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Abstract. In this paper we present a dynamic programming formula-
tion of a hybrid optimal control problem for bimodal systems with re-
gional dynamics. In particular, based on optimality-zone computations,
a framework is presented in which the resulting hybrid Bellman equation
guides the design of optimal control programs with, at most, N discrete
transitions.

1 Introduction

Optimal control of hybrid systems is certainly not a new topic. For example,
the hybrid maximum principle has been well-studied [3,6], and the community
now has a clear grasp of what constitutes necessary optimality conditions for
very general classes of hybrid systems. Moreover, a number of results of a more
computational flavor have complemented the work on the maximum principle,
in which specialized classes of systems are considered. (See for example [1,4,7].)

The contribution in this paper fits squarely in between the hybrid maximum
principle work and the more computationally flavored work, in that we produce
a Bellman equation for hybrid systems, along the lines of [2,5], that can be easily
solved once a so-called optimality zone computation has been performed to seed
the computation.

2 The Bimodal Hybrid System

2.1 Geometric Framework

Given two open, connected, and simply connected regions D1, D2 such that
D1 ∩D2 = ∅, forming a partition of the compact state space X in the sense that
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X = (D1 ∪ ∂D1) ∪ (D2 ∪ ∂D2), where the boundaries ∂D1, ∂D2 are assumed to
be finite unions of closed, smooth codimension one submanifolds of X .

The vector fields fi(x, u), i = 1, 2 associated with each region are further
assumed to satisfy a transversality condition in the sense that for i = 1, 2, (i)
the vector field fi(x, u) is non-tangential to the boundary ∂Di at any point in
the relative interior of each component of Di; (ii) at points x on ∂Di at which
smooth components intersect, the vector field fi(x, u) is non-tangential to each
of the tangent spaces of the intersecting components, for all control values.

2.2 Specifications of Executions

The controlled continuous dynamics of the bimodal hybrid system in any of the
two regions, on any bounded time interval, are given by:

ẋ(t) =
{

f1(x(t), u(t)), x(t) ∈ D1
f2(x(t), u(t)), x(t) ∈ D2,

x(0) ∈ D1 ∪ D2,

where fi is continuously differentiable in x (for all u) on the closure of Di, i = 1, 2
(and hence uniformly continuous and uniformly Lipschitz in x on the closure of
Di) for each i. The solutions are interpreted in the Caratheodory sense, and the
initial condition x(0) of an admissible execution satisfies x(0) ∈ D1 ∪ D2.

3 Optimal Control Formulation

3.1 The Hybrid Bellman Equation

Given an initial condition x(0) ∈ Di, the control input u ∈ U gives rise to a tra-
jectory xu passing through a sequence of N regions (regions 1 and 2 repeatedly).
We let i(xu) denote this index, i.e. i(xu) = N . Corresponding to this index there
is an ordered set of half open intervals {[tik

, tik+1); 0 ≤ k ≤ N − 1}, such that
xu(t) ∈ Di for t ∈ [tik

, tik+1).
The hybrid optimization problem addressed in this paper is the following:

PN : inf
u∈U

∫ T

0
�(x(t), u(t))dt

subject to the constraints that ẋ = fi(x, u) (when x ∈ Di), x(0) = x0, x(T ) =
xT , and |i(xu)| ≤ N, for a given upper limit on the total number of switches
N ≤ ∞.

Given x1, x2 ∈ Di we let ci(x1, x2, Δ) denote the infimum of the costs asso-
ciated with driving the system from x1 to x2 during a time horizon Δ without
leaving Di (except possibly at time 0 or Δ). Our ambition is to produce a hy-
brid Bellman equation describing the cost-to-go dynamics, and for this we define
V M

i (x1, τ) as the cost of going from x1 to xT in time τ , using exactly M switches,
starting with mode i. In other words, by defining the complementary indicator
ic as ic = 2 if i = 1 and ic = 1 if i = 2, we get

V M
i (x1, τ) = inf

t∈[0,τ ],x2∈∂D
{
ci(x1, x2, t) + V M−1

ic (x2, τ − t)
}

.



658 P. Caines et al.

This relation holds as long as M ≥ 1. If M = 0 then we get the following direct
simplification

V 0
i (x1, τ) = ci(x1, xT , τ).

It should be noted already at this point that V M (x1, τ) = ∞ for all τ if M is
even and x1 and xT belong to different regions, or if M is odd and they belong
to the same region.

Since we do not want to insist on an a priori given number of intersections of
the switching surface ∂D, we need to relate V N to the original problem. If we let
x0 ∈ Di then the optimal cost associated with the original problem WN

i (x0, T )
is given by

WN
i (x0, T ) = min

0≤k≤N
V k

i (x0, T ).

3.2 Optimality Zones

The Bellman equation from the previous section immediately allows an inter-
pretation in terms of optimality zones [3]. In fact, it can be noted that except
for the initial and final pieces of the trajectory, from x0 to the first intersection
of the switching surface and from the last intersection to xT , the trajectory is
simply given by a concatenation of trajectories from points on the switching
surface. This observation leads to a computational framework in which a large
computational burden is needed initially when preparing the so-called optimality
zones, but once that price is paid, fast solutions are possible.

4 Examples

We first consider an example in which a planar system x ∈ R
2 is driven be-

tween the boundary points x(0) = (−1, 0)T , x(T ) = (1, 0)T , under the system
dynamics

ẋ =

⎧⎪⎪⎨
⎪⎪⎩

(
−0.3 0.05
−0.5 0

)
x +

(
0.1
1

)
u,

(
1 1

)
x < 0(

0.8 1
−3 −5

)
x +

(
−0.3

3

)
u,

(
1 1

)
x > 0.

Moreover, the final time is T = 1, with the maximum number of intersection
being given by N = 20.

The numerical solution is obtained by discretizing the area over which the
optimality zone is computed, and we let the space-time domain be discretized
into 50 temporal steps (over (0, T )) and 40 spatial steps (over each dimension of
the state space.) The particular cost function under consideration is the control
energy of the control signal (in the L2-sense), and the resulting optimal solution
is given in Figure 1a. In this case, the optimal solution was obtained when only
one crossing of the switching surface took place, with the corresponding optimal
cost being W 20

1 (x0, 1) = V 1
1 (x0, 1) ≈ 22.91.
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Fig. 1. One switch is optimal (a). Three switches are optimal (b).

In order to highlight the fact that multiple switches may be to prefer, we now
consider another linear situation in which

ẋ =

⎧⎪⎪⎨
⎪⎪⎩

(
ε11 ω1
−ω1 ε12

)
x +

(
0
1

)
u,

(
1 1

)
x < 0(

ε21 ω2
−ω2 ε22

)
x +

(
0
1

)
u,

(
1 1

)
x > 0.

In fact, by making εij small, we have a (slightly disturbed) oscillation in the
system and if we let ω1 = π/4, ω2 = π/2, T = π/2ω1+π/2ω2+3π/2ω1+π/4ω2 =
9.5, we get that, using the initial and final conditions x0 = (−1/2, 0)T , xT =
(1/

√
8, 1/

√
8)T , a zero control effort would result in a three-switch situation if

ε = 0. Using exactly the same numerical parameters and costs as in the previous
example, with small but non-zero εij , we still get that the three switch-situation
is optimal, as seen in Figure 1b, with W 20

1 (x0, 9.5) = V 3
1 (x0, 9.5) ≈ 0.014 <

V 1
1 (x0, 9.5) ≈ 0.043.
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