂j+1 and error estimate êj+1 based on the
stochastic model (8) taking into account all past measured
tracking errors:

d̂j+1 = d̂j + Kj,K(ej − F̃vj − d̂j) (9)

êj+1 = F̃vj+1 + d̂j+1. (10)

The optimal iteration-varying Kalman gain Kj,K is calcu-
lated recursively:

Sj = Pj + Ej

Kj,K = Sj(Sj + Hj+1)−1

Pj+1 = (I−Kj,K)Sj .
(11)

P0 = E[(d0−d̂0)(d0−d̂0)T] is the covariance matrix of the
expected initial disturbance and can be viewed as a design
parameter together with the covariances Hj ,Ej . The initial
disturbance d̂0 is typically chosen to be zero as the nominal
model is ideally the best possible guess.

Remark 1. In the derivations below, we use the fact that for
any arbitrary sequence of gains Kj , there exist corresponding
matrices Hj ,Ej , and P0 such that (11) is satisfied and Kj

can be interpreted as optimal Kalman gains Kj,K of a specific
stochastic model.

Remark 2. In contrast to K-ILC, E-QILC has not been
presented with a Kalman-filter-type estimation scheme. In
practice, however, the gain Kj can always be chosen such
that the Kalman equations are satisfied. This fact will be used
when comparing both approaches in Sec. III.

C. Input Update

Given the predicted error ēj+1, the optimization-based
input update can be stated in its most general form as the
minimization of the following cost function:

Jj+1(uj+1) = ‖W′
eēj+1‖ap + ‖W′

∆u∆uj+1‖ap
+‖W′

uuj+1‖ap + ‖W′
vvj+1‖ap

(12)

using p-vector norms to the power of a. The next iteration’s
input is then given by

uj+1 = argmin
u′j+1

{Jj+1(u′j+1)}. (13)

The cost function penalizes the predicted tracking error ēj+1,
and optionally the change of input ∆uj+1 from one iteration
to the next, the magnitude of the ‘shifted’ input vj as
well as the input uj+1 with corresponding weightings. Most
literature dealing with ILC considers the squared 2-norm
(p = a = 2). In principle, as the optimization can be done
numerically, any norm is possible. Also, the optimization step
allows the implementation of ‘hard’ constraints on the input
and output signals [7], [10], [15]. For our analytical study,

we will focus on unconstrained cost functions using the 2-
norm (p = a = 2), since in this case an explicit solution
to the optimization problem can be found. In addition, the
penalization of the inputs uj+1 and vj+1 will be omitted as it
represents ‘soft’ input constraints. Such ‘soft’ constraints will
act in minimizing u∞ and v∞ for the converged solution. It
further makes an deterministic analysis impossible, without
fundamentally affecting the core of the algorithm, it’s noise
robustness and convergence properties. Overall, this leaves
us with

Jj+1 = ēT
j+1Weēj+1 + ∆uT

j+1W∆u∆uj+1, (14)

where W` = W′T
` W′

`, ` ∈ {e,∆u}, is positive definite
and W` = WT

` . The weighting matrices We and W∆u

are design parameters that are chosen to reflect the learning
objectives.

1) QILC Input Update: We obtain the updated input uj+1

of the QILC algorithm by using QILCēj+1 from (4) for the
cost function (14). As the cost function is quadratic with
positive definite weighting matrices, a minimizing input uj+1

is found by calculating dJj+1

duj+1
= 0. We obtain:

QILCuj+1 = uj − Lej (15)

with
L = (F̃TWeF̃ + W∆u)−1F̃TWe. (16)

The derivation of (16) can be found in [22]. A non-recursive
expression for QILCuj+1 is:

QILCuj+1 = unom −
∑j
i=0 Lei. (17)

A special case of QILC is model inversion: for a cost
function,

Jj+1 = ēT
j+1Weēj+1, (18)

we get L = −F̃−1; that is, a straight-forward model
inversion:

uj+1 = uj − F̃−1ej . (19)

2) E-QILC Input Update: As E-QILC for the error pre-
diction step, the input update is analogous to QILC with only
the measured error substituted by the estimated error:

E-QILCuj+1 = uj + Lêj (20)

3) K-ILC Input Update: For K-ILC, the explicit solution
for the optimal update is

vj+1 = (F̃TWeF̃ + W∆u)−1

(−F̃TWT
e d̂j+1 + WT

∆uvj)
(21)

and is comparable to Norrlöf’s result in [5]. The derivation
of (21) can be found in [22].

For further analysis, we consider the case for which we
choose W∆u = 0, only penalizing the tracking error. This
represents the scheme as proposed by Schoellig et al. [8]
without the ‘soft’ constraints. For this case, (21) is

vj+1 = −F̃−1d̂j+1. (22)
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For the jth iteration this can be transformed to F̃vj =
−F̃F̃−1d̂j = −d̂j . Plugged into the estimation rule (9), we
get

d̂j+1 = d̂j + Kj,Kej , (23)

from which we can derive a non-recursive equation for d̂j+1:

d̂j+1 =
∑j
i=0 Kj,Kei, (24)

where we set d̂0 = 0, assuming that the nominal system
model holds the best possible guess for u0. Furthermore, we
can write

vj+1 = −F̃−1d̂j+1 = −F̃−1
∑j
i=0 Kj,Kei, (25)

Note that we refer to a given iteration-dependent sequence of
gains as Kj . Such a sequence can always be interpreted as
optimal Kalman gains obtained from a Kalman filter (Kj,K),
see Remark 1.

III. COMPARISON OF THE ILC ALGORITHMS

The goal of this section is to understand the similari-
ties and differences of the ILC algorithms introduced in
Section 1. In particular, we are interested in understanding
how the K-ILC scheme compares to the widely-used QILC
and E-QILC schemes. Although only iteration-constant gains
Kj = K have been proposed for E-QILC, we generalize it
to Kj for comparison.

A. Equivalency of K-ILC and E-QILC

Proposition 1. For equal choice of gain matrices Kj , j =
{0, 1, 2, . . . } and cost function (14), the predicted errors ēj+1

and inputs uj+1 are identical for K-ILC and E-QILC for all
j = {0, 1, . . . }.

Proof. The prediction of the next iteration’s error for the
E-QILC and K-ILC approach from Section II are:

E-QILCēj+1 = F̃∆vj+1 + êj ,

K-ILCēj+1 = F̃vj+1 + d̂j+1.

Rearranging the prediction of the K-ILC algorithm, we get
K-ILCēj+1 = F̃vj+1 + d̂j+1 = F̃(vj+1 − vj + vj) + d̂j+1

= F̃∆vj+1 + F̃vj + d̂j+1.

The new formulation suggests the equivalency of E-QILCêj =
F̃vj+d̂j+1. To prove this assumption we substitute E-QILCêj
in the E-QILC estimation step (6), using ∆uj = ∆vj :

d̂j+1 + F̃vj = (I−Kj,K)((d̂j + F̃vj−1)+F∆vj)+Kj,Kej

⇔ d̂j+1 = d̂j −Kj(d̂j + F̃vj − ej).

After some transformation and assuming matching initial
conditions, i.e. K-ILCd̂1 = E-QILCê0

2, the estimation step
is identical to (9). With the prediction used for the cost
function being equal, the two algorithms become identical
for equivalent cost functions.

2The index difference is only a definition issue as we stick to Lee’s et
al. definition [7].

Interpretation: Although both ILC schemes are based
on different approaches, the formulation is equivalent for
equal, arbitrary filter gains Kj and cost function. Although
in literature, different cost function have been used, their
generalization accounts for both E-QILC and K-ILC. When
studying the influence of the choice of Kj and cost functions
Jj+1, the findings are hence valid for E-QILC as well as K-
ILC. In the following, we will thus only refer to the K-ILC
algorithm for the comparison (see also Remark 1).

B. Comparing K-ILC and QILC with Identical Cost Func-
tions
Proposition 2. Choosing Kj = I ∀j in the K-ILC estimation
steps, the resulting K-ILC algorithm is identical to the QILC
approach given equal cost functions (14).

Proof. The equivalency of K-ILC and E-QILC being proven,
comparing QILC to the E-QILC estimation covers both
cases. Setting Kj = I in the estimation rule (6), we get
êj = ej . The estimation for the error becomes thus the last
measured error. Plugged into the prediction step of E-QILC,
êj + F̃∆uj+1 = ej + F̃∆uj+1, which is identical to the
QILC prediction, see (4).

Interpretation: Any arbitrary QILC algorithm is thus a
special case of the K-ILC approach with iteration-constant
gain Kj = K and equal cost functions.

Proposition 3. A system that has negligible output noise, i.e.
Hj ∼ 0 ∀j results in an optimal Kalman gain Kj = I ∀j.

Proof. If we analyse the Kalman filter equation in (11), we
see that the gain matrix is Kj = I in the case of Hj+1 =
0 or, more generally, Hj+1 � Pj + Ej such that (Pj +
Ej)(Pj + Ej + Hj+1)−1 ' I.

Interpretation: If the output noise is zero, i.e. Hj = 0, the
Kalman filter completely trusts the measurements, resulting
in Kj ' I. The covariance Hj models measurement and
process noise. We conclude from Proposition 2 and 3 that
QILC can be interpreted as a special case of the K-ILC
algorithm assuming zero output noise.

C. Comparing QILC and K-ILC with Typical Weighting
Matrix Choice

Note that all statements made in Section III-B are valid
for general cost functions (14) (and even for (12)). In the
following, we will consider (14) with typical weighting
matrix choice as found in literature. In particular, for the K-
ILC, a standard choice is K-ILCW∆u = 0. The idea behind
it is that W∆u takes the role of a noise filter in QILC
by minimizing the change in input based on the current
error signal. Thus, in the QILC algorithm, the cost function
couples filtering and input update. In order to compare QILC
and K-ILC in this context, we make use of the two explicit
formulas for the updated input uj+1, (17) and (25):

QILCuj+1 = unom −
∑j
i=1

QILCLej ,

K-ILCuj+1 = unom −
∑j
i=1

K-ILCLej .
(26)
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Assuming that we choose the same initial guess and nominal
input unom, the two approaches only differ in terms of QILCL
and K-ILCL:

QILCL = (W∆u + F̃TWeF̃)−1F̃TWe,

K-ILCL = F̃−1Kj .

(27)

We can compare both algorithms by analyzing the two matri-
ces, QILCL and K-ILCL. Note that we have two matrices We

and W∆u to define QILCL and, therefore, some redundancy.
In fact, we can set We = I without loss of generality. For
K-ILC, the influence of We has cancelled out.

Lemma 1. By choosing the design parameters of the K-
ILC algorithm (11) to be P0 = p0X,Hj = ηX,Ej =
εX; p0, η, ε ∈ R for arbitrary X (commonly, X = I), the
Kalman gain Kj,K is diagonal and of the form Kj,K = λjI.

Proof. Plugging P0 = p0X,Hj = ηX,Ej = εX into the
Kalman gain equations (11), we see that Pj and Sj are of
the form ψX, ψ ∈ R, , and hence Kj,K = λjXX−1, i.e. a
scaled unity matrix.

Interpretation: If Hj ,Ej ,P0 are modelled to be struc-
turally similar – that is, they are scaled versions of an
arbitrary matrix X – each iteration’s gain Kj,K is diagonal
(Kj,K = λjI).

Proposition 4. For any given QILC with weightings as
in (14), there exists a corresponding, general estimation
gain Kj resulting in an equivalent K-ILC algorithm with
W∆u = 0 in the cost function (14), i.e. a cost function as
in (18).

Proof. Following directly from the equations (27), we can
set QILCL = K-ILCL and solve for Kj :

Kj = F̃(W∆u + F̃TWeF̃)−1F̃TWe. (28)

Interpretation: The intuitive explanation is as follows: the
component penalizing ∆uj in the QILC cost function (14)
takes a similar role as the filter in the K-ILC algorithm.
However, while in the K-ILC algorithm the filter properties
can be separately designed via the initial covariance P0,
Hj , and Ej , the QILC scheme combines filtering and input
update in one optimization step. In addition, the filtering in
the K-ILC case is designed to be iteration-varying allowing
fast adaptation initially and rejecting noise in later stages. In
the QILC case, the ‘filtering’ via W∆u is kept constant. Note
also that this proof assumes no soft or hard input constraints
and the squared 2-norm in the cost function.

We can also turn around the argument to determine the
QILC weightings depending on Kj :

Proposition 5. For any K-ILC with gain matrix Kj,K and a
cost function as in (18), we can find a QILC set of weighting
matrices We and W∆u that results in an equivalent behavior
for that specific iteration j.

Proof. Solving (28) for W∆u results in

W∆u = F̃TWe(K
−1
j,K − I)F̃. (29)

One sees that we can find a matching W∆u for any arbitrary
We. The choice of We is, in fact, redundant for QILC (given
it is positive definite) and is usually set to We = I.

Interpretation: One can now find a QILC equivalent for
every possible Kj,K, i.e. for every j-th iteration of one
learning process. Hence it is possible to compare the initial
and converged behaviour of K-ILC with an analogous QILC.
Such a comparison is found in Section IV.

From Proposition 5 we can derive the formula for the
common case of diagonal Kj = λjI, λj ∈ R: From (29)
we derive W∆u =

1−λj

λj
F̃TWeF̃.

D. K-ILC Convergence Behavior

Using a Kalman filter, a model inversion input update
occurs in two practical cases: first, if there is negligible
output noise (Proposition 3) and second. at initial iteration
steps. As for initially unknown disturbances (i.e. unmodelled
dynamics or exogenous disturbances) a large initial state
uncertainty P0 � H1 is assumed. This leads to an identity
matrix as initial gain, K0 = (P0 +E0)(P0 +E0 +H1)−1 '
(P0 + E0)(P0 + E0)−1 = I, and a model inversion for the
first update step (see (27)). The gain quickly converges to
K∞ during the following iterations, as the static errors are
expected to be corrected immediately.

For both cases, a model inversion makes sense as the out-
put noise is negligible versus the modelled state uncertainty
Pj . Hence, an estimator cannot filter any further information.

As discussed above, the Kalman filter equations (11)
provide optimal, iteration-varying gains, which change the
characteristics of the learning scheme over the course of a
learning experiment. The case of a large P0 is common in
practice, where the modelling errors are the largest source
of uncertainty, which result in high initial errors that can be
quickly compensated for with a model inversion.

IV. SIMULATION EXAMPLE

In the simulation we compare a K-ILC and a QILC algo-
rithm applied on a mass-spring-damper system (see Fig. 2).
For comparison we also include the QILC equivalent of both
the initial and converged K-ILC algorithm, highlighting the
findings of the previous section.

A. Nominal Model of the Mass-Spring-Damper System

We consider a classic 1-D mass-spring-damper system
with the equations of motion,

ẍ = F/m− d

m
ẋ− c

m
x, (30)

where we neglect the damping and spring in our nomi-
nal model; i.e. c = d = 0 and the force is the applied
input F/m = γu. Discretized with a zero-order hold and a

3594



m

x

F
d

c

Fig. 2. We use a mass-springer-damper system with the input force F as
our simulation example.

sample time Ts, we obtain the following discrete-time system
as the nominal model:

x[k + 1] =

[
1 Ts
0 1

]
x[k]+

[
T 2
s /2
Ts

]
u[k]

y[k] =
[
1 0

]
x[k]+

[
0
]
u[k],

(31)

where x[k] ∈ R2 represents position and velocity at time
kTs. This model is used in the learning algorithms in the
iteration-domain matrix F̃, refer to [20] on how F̃ is
obtained from (31).

B. Real System Dynamics of the Mass-Spring-Damper

To show the effect of the learning, we choose the ‘real’
(i.e., simulated) dynamics to be different from the nominal
model. We add the spring and damper constants as follows:
c/m = α, d/m = α/10.

For the simulation of the ‘real’ system we also use a zero-
order-hold discretization. We set α = 0.01 and γ = 0.9 and
simulate over N = 160 time steps. Note that only the ‘real’
system with α 6= 0 is asymptotically stable, whereas (31)
has two eigenvalues at 1. As additional disturbances, we
add both a static disturbance dstatic[k] = 0.2 sin2( 4πk

N ) and a
Gaussian noise with N ∼ (0, σ) to the output signal y[k].
The desired trajectory is set to yd[k] = sin2(k 2π

2N ).

TABLE I
PARAMETERS USED FOR SIMULATIONS AND CONVERGED ERROR.

W∆u We ‖e∞‖σI=0.1 ‖e∞‖σII=0.01

K-ILC 0 I 0.1201 0.0115
QILC 0.3I I 0.1159 0.0114

QILC-c λ∞F̃TF̃ I 0.1197 0.0117
QILC-i 0 I 0.1482 0.0152

K-ILC P0 = 100I, Hj = 0.1I, Ej = 0.001, λ∞ = 0.095

C. Simulation Results and Discussion

Four different learning algorithms are studied. All use
the same linear, discrete-time model F̃ based on (31). The
learning parameters are chosen as stated in Table I. We
test two different scenarios with different noise variances
σI = 0.01 and σII = 0.1. To compare the algorithm’s
behavior we plot the evolution of each learning iteration’s
error 2-norm. Also, we average over 120 repetitions of the
entire learning process to reduce the noise influence. The
first input guess u0 = unom is the nominal input given by
the model inversion F̃−1yd = unom.

The results are:

Iteration steps

MNG 4f 2008

‖e
j
‖ 2

← converged K-ILC equivalent

0 5 10 15 20 25 30
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0.2

0.4

0.6

0.8

1
K-ILC
QILC
QILC-i
QILC-c

Fig. 3. Average errors of the K-ILC, QILC and model inversion (QILC-i)
algorithms with a white output noise with variance σI = 0.01.

K-ILC: The estimation-based learning algorithm is used
with optimal Kalman gains based on diagonal covariance
matrices for the modelled stochastic variables similar to [8],
see Table I. We see fast convergence initially and good noise
rejection after convergence for both small and large noise
variance σI and σII , see Figures 3 and 4. In Table I we
further list the converged error norm ‖e∞‖2. The converged
error norm was approximated by the average error norms of
iterations 190 to 200. Note that the mean (in contrast to the
norm of the simulated converged errors) have all magnitudes
of the order 10−6 and suggest that the error has no significant
bias.

QILC-i: Introduced as a special case of QILC (19), we
now can interpret the model-inversion learning as a special
case of K-ILC for output noise modeled to be negligible
(see interpretation of Proposition 3). In both cases, Figures
3 and 4, the initial convergence rate of QILC-i is very
high. Note that the initial behavior of K-ILC with high P0

approximates QILC-i. Especially for the larger amplitude
noise σII = 0.1 the high error sensitivity of QILC-i produces
the worst converged performance.

QILC: QILC uses parameters as commonly chosen in
literature, cf. [7], [23]: a unit weighting for the error and
a scalar factor for the input change penalization, see Table I.
The algorithm performs decently for large noise levels; the
slow convergence rate is significant for the small noise
amplitude case.

QILC-c: QILC-c uses parameter values that are equiva-
lent to the converged K-ILC, K∞,K = λ∞I according to
Proposition 4. The converged λ∞ can be found by simulation
or analytically, see [22]. Though robust for noise, it has a
very slow learning rate performing badly for initial large
disturbances.

V. CONCLUSION

In a first step, we proved the equivalency of both
estimation-based ILC algorithms, K-ILC as presented by
Schoellig et al. [8] and E-QILC as proposed by Lee et al. [7].
We demonstrated that for equal cost functions, the learning
behavior is defined by the choice of gains Kj .

By comparing QILC and K-ILC we further demonstrated
that QILC can be viewed as a special case of a generalized
estimation-based algorithm with Kj = I. We compared the
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Fig. 4. Average error of the K-ILC, QILC and model inversion (QILC-i)
algorithms with a white output noise with variance σII = 0.1.

initial and converged K-ILC behavior to the corresponding
QILC choice (refer to both Sections III and IV), and saw
that an optimal Kalman gain results in an iteration-varying
learning action – even for a basic stochastic model with
iteration-constant diagonal covariance matrix. The resulting
learning performance is improved, as it changes from fast
convergence and high sensitivity (model inversion) for the
initial iterations to less sensitive converged K∞,K.

The estimation gain evolving over the iterations of a
learning experiment allows optimization of the scheme for
initial as well as converged behavior. With that, it also
improves the general robustness towards uncertainties, as it
performs well for small noise σI (see Fig. 3) and larger
noise σII (see Fig. 3 and 4).

For QILC, the lack of general design rules for the weight-
ing matrices make a trial-and-error tuning necessary. Com-
pared to that, for the estimation-based ILC using Kalman
filters the stochastic model provides tuning parameters that
have an intuitive interpretation and that can incorporate
known noise information; for example, information about the
expected noise frequencies.
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[3] S. Gunnarsson and M. Norrlöf, “On the design of ILC algorithms
using optimization,” Automatica, vol. 37, pp. 2011–2016, 2001.

[4] D. Owens and J. Hätönen, “Iterative learning control – an optimization
paradigm,” Annual Reviews in Control, vol. 29, no. 1, pp. 57–70, 2005.
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