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Notes:

e Notation: The probability density function of a random variable w is denoted by fy,(w)
or the short hand f(w). In the context of particle filter, the notation z(n, k|k — 1) is used
to represent the a priori value of particle n at time k propagated forward in time using
the process equations. Only measurements up to and including time (k — 1) are taken
into account. After a measurement update with z(k) and an appropriate resampling, the
a posteriori particle at time k is obtained, denoted by x(n, k|k).

e Please report any error that you may find to the teaching assistants (strimpe@ethz.ch or
aschoellig@ethz.ch).



Problem Set

Problem 1

Suppose you have a measurement z(k) = z(k)? 4+ w(k), where w(k) has a triangular probability
density function that is given as

1/24+w(k)/4 if w(k) e [-2,0]
flw(k)) = 1/2 —w(k)/4 if hw(k:) € [0,2]
0 otherwise .

Suppose that five a priori particles z(n,k|k —1), n=1,2,3,4,5, are given as —2, —1, 0, 1, and
2, and that the measurement is obtained as z(k) = 1. What are the weights /3,, of the particles
x(n, klk —1)7

Problem 2

Suppose that five a priori particles z(n, k|k—1), n =1,2,3,4,5, are found to have probabilities
By oof 0.1, 0.1, 0.1, 0.2, and 0.5 given a measurement at time k. The particles are resampled
with the basic strategy covered in class, where for a total number of N samples, the following
two steps are repeated N times:

— Generate a random number 7 that is uniformly distributed on [0, 1].
~ Pick particle m such that 3™ 8, >r, Y7 ['B, <r.

a)  What is the probability that the first particle will be chosen as an a posteriori particle at
least once, i.e. z(n, k|k) = z(1, k|k — 1) for some n € {1,2,...,5}7

b)  What is the probability that the fifth particle will be chosen as an a posteriori particle at
least once, i.e. x(n, k|k) = z(5, k|k — 1) for some n € {1,2,...,5}7

c)  What is the probability that the five a posteriori particles will be equal to the five a priori
particles (disregarding order)?

Problem 3

In class, we introduced a roughening procedure that adds to each element z;(n,klk), i €
{1,2,...,d}, of the particle x(n,k|k) € R? a random variable with a standard deviation of
KE;N~Y4 where K is a tuning parameter and N is the number of particles. The values F;
represent the maximum difference between the particle elements before roughening, i.e.
Ei = ax\azi(nl,k|k)—a:i(nQ,k:|k:)\ .
ni,n2
Suppose that you have five particles —1, —1, 0, 1, and 1. You want to use the described roughe-
ning procedure and add a uniformly distributed random variable with the given standard devia-

tion. What range of K will give a probability of at least 1/8 that at least one of the roughened
particles is less than —27
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