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Abstract

Background—Public access defibrillation programs can improve survival after out-of-hospital 
cardiac arrest (OHCA), but automated external defibrillators (AEDs) are rarely available for 
bystander use at the scene. Drones are an emerging technology that can deliver an AED to the 
scene of an OHCA for bystander use. We hypothesize that a drone network designed with the aid 
of a mathematical model combining both optimization and queuing can reduce the time to AED 
arrival.
Methods—We applied our model to 53,702 OHCAs that occurred in the eight regions of the 
Toronto Regional RescuNET between January 1st 2006 and December 31st 2014. Our primary 
analysis quantified the drone network size required to deliver an AED one, two, or three minutes 
faster than historical median 911 response times for each region independently. A secondary 
analysis quantified the reduction in drone resources required if RescuNET was treated as one 
large coordinated region. 
Results—The region-specific analysis determined that 81 bases and 100 drones would be 
required to deliver an AED ahead of median 911 response times by three minutes. In the most 
urban region, the 90th percentile of the AED arrival time was reduced by 6 minutes and 43 
seconds relative to historical 911 response times in the region. In the most rural region, the 90th

percentile was reduced by 10 minutes and 34 seconds. A single coordinated drone network 
across all regions required 39.5% fewer bases and 30.0% fewer drones to achieve similar AED 
delivery times.
Conclusions—An optimized drone network designed with the aid of a novel mathematical
model can substantially reduce the AED delivery time to an OHCA event. 

Key-Words: emergency medical services; cardiac arrest; automated external defibrillator;
Drones, Optimization

eco ds e a ve o s o ca 9 espo se es e eg o . e os u a eg o , e 90
percentile was reduced by 10 minutes and 34 seconds. A single coordinated drone e nenenetwtwwororo k kkd
across all regions required 39.5% fewer bases and 30.0% fewer drones to achieve sssimimimilillararar AAAEDEDED 
delivery times.
Conclusions—An optimized drone network designed with the aid of a novel mathematical
model can substantially reduce the AED delivery time to an OHCA event. 
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Clinical Perspective

What is new? 

We demonstrate, using data from over 50,000 historical OHCAs covering over 26,000 

square kilometers in Ontario, Canada, that a theoretical drone network designed with the 

aid of a mathematical model has the potential to significantly reduce the AED delivery 

time for bystander use.

We found that a drone network designed to reduce the median AED arrival time by 3 

minutes relative to the historical 911 response, also reduced the 90th percentile of the 

AED arrival time by between 6 minutes and 43 seconds (most urban region) and 10 

minutes and 34 seconds (most rural region). 

What are the clinical implications? 

Drone-delivered AEDs have the potential to be a transformative innovation in the 

provision of emergency care to cardiac arrest patients, especially those who arrest in a 

private or rural setting. 

Drones require careful integration with 911 response and future clinical research is 

needed to understand the challenges associated with implementation and to determine the 

cost-effectiveness of such a system.

What are the clinical implications? 

Drone-delivered AEDs have the potential to be a transformative innovation iin the 

provision of emergency care to cardiac arrest patients, especially those who arrest in a 

prprprivivvatatateee or rrruuru al setting. 

Drones reququiree cacacarerer fuuull l inininteetegrgrgratioion withhh 9911 ressspopoponsnsnseee anana d d fuufututuree clinininicacacall rereresess arrchchh iiisss

neededd tttooo unundeerrstandndnd the challenenges asssociiaateddd wwwititith hh imimi plemementatationon and tooo dddeeteerminee tthe

cococoststst--efefefffef cttivivenneess off sssucucuchh h a a a syssyststtememem.
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Introduction

Public access defibrillation programs have demonstrated that significant improvements in 

survival from out-of-hospital cardiac arrest (OHCA) are possible, with the majority of the 

survival advantage accruing to patients who arrest in public settings.1-3 However, the majority of 

OHCAs occur in private settings4, 5 with correspondingly slower emergency response times,5-7

especially in rural settings. While deployment of automated external defibrillators (AEDs) may 

be cost-effective in certain public venues,8, 9 especially if locations are optimized,10 static AEDs 

deployed broadly for use in private OHCA emergencies are unlikely to be cost-effective.7, 11, 12

There is a fundamental coverage limit of cardiac arrest risk that cannot be overcome using static 

AEDs alone.13 Moreover, in part due to access and availability issues,14 static AEDs have low 

utilization historically.15 Improving AED access and reducing the time to defibrillation are

important for improving survival from OHCA. Thus, a new approach is necessary to make a 

significant impact in OHCA survival, especially for rural and private locations. 

Recently, several companies and researchers have developed prototype drone technology 

that can be used to deliver AEDs to the scene of a cardiac arrest.16, 17 Google has successfully 

obtained a patent for drone delivery of medical supplies including AEDs.18 AED delivery is only 

one of the many proposed applications for drones, formally known as unmanned aerial vehicles. 

Companies have proposed to use drones to deliver everything from pizza19 to official 

documents20 to medicine.21, 22 Although there are technical challenges to overcome, drone-

delivered AEDs are a potential transformative innovation in the provision of emergency care to 

cardiac arrest patients, especially to those who arrest in a private or rural setting.

 The goal of this study is to determine if a drone network designed with the aid of a 

mathematical model combining both optimization and queuing can reduce the time to AED 

AEDs alone.13 Moreover, in part due to access and availability issues,14 static AEDEDs s s hahhavevev lllowowow 

utilization historically.15 Improving AED access and reducing the time to defibrillation are

mportant for improving survival from OHCA. Thus, a new approach is necessary to make a 

ignnififificant impapapact iiin nn OHOHOHCACACA sssurururvivivivavaval, eesps ecialllll y y fforr ruuurararal l l ananand dd prprivivvatata ee loocac tiononons.s.s.

Recentttlylyly, seseveeraal cooommpm anies anndd reseaara ccherers hahahaveveve ddeveveloppeed prorotoootytyt pe drooonne teechnollogy

hat can be used to ded lil ver AEDs to the scene off a cardiac arrest.16166, 177 Google has successfully 
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arrival. Our mathematical model determines, for a given geographical area, the number and 

location of drone bases, along with the number of the drones required at each base, to meet any 

specified AED arrival time goal. We applied our model to a large area composed of rural and 

urban regions surrounding Toronto, Canada and quantified the size of the drone network required 

to achieve AED arrival times that improve upon historical 911 response times. We determine the 

reduction in time to AED arrival, relative to 911 first responders, by using drone networks 

determined by our model to deliver an AED for bystander use. 

Methods

Study setting

The Toronto Regional RescuNET comprises eight regions in Southern Ontario, Canada: Toronto, 

Durham, Simcoe, Muskoka, Peel, Hamilton, Halton, and York, with a total population of 7.12 

million in a total area of 26,364 km2. Each region is served by a single paramedic service, though 

neighboring services may respond to emergencies if they are closer. There is a tiered response to 

emergency calls, where fire fighter first responders are dispatched to all suspected OHCAs along 

with paramedics.

Data Sources

Cardiac arrest episodes 

All non-traumatic, private and public, treated and untreated OHCA episodes throughout 

RescuNET from January 1st 2006 to December 31st 2014 were included in the study. Data was 

obtained from the Rescu Epistry cardiac arrest database,23, 24 which has research ethics board 

approval from all destination hospitals and from the institution providing oversight to the 

paramedic and fire services. Universal Transverse Mercator (UTM) coordinates were determined 

Study setting

The Toronto Regional RescuNET comprises eight regions in Southern Ontario, Canada: Toronto

Durham, Simcoe, Muskoka, Peel, Hamilton, Halton, and York, with a total population of 7.12 

millliooon in a totatatal ararareaee oof f f 262626,3646464 kkkmmm2. EaEach regggioioon iss serererveveved d d bybyb a a ssis ngngn lee pparamammedededicicic serviviv cecece, ,, thththouoo gh

neiggghhbh oring seeervvviccees mam y reeessps ond to emem rgennnciiess iif thththeyeyey aaree ccloseser. Thehereee is a tierrredde rreesponsse to

emergency calls, wheh re fire fighter first responded rs are dispatcheh d to alll suspected OHCHCAs allong
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for each episode after applying various geocoding techniques (Supplemental Figure 1). Cardiac 

arrests that could not be accurately geocoded due to lack of sufficient location information were 

excluded.

Candidate base locations 

All fire, paramedic, and police stations within RescuNET were considered as candidate drone 

base locations. Addresses for each station were obtained from the regional provider and 

converted to UTM coordinates.

Drone specifications 

Drone parameters used in our model were based on specifications reflecting current 

technological capabilities. Vertical acceleration/deceleration was set to 9.81 m/s2 while 

horizontal acceleration/deceleration was set to 19.6m/s2.25, 26 Horizontal acceleration/deceleration 

is done simultaneously with vertical deceleration (Supplemental Figure 2). Maximum forward 

velocity was set at 27.8 m/s.16 Flying height was assumed to be 60 m, which is below the 

maximum height allowed in Canada.27, 28 Accounting for maximum speed and height, 10 seconds 

is required for takeoff and landing. The maximum distance a drone can reach – it’s “radius” – is 

determined using the average regional dispatch time and the maximum flying time used in the 

optimization model (see Supplemental Methods).

Model

For each region, the OHCA data was split into two disjoint sets of equal size: a training set and a 

testing set. The training set was used as the input into our models while the testing set was used 

to evaluate the performance of the theoretical drone networks. 

Our modeling approach consisted of two stages. The first stage used an integer 

optimization model (Supplemental Methods) to determine the minimum number and location of 

echnological capabilities. Vertical acceleration/deceleration was set to 9.81 m/sa 2 whwhwhilililee

horizontal acceleration/deceleration was set to 19.6m/s2.25, 26 Horizontal acceleration/deceleration

s done simultaneously with vertical deceleration (Supplemental Figure 2). Maximum forward 

veloociccity was setetet at t t 2722 .8.88 mmm/s/ss.16 FFFlylyyinining gg heheight wwwasa aasssummmededed tttooo bebe 6660 00 m,m wwhichhh iiisss bebebeloll w ththheee

maxixiximum m heiggghthh aalllowwed inn n CaC nada.27, 228 Accououo nttinng g g fofoforrr mamaxximuumm sppeedd d aana d heiggghht,, 110 secononds

s required fof r takeoff f and landing. The maximum did stance a drone can reachh – it’s “radid us” – isi  
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drone bases, chosen from the set of candidate base locations, required to improve the historical 

median response time by one, two, or three minutes. The coverage radius for each potential base 

was determined using the average regional dispatch time and the maximum flying time used in 

the optimization model (see Supplemental Methods). Each base defined a catchment area 

through its coverage radius and we treated each catchment area independently in the second 

stage.

Once the base locations were determined by the optimization model, the second stage 

used a queuing model (Supplemental Methods) to determine the number of drones to be 

stationed at each base so there is a 99% chance a drone is free when an OHCA occurs inside that 

base’s catchment area. The calculation is specific to each base, requiring two inputs: an average 

rate of OHCA occurrences in each catchment area and an average time interval between 

successive mission departures for the same drone (“drone busy time”). We calculated a separate 

rate of OHCA occurrences for daytime (8:00AM–7:59PM) and night time (8:00PM–7:59AM),29

and we used the daytime rate in the queuing model. The time interval required between 

successive departures by the same drone – drone busy time – comprises the outbound travel time, 

on-scene time, inbound travel time, and “reset” time. Supplemental Table 1 displays each of 

these computed time intervals. Figure 1 summarizes the relevant time intervals in the 

operationalization of the drone response. 

Analyses 

Primary analysis: Delivery of drone AEDs prior to 911 responder arrival 

We determined the historical median and 90th percentile 911 response times (i.e., dispatch plus 

drive time) from the training OHCA data for each region. For each region independently, we use 

our two-stage (optimization and queuing) approach to find the region-specific drone network that 

base’s catchment area. The calculation is specific to each base, requiring two inpuutstss::: anann aaavevev rararagegg  

ate of OHCA occurrences in each catchment area and an average time interval between 

uccessive mission departures for the same drone (“drone busy time”). We calculated a separate 

ateee ooof OHCA A ooco cucucurrenene cececesss fororor dddayayaytititimee ((8:00AMAMAM–7–7:59P9P9PM)M)M) aaandndn nnniggghtht titimem (((8:8:8:000000PMPMPM–777:5:559A9A9AM)M)M),29

and d d wwew  used thhhe e e dayytimme ratetete in the qqueeuuing mmmoodeel. ThThThee e tititimeme intererval rerequuuiiri ed betweww enen 

uccessiive ddepartures byb  the same drone – ddrone bbusy time – comprises the outbboundd travel time
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improves the median regional 911 response time by at least one minute; we repeated this process 

for two and three minutes. For each combination of drone response time improvement goal (one, 

two and three minutes faster than the median 911 response time) and region, we quantified the 

number of bases and drones required. Using the out-of-sample testing set OHCAs, we 

determined the response time distribution of the optimized drone network. We also determined 

the response time distribution of the combined drone and 911 network, by taking the minimum 

of the drone response time and historical 911 response time for each cardiac arrest. Finally, we 

calculated the proportion of testing set OHCAs in which the drone response time was shorter 

than the 911 response time.

Secondary analysis: The value of centrally coordinated drone response across regions 

We repeated the primary analysis treating RescuNET as one large, integrated region. We 

computed the same metrics as in the primary analysis. To quantify the value of coordination, we 

computed the difference in the number of bases and total drones required by the “region-

specific” versus the “integrated” network.  

Statistical analysis 

We use a right tailed Sign Test to determine if the observed median response time reductions 

were statistically significant at the 0.05 significance level. To do this, we tested the null 

hypothesis that the difference between the historical 911 response time distribution and the 

estimated response time distribution of a combined 911 and drone network had a zero median.

Sensitivity analysis 

Variability in the drone busy time will influence the number of drone resources suggested by the 

mathematical model. To determine the impact of possible changes in drone busy time, we 

conducted a sensitivity analysis by varying the overall busy time by ±15 and ±30 minutes.  

Secondary analysis: l The value of centrally coordinated drone response across regegioioonsnsns 

We repeated the primary analysis treating RescuNET as one large, integrated region. We 

computed the same metrics as in the primary analysis. To quantify the value of coordination, we

compmpmputed the dddiiiffefefererr ncncn e e e ininin thehehe nnnumumumbebb r r ofo  baseeess anndd tootatatal l l drdrdronono eses rerereququirrede  by y y thththe e e “rer giiononon---

pecccififi ic” versuusus thehe “inintegratatated” networork.  

Statistical analysis 
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Results

After geocoding and eliminating OHCAs with missing data, 53,702 OHCAs remained (96% of 

OHCAs occurring during the study time frame) for our analysis. The training and testing sets

both contained 26,851 OHCAs. Supplemental Table 2 provides information on historical 911 

response times and annual OHCA incidence.

 Table 1 provides a summary of the eight RescuNET regions. Figure 2 displays all 

geocoded cardiac arrests and the paramedic, fire, and police stations. A summary of the 

geocoding results is given in the Supplemental Material.

Table 2 shows the number of bases and drones in each region for both the region-specific

and integrated drone networks for each response time improvement goal, along with 

corresponding response time metrics. For example, to deliver an AED via drone one minute prior 

to 911 arrival on average, the region-specific network required 23 bases and 37 drones, whereas 

the integrated network required 15 bases and 28 drones. For the two- and three-minute goals, a 

reduction in drone bases (15.0% and 39.5% reduction, respectively) and number of drones 

(10.5% and 30.0%, respectively) was also observed in the integrated network. 

Figure 3 compares the region-specific and integrated drone networks for the one-minute 

improvement goal. In the region-specific network, there is broad geographical coverage across 

all regions. However, the integrated network chooses to concentrate most of the bases in the 

region surrounding the high cardiac arrest density areas (e.g., Toronto) in order to minimize the 

number of bases required. For example, in Figure 3, there are no drone bases located in 

Muskoka. Supplemental Figures 3 and 4 illustrate the drone network configurations for the two- 

and three-minute improvement goals.

and integrated drone networks for each response time improvement goal, along wiwiththh 

corresponding response time metrics. For example, to deliver an AED via drone one minute prior

o 911 arrival on average, the region-specific network required 23 bases and 37 drones, whereas 

he ininntegrated nenenetwwworoo k k k rereeququq irrededed 115 5 5 babb sees s and 282828 ddroonees.s.s. FoFoForr r thtt e e twtwtwoo-- anand thhhrereree-e-e-mimiminuteee gogogoalalalsss, a 

eduduucctc ion in drororonene bbassees (1555..0. % and 399..5% reeedducctiion,n,n, rrresese ppectctiveelyy) andnd nnnuumu ber offf drorones

10.5% and 330.0%,%  respectively) was also obsb erved d in the integrated network.k  
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Figure 4 compares the historical 911 response time distribution to the estimated response 

time distribution of a combined 911 and drone network in both Toronto and Muskoka, the 

regions with the highest and lowest population density, respectively. In both regions, we see a 

marked shift of the response time distribution to the left (i.e., toward shorter response times) as 

the response time improvement goal increases. For the three-minute goal in Toronto, the 90th

percentile of the combined 911 and drone response represents a 63.1% reduction of the 90th

percentile of the historical 911 distribution. In Muskoka, the corresponding reduction was 54.0%. 

Across all regions, adding drones results in a similar improvement (Supplemental Figures 5 to 

10).

Our statistical analysis found that for region-specific drone networks the reduction in 

median response time was statistically significant across all regions and all response time 

improvement goals. For the integrated drone networks, the reduction in median response time 

was statistically significant for all regions except Muskoka (1, 2, and 3 minute goal) and Halton 

(1 minute goal) 

 Table 3 summarizes our sensitivity analysis, which reveals that the drone busy time is 

critical in determining the drone network size. In particular, when the drone busy time is 

decreased by 30 minutes, almost all bases require only a single drone, except for the busiest 

bases in Toronto, which still require several. However, when the drone busy time is increased by 

30 minutes, then many regions, especially the denser ones, have bases requiring multiple drones, 

sometimes double the number from before. 

Our statistical analysis found that for region-specific drone networks the rrededducucuctiiiononon iiin n n

median response time was statistically significant across all regions and all response time

mprovement goals. For the integrated drone networks, the reduction in median response time 

wass ststs atisticallllyy y siiigngg iffficiccananantt fooorr r alala l l l rereregionons exceeeptp MMuskokokokakaka (((1,11 22,, ananand d 33 mim nunuutetete gggoaoaoal) aaandndd HHHalalaltotot n 

1 mmmiini ute goall)) )

TTable 3 summarizes our sensitiviti y anallysisi , which reveals that the drone busy time is
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Discussion

Main Findings

This study investigated the theoretical benefit of drone-delivered AEDs using a mathematical

model to optimize drone base locations and fleet size. The primary analysis determined the size 

and structure of the network needed to achieve AED delivery time improvement goals of one, 

two, and three minutes relative to historical median 911 response times in the Toronto Regional 

RescuNET. We found that drones not only improve the median time to defibrillator arrival on

scene, but reduce the entire response time distribution. Our statistical analysis found that all 

observed reductions in median response time greater than 13 seconds were statistically 

significant.

The secondary analysis demonstrated that the performance of an integrated drone 

network can achieve the same overall performance as eight independent regional networks but 

with substantially fewer resources. However, the trade-off for this efficiency gain was a loss in 

geographical coverage in more rural areas. For example, in certain regions and for certain 

response time improvement goals, there was near elimination of drone coverage, which 

illustrates the potential inequality that can arise between regions if we simply optimize for all of 

RescuNet as one integrated region. Such an efficiency-equity trade-off arises because the 

majority of OHCAs are concentrated in a few regions and our models optimize with respect to 

median response time; optimizing for the 90th percentile instead of the median would result in

more bases in rural areas.

Potential benefits

Drone-delivered AEDs have the potential to improve survival for patients with OHCA because 

the probability of ventricular fibrillation and survival decays with time.30 Our analysis has 
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demonstrated that, in theory, a drone network can be optimized to allow delivery of AEDs ahead 

of 911 response. Currently, less than 3% of all cardiac arrests have a public access defibrillator 

used.15 If drone networks are designed with the goal to deliver AEDs to every cardiac arrest in 

the region and achieve earlier defibrillation of patients with OHCA, then they are very likely to 

have a meaningful impact on cardiac arrest survival.

 There are numerous benefits to using drones to augment the current 911 system and static 

public access defibrillators. First, drones offer the potential to actively mobilize defibrillators 

along with the traditional 911 response. In contrast, the current approach to public access 

defibrillation is passive. Static defibrillators are deployed in the community with the hope that 

one is nearby when needed. Most communities do not have systems to mobilize public access 

defibrillators to the scene of an emergency in a targeted way. Second, drone technology offers 

many potential tactical advantages. For example, rapid AED delivery may be possible due to 

straight line travel and traffic avoidance. Drone-delivered AEDs could in principle be available 

24/7, unlike most static AEDs.14 Drones may be able to deliver AEDs at height via a balcony or 

roof for cardiac arrests that occur in high rise buildings, which are known to suffer a survival 

disadvantage.31 The drone’s camera, which is used for navigation, could also be leveraged by the 

911 dispatcher to visually assess the patient and support bystander CPR and AED application. 

Third, drones may be able to quickly reach private location cardiac arrests, which comprise the 

vast majority of all cardiac arrests and are typically associated with worse outcomes.4 Currently, 

static public access defibrillators are almost never used for private location cardiac arrests. 

Previous literature

Prior work on drone delivery of AEDs is limited to a single preliminary study that found drone-

delivered AEDs have the potential to reduce response times in Salt Lake county, Utah.32
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However, the study was limited by the fact that they did not use actual cardiac arrest data to 

inform the drone network design, and omitted several technical and realistic details about drone 

operation such as dispatch time, busy time, and drone acceleration/deceleration. Moreover, the 

model used did not consider the need to have multiple drones per base, tacitly assuming that no 

OHCAs occur when a drone is busy. Our sensitivity analysis showed that the drone busy time is 

an important operational parameter that heavily influences the number of drones per base. 

Limitations

Our modeling approach includes both the determination of drone base locations and the number 

of drones per base. The latter depends on the estimated incidence of cardiac arrests in each 

base’s catchment area; bases located in high call volume areas will be busier and require more 

drones. Our parameter choices are meant to induce a more conservative solution, so our drone 

network size is generally an overestimate. We applied daytime OHCA occurrence rates to 

determine the number of drones required at each base, which will overestimate the numbers of 

drones needed because OHCAs occur less frequently at night.29 We used current drone 

specifications rather than projecting future advances in speed and acceleration, which are 

progressing rapidly. One factor that may contribute to an underestimation of required drone 

resources is that we used 911 responder-assessed OHCA for our analysis; we did not have access 

to all 911 calls that were identified to be potential cardiac arrests at the time of dispatch but were 

unconfirmed on arrival of the 911 response team, for which a drone would have also been 

dispatched. In contrast, we used both treated and untreated arrests to test the effectiveness of the 

drone networks, which may contribute to an overestimation in the required drone resources 

because in practice, a small fraction of cases may be ruled out for drone deployment. Lastly, 

response time data was missing for 7.8% of the cases and access time was missing for 49% of 

base’s catchment area; bases located in high call volume areas will be busier and rreqeqquiuiuirerere mmmorororee e
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cases (see Supplemental Table 3). Access time is hand recorded or estimated by 911 responders 

and as such, is often left blank or difficult to validate. However, given that we only use this data 

to determine the median access time, the impact of the missing data is likely small.  

Implementation factors

Our sensitivity analysis focused on the drone busy time (Figure 1). The two components of the 

overall busy time that are the largest and most uncertain are the reset time and on-scene time.

The reset time is associated with uncertainty because it depends on how the drone system is 

operationalized, along with technological impacts such as battery and AED swap-out/recharge,

and drone maintenance. The possibilities range from automated status checks and battery swaps

to manual inspection by base staff.33-35 Scene time is also uncertain, since the drone could be sent 

home as soon as the AED is dropped off, or only after the 911 responders arrive, or only when 

the 911 responders depart the scene, depending on how drone operations would be integrated 

with standard 911 response procedures.

Vertical delays for OHCAs in high-rise buildings are an important factor for determining 

AED availability.36 As shown in Table 1, “Access time” adds an additional three-minute delay to 

patient contact after the 911 responders have arrived at the scene (i.e., wheels stop). To account 

for this delay, our tacit modelling assumption is that the drone will suffer a similar delay to 

patient contact as the 911 responders. For instance, for the AED to be applied in most cases there 

must be two bystanders on scene; one to call 911 and stay with the patient doing CPR, and 

another to retrieve and apply the AED. In this scenario, we assume the bystander can provide 

building access and therefore, the time delay to patient contact should be essentially the same 

between the 911 responder and the bystander. Given the assumption that access time is equal for 

drones and 911 responders, comparing response time is analogous to comparing patient arrival 

o manual inspection by base staff.33-35 Scene time is also uncertain, since the droonenee cccouououldldld bbbe e e sess n
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time. However, for cases where the drone is able to land directly on the balcony, access delays 

can be mitigated and as a result, our assumption of equal access delay may be conservative. In 

either case, it is important to note that for both drones and 911 responders, there may be 

additional access delays that increase the time to AED application

Many regulatory and technical challenges must be addressed before drone-delivered AED 

systems can be realized. Drones would require permission to fly beyond operator line-of-sight, 

which is currently permitted in some countries (e.g., Canada) but not others (e.g., United States). 

It is expected that over time, as drone applications become more widespread and the technology 

is advanced, such restrictions will be loosened. Inclement weather may adversely impact drone 

operation. Drone navigation will need to avoid no fly zones (e.g., airports) and negotiate around 

high-rise buildings. A vigorous public awareness campaign will need to accompany any 

implementation to ease apprehension and discourage mischievous behavior towards the drones. 

Most importantly, drones will need to be integrated with the 911 response and such integration 

will be critical in determining the network scope. Our secondary analysis, which highlights the 

efficiency-equity trade-off, is a first step towards exploring this issue.

Conclusions 

In summary, strategically locating and using drones has the potential to substantially reduce the 

time to defibrillator arrival at the scene of a cardiac arrest. Drone-delivered AEDs represent a 

logical progression for both drone applications and technology-enabled emergency response. An 

integrated drone network can achieve the same overall performance as eight independent 

regional networks but with substantially fewer resources. Cost-effectiveness of an eventual drone 

network should be evaluated and weighed against the potential benefits outlined in this paper. 

operation. Drone navigation will need to avoid no fly zones (e.g., airports) and neegogootittiatatateee aaarororoununund 
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Table 1. Summary statistics for the eight regions comprising RescuNET.

Characteristics
Region
Toronto Durham Simcoe Muskoka Peel Hamilton* Halton* York* All

Population (2011) 2,615,060 608,124 446,063 100,209 1,296,814 519,949 501,669 1,032,524 7,120,412
Population density (per square km, 2011) 4149.5 241.0 91.8 7.6 1040.0 465.4 520.4 585.9 270.1
Average annual number of cardiac arrests 2977 570 440 73 848 618 355 666 746
Female sex (%) 38.3 36.2 34.4 29.3 37.7 36.1 36.6 38.9 37.4
Average age (yr.) 68.4 65.1 64.9 66.5 65.6 66.0 67.2 68.9 67.2
Dispatch time 
(mm:ss)

Median 1:34 0:39 1:00 0:20 0:45 1:00 0:51 0:32 1:00
90th percentile 2:57 1:09 1:48 1:00 1:30 2:00 1:41 1:44 2:29

Response time 
(mm:ss)

Median 6:12 5:33 7:00 8:00 5:41 6:00 6:00 6:44 6:00
90th percentile 10:39 9:07 14:00 19:35 8:22 11:00 10:00 10:38 10:35

Access time†

(mm:ss)
Median 3:18 3:02 2:45 2:51 2:47 3:00 3:02 2:33 3:02
90th percentile 7:24 6:28 6:00 7:33 6:28 6:36 6:20 5:34 6:55

Public location (%) 9.6 8.2 10.8 16.1 11.7 7.5 11.1 8.9 9.8
Treated (%) 54.5 56.9 59.2 54.0 64.1 57.9 57.0 66.5 57.5
Initial shockable cardiac rhythm* (%) 19.3 25.2 24.4 27.8 22.7 19.3 24.2 20.8 21.2
Survival to hospital discharge* (%) 6.9 10.2 7.7 8.5 8.5 6.0 11.0 8.9 7.8
Number of paramedic, fire, and police stations 158 44 76 32 68 51 41 68 538
†Access time is defined as the time interval from arrival of the 911 responder (i.e., wheels stop) to patient contact. 
*Hamilton, Halton, and York reported data for only 8, 7, and 5 years, respectively. Initial shockable cardiac rhythm and survival to discharge 
include treated OHCAs only. The number of missing data points for each characteristic and region can be found in Supplemental Table 3.

age age (yr.) 68.4 65.1 64.9 66.5 65.6 66.0 67.2 686 .9 67.2
tch time
ss)

Median 1:34 0:39 1:00 0:20 0:45 1:00 0:51 0:0:0:323232 1:1:1 0000
90th percentile 2:57 1:09 1:48 1:00 1:30 2:00 1:41 1:::444444 2:22 292

onse time
ss)

Median 6:12 5:33 7:00 8:00 5:41 6:00 6:00 666:4444 66:6 000000
90th percentile 10:39 9:07 14:00 19:35 8:22 11:00 10:00 10:38 10:35

s time†

ss)
Median 3:18 3:02 2:45 2:51 2:47 3:00 3:02 2:33 3:02
90th percentile 7:24 6:28 6:00 7:33 6:28 6:36 6:20 5:34 6:55

c location (%(%(%)) 9.6 8.2 100.8.88 16.1 11.7 7.7.55 11.1 8.9 9.8
ed (%%))) 54.5 56.9 599.22 54.0 64.1 5757.9 57.0 66.5 57.5

shococockakakable cardiac rhrhrhytyy hmhmhm* (%%%)) 19191 .3 25.2 244.44 272727 8.88 222 7.7 1919.3 242424.2.2.2 2000.8.88 2122 .2
val ttto hospital discharge** ((%) 6.6 999 10.2 7.77 8.8.8 5 8.55 66.00 11.000 8..9 7.77 888
ber oof ff paramedic, fire, annd poliiceee statiooonsnsn 1588 44 766 332 68 551 41 688 5535 88
ss timimimee is defined aass s ththt e timme iintterval frrromoo  arrival of tthee 911 ressps oondderr (i.eee.,,, d whwhwheells sttop) tto patiennt conntntaaca t.
ilton,n, HHHalaa ton, anddd YYYooork rrepporttedd data fofor rr only 8,, , 7,7,7, anndn 5 yearsss,, reespeecttiveeelyyy. Initialll shhockaablle carddiaac rhrhhytytythm anddd suuurvivvaal to dischaharge

ddee trtreaeateted dd OHOHOHCACACAss ononlyly.. ThThee nnumbmberer ooff mimimissssinining g dadadatata ppoioiointtntss fofofor rr eae chchc ccchaararactctcteree isisistititicc anaand dd reeegigiononon cann bbe fofounundd d ininin SuSuSupppppplelel memenntalal TTabablele 3.
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Table 2. Region-specific and integrated drone network characteristics for the three response time improvement goals evaluated using the 
testing set OHCAs.

Drone response time 
improvement goal

Region
Toronto DurhamSimcoe MuskokaPeel Hamilton Halton York All

R
eg

io
n-

sp
ec

ifi
c

Number of bases (number of total drones)
1 min. 3 (6) 3 (6) 5 (6) 3 (3) 2 (4) 1 (2) 3 (4) 3 (6) 23 (37)
2 min. 6 (12) 5 (7) 11 (12) 5 (5) 4 (8) 1 (2) 3 (4) 5 (7) 40 (57)
3 min. 13 (26) 14 (16) 20 (20) 6 (6) 10 (11) 5 (7) 5 (5) 8 (9) 81 (100)

Improvement in median time to AED on 
scene (mm:ss)

1 min. 1:07 1:00 1:01 1:06 1:11 1:00 1:05 1:05 0:59
2 min. 2:09 2:10 2:10 2:01 2:01 2:08 2:03 2:04 1:58
3 min. 3:05 3:00 3:04 3:08 3:02 3:03 3:00 3:09 2:56

Improvement in 90th percentile time to 
AED on scene (mm:ss)

1 min. 3:36 0:00 1:30 6:14 1:37 0:05 0:53 0:00 2:45
2 min. 5:28 3:09 5:43 9:06 2:43 1:57 0:00 3:15 4:47
3 min. 6:43 4:37 7:47 10:34 4:21 3:24 4:30 4:50 6:05

Proportion of cases where drone AED 
arrives prior to 911 (%)

1 min. 69.0 64.2 65.0 76.3 71.7 54.1 64.4 63.9 67.9
2 min. 87.6 82.1 78.6 79.7 84.7 75.3 73.9 79.5 84.6
3 min. 96.1 94.6 89.6 84.2 94.6 92.2 92.7 89.2 94.6

In
te

gr
at

ed

Number of bases (Total drones)
1 min. 3 (7) 2 (4) 3 (4) 0 (0) 2 (4) 1 (2) 1 (2) 3 (5) 15 (28)
2 min. 6 (12) 4 (6) 7 (7) 1 (1) 4 (7) 2 (4) 4 (6) 6 (8) 34 (51)
3 min. 13 (26) 5 (7) 7 (7) 0 (0) 8 (10) 4 (7) 5 (5) 7 (8) 49 (70)

Improvement in median time to AED on 
scene (mm:ss)

1 min. 1:41 0:32 1:21 0:00 0:57 1:34 0:13 1:08 1:10
2 min. 2:37 1:47 3:34 0:00 1:32 2:11 2:11 2:12 2:12
3 min. 3:35 2:48 3:43 0:00 2:34 3:09 2:57 3:25 3:09

Improvement in 90th percentile time to 
AED on scene (mm:ss)

1 min. 4:39 0:00 0:00 0:00 1:30 1:49 0:00 0:00 3:28
2 min. 5:36 2:28 3:31 0:00 2:43 3:54 3:37 4:09 4:59
3 min. 7:05 0:00 0:14 0:00 4:04 5:09 4:45 1:18 6:24

Proportion of cases where drone AED 
arrives prior to 911 (%) 

1 min. 79.5 53.1 59.1 0.0 68.4 68.9 48.1 61.3 70.2
2 min. 90.6 78.7 86.8 32.9 79.4 79.1 85.5 82.1 85.6
3 min. 97.9 85.3 79.8 0.0 92.4 93.5 92.7 81.3 92.3

e (mm:ss) 2 min. 2:09 2:10 2:10 2:01 2:01 2:08 2:0303 2:04 1:58
3 min. 3:05 3:00 3:04 3:08 3:02 3:03 3:3:3 000000 3:3:3 090909 2:22 56

ovement in 90th percentile time to 
 on scene (mm:ss)

1 min. 3:36 0:00 1:30 6:14 1:37 0:05 0::53 0:0:0:000000 2:2 45
2 min. 5:28 3:09 5:43 9:06 2:43 1:57 0:0:0 0000 33:3 151515 44:4 474747
3 min. 6:43 4:37 7:47 10:34 4:21 3:24 4:30 4:50 6:05

ortion of cases where drone AED
es prior to 911 (%)

1 min. 69.0 64.2 65.0 76.3 71.7 54.1 64.4 63.9 67.9
2 min. 87.6 82.1 78.6 79.7 84.7 75.3 73.9 79.5 84.6
3 min. 96.1 94.6 89.6 84.2 944.6.6 92.2 92.7 89.2 94.6

ber ooof ff bbbases (Totall ddrrroneees)ss
1 min. 3 (7) 2 (4) 3 (4) 0 (00) 2 (4(4) 1 (2) 1 (2) 3 (5) 15 (2
2 mimiminn.n 6 (1112)22 4 (6) 77 7 (7(77)) 11 (1(11) 4 (7(7) 2 (4(4(4))) 4 (6))) 666 (8(8(8))) 34 (5
333 mimimin. 13 (226) 5 (777))) 7 (777))) 0 0 (0(0) 8 (110) 444 (7(7( ) 555 (5)) 777 (8)) 4449 (7

ovemememene t in median titimemm  too AEEDD on 
e (mmmm:m:m:sss )

1 min. 1:441 0:322 1::212121 0:00 0:57 1:34 0:0::13 1:08 1:10
22 min. 2:3373 1:47477 333:334 0:00 1:32 2:11 2::2 11 2:12 2:12
33 mimm n. 3:3353 2:4484 3:4333 0:00 2:34 333:09 222:57 3:25 3:09

ovement ini  90th h percentit le time to 
on scene (mm:ss)

11 mimim n. 4:4:4:3933 0:0:0 00000 00:0 000000 0:0:00000 11:3000 1:1:1:494949 0:0:00000 0:0:0000 3:::2828
2 min. 5:36 2:28 3:31 0:00 2:43 3:54 3:37 4:09 4:59
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Table 3. Summary of the sensitivity analysis.

Change in busy time Drone response time improvement goal
Region
Toronto Durham Simcoe Muskoka Peel Hamilton Halton York All

R
eg

io
n-

sp
ec

ifi
c

-30 minutes
1 min. 6 3 5 3 2 2 3 3 27
2 min. 10 5 11 5 4 2 3 5 45
3 min. 14 14 20 6 10 5 5 8 82

-15 minutes
1 min. 6 5 5 3 4 2 4 5 34
2 min. 12 6 11 5 7 2 3 6 52
3 min. 20 15 20 6 10 6 5 8 90

0 minutes
1 min. 6 6 6 3 4 2 4 6 37
2 min. 12 7 12 5 8 2 4 7 57
3 min. 26 16 20 6 11 7 5 9 100

+15 minutes
1 min. 7 6 6 3 4 2 4 6 38
2 min. 12 7 13 5 8 2 5 8 60
3 min. 26 16 21 6 13 8 6 12 108

+30 minutes
1 min. 9 6 6 3 4 2 4 6 40
2 min. 13 7 13 5 8 2 5 8 61
3 min. 26 17 22 6 18 8 8 12 117

In
te

gr
at

ed

-30 minutes
1 min. 6 2 3 0 4 2 1 4 22
2 min. 11 4 7 1 4 2 4 6 39
3 min. 16 5 7 0 8 4 5 7 52

-15 minutes
1 min. 6 4 3 0 4 2 2 5 26
2 min. 12 5 7 1 7 4 4 7 47
3 min. 26 6 7 0 9 5 5 7 65

0 minutes
1 min. 7 4 4 0 4 2 2 5 28
2 min. 12 6 7 1 7 4 6 8 51
3 min. 26 7 7 0 10 7 5 8 70

+15 minutes
1 min. 8 4 4 0 4 2 2 6 30
2 min. 13 6 8 1 7 4 6 9 54
3 min. 26 8 8 0 14 7 6 9 78

+30 minutes
1 min. 8 4 4 0 4 2 2 6 30
2 min. 13 6 8 1 7 4 6 9 54
3 min. 26 9 8 0 16 7 8 11 85

The numbers represent the total number of drones required for each improvement goal and reset time pair. The number of drone bases is unaffected by the busy 
time and is omitted for clarity (See Table 2 for results on drone bases). Note that the “0 minutes” case corresponds to the results in Table 2.

0 minutes
1 min. 6 6 6 3 4 2 4 6
2 min. 12 7 12 5 8 22 444 777
3 min. 26 16 20 6 11 7 555 9

+15 minutes
1 min. 7 6 6 3 4 22 444 666
2 min. 12 7 13 5 8 2 5 8
3 min. 26 16 21 6 13 8 6 12

+30 minutes
1 min. 9 6 6 3 4 2 4 6
2 min. 13 7 13 5 8 2 5 8
3 min. 26 17 22 6 18 8 8 12

-30 mmminininutes
1 min. 6 2 3 0 4 2 1 4
2 mimim n.nn 11 444 7 1 444 2 444 6
3 mmin.nn 16 555 7 0 888 444 555 777

-15 mmminii utes
1 mminn.n 6 44 3 0 4 222 2 5
2 mminn. 12 555 7 1 7 4 4 7
3 mminn. 26 6 7 0 9 555 5 7

0 minutes
1 mminn. 7 444 444 0 444 222 2 5
2 min. 12 6 7 1 7 4 6 8
3 min 26 7 7 0 10 7 5 8
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Figure Legends

Figure 1. 911 first responder and drone timelines. The on-scene time will be zero if 911 

responders arrive prior to the drone. The drone may or may not arrive at the patient during the 

on-scene time interval, and this time point is not shown because it is not used in any calculations. 

Figure 2. Historical OHCAs and paramedic, fire, and police station locations. 

Figure 3. Geographic layout of the (a) region-specific and (b) integrated drone networks for the 

one-minute improvement goal. Radius of circle represents the maximum distance or available 

flying time of the drone in order to improve the median 911 response time by one minute in each 

region, taking into account region-specific dispatch and response times. 

Figure 4.  The first row, labelled “Historical”, shows the distribution of historical 911 response 

times in Toronto (the most urban region in the Toronto RescuNET) and Muskoka (the most rural 

region in the Toronto RescuNET). The second row, labelled “One-minute”, shows the estimated 

response time distribution corresponding to the drone network configuration designed to improve 

the historical median response time by one minute. The third and fourth rows show the response 

time distributions corresponding to the drone network configurations designed to improve the 

historical median response by two and three minutes, respectively. The solid line is the median 

of the distribution and the dashed line is the 90th percentile. The historical distribution is 

extended in grey across all three distributions as a reference. 

one-minute improvement goal. Radius of circle represents the maximum distance e ororr aaavavavailililababablelele 

flying time of the drone in order to improve the median 911 response time by one minute in each

egion, taking into account region-specific dispatch and response times. ff

Figugugurerr 4.  Thee e fiff rsstt rooww, labbbeele led “Histotorical”,, sshowows s s thththeee didid sts rribuutiion ooff hhih ssts orical 99111 rresponsnse

imes in Toronto ((thhe most urban region in theh TToronto RescuNEN T)T  andd Muskok kak  (the most rural
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Supplemental Methods 
 
Geocoding Procedure 
 
The location of each OHCA episode was provided as either an address or a latitude/longitude 
pair. For all entries without latitude/longitude information, geocoding was used to convert the 
recorded addresses into latitude and longitude coordinates. We used Geocoder.ca, Google Maps 
API, and manual methods for our conversions. To verify the geocoding accuracy, all OHCAs 
were geographically plotted by region and manually inspected. Figure S1 summarizes our 
geocoding procedure. All ambulance, fire, and police stations were provided as addresses and 
manually converted to a latitude/longitude pair. Finally, all latitudes and longitudes were 
analytically converted to Universal Transverse Mercator (UTM) coordinates for input to the 
optimization model. Figure 2 in the main text shows the locations of all geocoded OHCAs, 
ambulance stations, fire stations, and police stations. 
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Optimization Model 
 
The mathematical model we use to determine the number and location of drone bases is outlined 
below. 
 
Overview 
 
To begin our optimization process, the user selects a threshold value for improvement over the 
historical median 911 response time. In particular, we consider three different threshold values 
for improvement (one, two, and three minutes). We then use an iterative process to determine 
values for f and t that yield a drone network configuration that exceeds the chosen threshold. In 
each iteration, we solve the model outlined below with fixed f and t (and therefore fixed R and 
𝑎"#).  
 
Model parameters 

• 𝑓 is a parameter that indicates the percentage of covered cardiac arrests. 
• 𝑡 is a parameter that indicates the maximum drone flying time. 
• The coverage radius is given by R = (t-d-10)*27.8, for t-d > 10 seconds, where d 

represents the average dispatch time. Recall that accounting for maximum speed and 
height, 10 seconds are required for takeoff and landing. 

• 𝑎"# is a binary data parameter that indicates whether OHCA 𝑗 can be covered by location 
𝑖. To determine 𝑎"#, we first compute the distance (in meters) between each OHCA and 
each ambulance, fire, and police station. If the distance is less than or equal to R, then 
𝑎"# = 1, else 𝑎"# = 0. 

• 𝐼 is the number of ambulance, fire, and police stations (i.e., candidate drone bases). 
• 𝐽 is the number of OHCAs in the training set. 

 
Decision variables 

• 𝑧"# is a binary variable indicating whether OHCA 𝑗 is covered by a drone base at location 
𝑖. 

• 𝑦" is a binary variable indicating whether a drone base is stationed at location 𝑖. 
 

Minimize 𝑦"/
"01  

Subject to 𝑧"#/
"01 ≤ 1, ∀	𝑗 = 1,… , 𝐽, 

  𝑧"#
7
#01

/
"01 ≥ 9

1::
×	𝐽	, 

  𝑧"# ≤ 𝑎"#𝑦", ∀𝑗 = 1,… , 𝐽, 𝑖 = 1,… , 𝐼, 
  𝑧"#𝜖 0,1 , ∀	𝑗 = 1,… , 𝐽, 𝑖 = 1,… , 𝐼, 
  𝑦"𝜖 0,1 , ∀	𝑖 = 1,… , 𝐼. 
 
The objective function minimizes the total number of drone bases. The first constraint ensures 
that each OHCA is assigned to at most one drone base to avoid double-counting, while the 
second constraint ensures that f% of all OHCAs are reached within a maximum time of t 
minutes. The third constraint ensures that OHCA 𝑗 can be covered by a drone base 𝑖 only if a 
base is opened at location 𝑖 and that base is able to cover OHCA 𝑗 (i.e., 𝑎"# = 1). The fourth and 
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fifth constraints force the decision variables to be binary. The input cardiac arrest data for this 
model is the training set of OHCAs. 
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Queuing Model 
 
The mathematical model we use to determine the number of drones stationed at each base is 
outlined below. 
 
Each selected drone base (i.e., each 𝑖 such that 𝑦" = 1) has a catchment area defined by its radius 
at the macro level, but more precisely by the cardiac arrests the base is assigned to cover (i.e., 
those 𝑗 such that 𝑧"# = 1). 
 
For each catchment area we assume that a Poisson process with an OHCA arrival rate of 𝜆" 
governs the occurrences of OHCAs. To determine 𝜆", we first find the number of daytime 
(8:00AM to 7:59PM) training set OHCAs occurring in catchment area 𝑖. Next, we determine the 
duration, in months, over which these OHCAs occurred. Finally, we multiply the number of 
daytime training set OHCAs by two and divide by the duration over which they occurred. Table 
S1 shows the average OHCA arrival rate for each region. 
 
For each region, we assume that the “busy” time is an exponentially distributed random variable 
with rate parameter 𝜇. The busy time comprises the outbound travel time, on-scene time, 
inbound travel time, and “reset” time. We compute the mean busy time 1/𝜇 for each region and 
for each problem instance (i.e, each (𝑡, 𝑓) pair). 
 
Given the optimal drone base locations, as determined by the optimization model with user 
inputs 𝑡 and 𝑓, we first determine the outbound and inbound travel time, which we assume to be 
equal. For each OHCA in the training set, we determine the straight line distance to the closest 
drone base and we use the assumed drone flying speed of 27.8m/s (plus 10 seconds for 
acceleration/deceleration and cruising altitude assumptions) to compute the travel time.  
 
The on-scene time, referring to the interval from drone landing to paramedic arrival at patient 
side, was computed using historical data. To determine the on-scene time, we first compute the 
drone response time, defined as the time interval from call arrival to drone landing. Next, we 
determine the historical 911 time-to-patient side, defined as the time interval from call arrival to 
arrival at patient side. We then compute the difference to determine the on-scene time. If the 
difference is negative (i.e., 911 arrives before the drone), the on-scene time is assumed to be zero 
because the drone would turn around mid-flight. Table S1 shows the average scene time for each 
region, along with the average flight time, on-scene time, and assumed 30 minute reset time. 
 
To model system congestion, we consider each drone base as a multi-server queue with m 
servers. Given Poisson arrivals and exponentially distributed busy times, we can represent the 
queuing system as a continuous-time Markov Chain (CTMC). Let S={0,1,2…} denote the state 
space, where the state number refers to the number of calls in the system. Let 𝜌 = D

EF
< 1 and let 

𝜋I denote the steady-state amount of time spent in state k, which we determined from solving the 
well-known, steady-state equations (Kleinrock 1975): 
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𝜋: =
𝑚𝑝 I

𝑘!

EN1

I0:

+
𝑚𝑝 E

𝑚! ∗
1

1 − 𝑝

N1

 

𝜋I =

𝑚I𝑝I𝜋:
𝑖! , 𝑘 = 1,2, … ,𝑚 − 1

𝑚E𝑝I𝜋:
𝑚! , 𝑘 = 𝑚,𝑚 + 1,…

 

 
To determine the number of drones (i.e., m), we use an iterative process that increases m until the 
probability that at least one drone is available when an OHCA occurs is greater than 0.99. More 
specifically, we increase m until 𝜋: + 𝜋I ≥ 0.99EN1

I01 . We repeat this process for each 
catchment area.   
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Experimental Setup 
 
For each region, the OHCA data was split into two disjoint sets: a training set and a testing set. 
The training set was used as the input into our optimization model to determine the number and 
location of bases. The training set was also used as input to the queuing model to determine the 
arrival rate and busy times, which result in the required number of drones per base. The disjoint 
testing set was used to evaluate the performance of the resulting drone networks. In particular, 
we use the testing set OHCAs to compute the improvement in time to AED metrics, drone 
response time distributions, and the proportion of cases where the drone AED arrived prior to 
911 responders.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
	



	 9	

Supplemental Tables 
 
Supplemental Table 1. Summary of drone busy time and its components. 

 
 

Drone 
response time 
improvement 

goal 

Region 

  Toronto  Durham  Simcoe  Muskoka  Peel  Hamilton  Halton  York  All 

R
eg

io
n-

sp
ec

ifi
c 

Flight 
time 

(minutes) 

1 min. 7.37 11.17 11.19 12.12 7.61 9.99 8.93 10.36 9.84 

2 min. 5.06 7.59 8.05 10.92 5.96 7.28 7.79 7.85 7.56 
3 min. 3.45 4.63 5.86 8.87 3.99 4.02 4.87 5.91 5.20 

On-scene 
time 

(minutes) 

1 min. 5.27 4.52 5.27 7.70 5.12 4.71 5.02 5.07 5.33 

2 min. 6.35 5.76 6.56 8.15 5.89 5.90 5.59 5.90 6.26 
3 min. 7.15 6.85 7.60 9.03 6.85 7.48 6.93 6.85 7.34 

Reset 
time 

(minutes) 

1 min. 30 30 30 30 30 30 30 30 30 

2 min. 30 30 30 30 30 30 30 30 30 

3 min. 30 30 30 30 30 30 30 30 30 

Drone 
busy time 
(minutes) 

1 min. 42.64 45.68 46.46 49.81 42.72 44.71 43.95 45.43 45.18 

2 min. 41.42 43.34 44.60 49.07 41.86 43.18 43.38 43.75 43.83 

3 min. 40.60 41.48 43.46 47.91 40.84 41.50 41.79 42.77 42.54 

In
te

gr
at

ed
 

Flight 
time 

(minutes) 

1 min. 7.24 11.14 16.33 63.74 7.53 8.19 11.95 9.88 17.00 
2 min. 5.38 7.17 7.21 32.75 6.01 5.81 5.86 6.71 9.61 
3 min. 3.54 7.34 9.15 67.77 4.39 4.11 4.49 5.79 13.32 

On-scene 
time 

(minutes) 

1 min. 5.85 4.11 4.62 0.39 4.91 5.46 3.93 4.82 4.26 

2 min. 6.76 5.45 7.05 2.62 5.58 6.59 6.29 5.99 5.79 
3 min. 7.67 5.80 6.53 0.32 6.42 7.44 6.97 6.56 5.96 

Reset 
time 

(minutes) 

1 min. 30 30 30 30 30 30 30 30 30 

2 min. 30 30 30 30 30 30 30 30 30 

3 min. 30 30 30 30 30 30 30 30 30 

Drone 
busy time 
(minutes) 

1 min. 43.09 45.25 50.95 94.13 42.44 43.65 45.87 44.71 51.26 

2 min. 42.14 42.62 44.25 65.37 41.59 42.40 42.15 42.70 45.40 

3 min. 41.21 43.13 45.68 98.09 40.81 41.54 41.46 42.34 49.28 
 
The “All" column represents all of RescuNet (i.e., all eight regions combined). The flight time comprises both the 
outbound and inbound times. The drone busy time is the summation of flight time, on-scene time, and reset time. 
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Supplemental Table 2. The annual number of OHCAs and annual median time intervals for various 911 
response time metrics. 

 Year 
Region 

Toronto  Durham  Simcoe  Muskoka  Peel  Hamilton  Halton  York  All 

Number of 
OHCAs 

2006 2237 500 334 66 124 474 - - 3735 
2007 2769 516 395 74 704 501 - - 4959 
2008 2975 561 325 65 847 502 234 - 5509 
2009 2997 536 366 88 920 551 337 - 5795 
2010 3030 569 460 59 936 606 339 608 6607 
2011 2924 588 493 79 970 381 366 600 6401 
2012 3121 591 539 84 989 464 408 640 6836 
2013 3375 624 525 71 1029 226 391 705 6946 
2014 3365 647 526 73 1114 - 412 777 6914 
All 26793 5132 3963 659 7633 3705 2487 3330 53702 

Dispatch time 
(i.e., the 

interval from 
call arrival at 
911 to asset 

mobilization) 

2006 1:26 0:45 0:58 0:17 1:00 1:00 - - 1:04 
2007 1:35 0:32 0:45 0:24 1:00 1:00 - - 1:11 
2008 1:37 0:31 1:00 0:22 1:00 1:00 1:00 - 1:07 
2009 1:39 0:34 1:00 0:24 0:49 1:00 1:00 - 1:05 
2010 1:37 0:35 1:00 0:22 0:47 1:00 1:00 0 1:00 
2011 1:36 1:00 1:00 0:20 0:47 1:00 1:00 1:00 1:00 
2012 1:30 1:00 1:00 0:19 0:42 1:00 0:42 0:33 1:00 
2013 1:31 1:00 1:00 0:12 0:43 1:00 0:39 0:31 1:00 
2014 1:34 1:00 1:00 0:19 0:21 - 0:37 0:31 1:00 
All 1:34 0:39 1:00 0:20 0:45 1:00 0:51 0:32 1:00 

Response 
time (i.e., the 
interval from 
call arrival at 
911 to arrival 
at the scene) 

2006 5:44 5:18 7:33 9:48 5:50 6:00 - - 5:55 
2007 5:59 5:11 7:18 7:29 5:46 6:00 - - 6:00 
2008 6:03 5:30 7:00 7:29 6:00 6:00 6:00 - 6:00 
2009 6:05 5:33 7:00 8:37 5:46 6:00 6:00 - 6:00 
2010 6:27 5:29 7:00 8:09 5:44 5:30 6:00 7:00 6:02 
2011 6:28 6:00 8:00 7:51 5:34 6:00 6:09 7:00 6:04 
2012 6:21 5:34 7:00 9:57 5:41 6:00 6:00 6:35 6:04 
2013 6:17 5:50 7:00 7:23 5:44 6:00 5:49 6:32 6:04 
2014 6:24 6:00 7:00 7:00 5:16 - 6:21 6:35 6:08 
All 6:12 5:33 7:00 8:00 5:41 6:00 6:00 6:44 6:00 

Patient time 
(i.e., the 

interval from 
call arrival at 
911 to arrival 
at the patient 

2006 10:01 8:40 10:29 14:49 10:09 8:52 - - 9:49 
2007 9:57 9:07 10:33 10:01 9:22 9:00 - - 9:44 
2008 9:40 9:13 11:00 9:56 9:24 10:00 10:31 - 9:49 
2009 9:40 8:38 9:40 13:05 8:52 11:00 10:29 - 9:39 
2010 9:53 8:50 10:12 11:59 8:57 9:00 10:11 10:21 9:40 
2011 9:28 9:13 10:47 14:12 8:37 10:00 10:05 9:59 9:28 
2012 9:13 9:06 10:21 13:42 8:30 10:00 9:12 9:35 9:12 
2013 9:03 9:00 10:46 11:20 8:29 10:00 8:53 9:15 9:02 
2014 9:02 8:15 10:20 10:53 8:08 - 8:56 9:09 8:54 
All 9:31 8:59 10:30 11:51 8:48 10:00 9:40 9:35 9:25 

Note that for certain time frames and regions response time data was only available in minutes (e.g., Hamilton 
dispatch time).   
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Supplemental Table 3. The number of missing data points for each characteristic and region.  

 
*In addition, Hamilton is missing one and a half years of data (2013-2014), Halton is missing 2 full years of data 
(2006-2007), and York is missing 4 full years of data (2006-2009). This table corresponds to Table 1 in the main 
body text. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Characteristics (n=53702) 
Region 

Toronto  Durham  Simcoe  Muskoka  Peel  Hamilton* Halton* York* All 

 Female sex 78 7 6 0 26 15 0 14 146 
(0.3%) 

  Average age 6 5 0 0 4 1 0 0 16 
(0.03%) 

  
Dispatch time 

Median 191 57 418 5 20 885 67 275 1918 
(3.6%) 

  90th 
percentile 191 57 418 5 20 885 67 275 1918 

(3.6%) 

  
Response time 

Median 393 123 1086 16 78 1165 274 1069 4204 
(7.8%) 

  90th 
percentile 393 123 1086 16 78 1165 274 1069 4204 

(7.8%) 

 
Access time 

Median 13404 2194 2211 284 2747 2223 1295 1968 26326 
(49.0%) 

 90th 
percentile 13404 2194 2211 284 2747 2223 1295 1968 26326 

(49.0%) 

  Public location 449 65 55 7 95 1 47 86 805 
(1.5%) 

  Treated 0 0 0 0 0 0 0 0 0 (0%) 

  Shockable initial heart rhythm 478 69 74 32 98 239 48 83 1121 
(2.1%) 

  Survival to discharge 16 10 34 0 10 37 7 0 114 
(0.2%) 
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Supplemental Figures 
 
Supplemental Figure 1. Summary of geocoding procedure. 
 

 
 

Fixed refers to OHCA locations that were manually checked, found to be incorrect, and changed to the correct 
location. Manual refers to OHCA locations that could not be successfully geocoded by Geocoder.ca or Google API, 
but whose locations were found manually. OHCA locations were manually removed after geocoding (from 
Geocoder or Google) if the locations could not be successfully verified or fixed (e.g., geocoded location was in 
another city or province). OHCA locations were excluded if the locations could not be successfully geocoded (e.g., 
incomplete or ambiguous address).   

 
 
 
 
 
 
 
 
 
 
 
 

All OHCAs 
(56,066)

Lat/Long available 
(25,683)

Correct (25,614)

Fixed (69)

Lat/Long not 
available (30,383)

Geocoder.ca 
(24,238)

Correct (23,904)

Fixed (334)

Google (3,793)

Correct (3,768)

Fixed (25)

Manual (35) Excluded (2,317)

Manually removed 
from Google (509)

Manually removed 
from Geocoder 

(1,099)

Not successfully 
geocoded (709)
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Supplemental Figure 2. A schematic of the drone takeoff and landing phases focusing on 
acceleration/decelleration. (1) Maximum vertical acceleration. (2) Maximum vertical deceleration and 
simultaneous maximum horizontal acceleration. (3) Horizontal motion at maximum speed. (4) Maximum 
horizontal deceleration and simultaneous maximum vertical deceleration. (5) Maximum vertical deceleration. 
(6) Force balance to safely land. 
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Acceleration due to  
gravity, 9.81 m/s2 
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Supplemental Figure 3. Geographic layout of the (a) region-specific and (b) integrated drone networks for the 
two-minute response time improvement goal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
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Supplemental Figure 4. Geographic layout of the (a) region-specific and (b) integrated drone networks for the 
three-minute response time improvement goal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
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Supplemental Figure 5. Comparison of the historical 911 response time (a) with estimated distribution of 
response time by combining historical 911 response times with calculated drone response times under the (b) 
one-minute, (c) two-minute, and (d) three-minute response time improvement goals for Durham. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Historical 911 response times in Durham were rounded to the nearest minute up until 2013. 
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Supplemental Figure 6. Comparison of the historical 911 response time (a) with estimated distribution of 
response time by combining historical 911 response times with calculated drone response times under the (b) 
one-minute, (c) two-minute, and (d) three-minute response time improvement goals for Simcoe. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Historical 911 response times in Simcoe were rounded to the nearest minute up until 2013. 
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Supplemental Figure 7. Comparison of the historical 911 response time (a) with estimated distribution of 
response time by combining historical 911 response times with calculated drone response times under the (b) 
one-minute, (c) two-minute, and (d) three-minute response time improvement goals for Peel. 
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Supplemental Figure 8. Comparison of the historical 911 response time (a) with estimated distribution of 
response time by combining historical 911 response times with calculated drone response times under the (b) 
one-minute, (c) two-minute, and (d) three-minute response time improvement goals for Hamilton. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
All historical 911 response times in Hamilton were provided to us rounded to the nearest minute. 
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Supplemental Figure 9. Comparison of the historical 911 response time (a) with estimated distribution of 
response time by combining historical 911 response times with calculated drone response times under the (b) 
one-minute, (c) two-minute, and (d) three-minute response time improvement goals for Halton. 
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Supplemental Figure 10. Comparison of the historical 911 response time (a) with estimated distribution of 
response time by combining historical 911 response times with calculated drone response times under the (b) 
one-minute, (c) two-minute, and (d) three-minute response time improvement goals for York. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


