
Introduction to

Recursive Filtering and Estimation

Spring 2010

Problem Set:

Bayes Theorem,
recursive estimation using Bayes Theorem

Notes:

• Notation: Unless otherwise noted, x, y, and z denote random variables, fx(x) (or the
short hand f(x)) denotes the probability density function of x, and fx|y(x|y) (or f(x|y))
denotes the conditional probability density function of x conditioned on y. The expected
value is denoted by E[·], the variance is denoted by Var(·) and Pr(Z) denotes the probability
that the event Z occurs.

• Please report any error that you may find to the teaching assistants (strimpe@ethz.ch or
aschoellig@ethz.ch).



Problem Set

Problem 1

Mr. Jones has devised a gambling system for winning at roulette. When he bets, he bets on
red, and places a bet only when the ten previous spins of the roulette have landed on a black
number. He reasons that his chance of winning is quite large since the probability of eleven
consecutive spins resulting in black is quite small. What do you think of this system?

Problem 2

Consider two boxes, one containing one black and one white marble, the other, two black and
one white marble. A box is selected at random and a marble is drawn at random from the
selected box. What is the probability that the marble is black?

Problem 3

In Problem 2, what is the probability that the first box was the one selected given that the
marble is white?

Problem 4

Urn 1 contains two white balls and one black ball, while urn 2 contains one white ball and five
black balls. One ball is drawn at random from urn 1 and placed in urn 2. A ball is then drawn
from urn 2. It happens to be white. What is the probability that the transferred ball was white?

Problem 5

Stores A, B and C have 50, 75, 100 employees, and respectively 50, 60 and 70 percent of these
are women. Resignations are equally likely among all employees, regardless of sex. One employee
resigns and this is a woman. What is the probability that she works in store C?

Problem 6

a) A gambler has in his pocket a fair coin and a two-headed coin. He selects one of the coins
at random, and when he flips it, it shows heads. What is the probability that it is the fair
coin?

b) Suppose that he flips the same coin a second time and again it shows heads. What is now
the probability that it is the fair coin?

c) Suppose that he flips the same coin a third time and it shows tails. What is now the
probability that it is the fair coin?

Problem 7

Urn 1 has five white and seven black balls. Urn 2 has three white and twelve black balls. We
flip a fair coin. If the outcome is heads, then a ball from urn 1 is selected, while if the outcome
is tails, then a ball from urn 2 is selected. Suppose that a white ball is selected. What is the
probability that the coin landed tails?
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Problem 8

An urn contains b black balls and r red balls. One of the balls is drawn at random, but when it
is put back in the urn c additional balls of the same color are put in with it. Now suppose that
we draw another ball. Show that the probability that the first ball drawn was black given that
the second ball drawn was red is b/(b+ r + c).

Problem 9

Three prisoners are informed by their jailer that one of them has been chosen at random to be
executed, and the other two are to be freed. Prisoner A asks the jailer to tell him privately which
of his fellow prisoners will be set free, claiming that there would be no harm in divulging this
information, since he already knows that at least one will go free. The jailer refuses to answer
this question, pointing out that if A knew which of his fellows were to be set free, then his own
probability of being executed would rise from 1/3 to 1/2, since he would then be one of two
prisoners. What do you think of the jailer’s reasoning?

Problem 10

Let x and y be independent random variables. Let g(·) and h(·) be arbitrary functions of x and
y, respectively. Define the random variables v = g(x) and w = h(y). Prove that v and w are
independent. That is, functions of independent random variables are independent.

Problem 11

Let x be a continuous, uniformly distributed random variable with x ∈ X = [−5, 5]. Let

z1 = x+ n1

z2 = x+ n2,

where n1 and n2 are continuous random variables with probability density functions

f(n1) =







α1 (1 + n1) for − 1 ≤ n1 ≤ 0

α1 (1− n1) for 0 ≤ n1 ≤ 1

0 otherwise ,

f(n2) =







α2

(

1 + 1

2
n2

)

for − 2 ≤ n2 ≤ 0

α2

(

1− 1

2
n2

)

for 0 ≤ n2 ≤ 2

0 otherwise ,

where α1 and α2 are normalization constants. Assume that the random variables x, n1, n2 are
independent, i.e. f(x, n1, n2) = f(x)f(n1)f(n2).

a) Calculate α1 and α2.

b) Calculate f(x|z1 = 0, z2 = 0).

c) Calculate f(x|z1 = 0, z2 = 1).

d) Calculate f(x|z1 = 0, z2 = 3).

Discuss the results.
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Problem 12

Consider the following estimation problem: an object B moves randomly on a circle with radius
1. The distance to the object can be measured from a given observation point P . The goal is to
estimate the location of the object, see Figure 1.

x

y

-1

              distance

B

P

L

θ

Figure 1

The object B can only move in discrete steps. The object’s location at time k is given by
x(k) ∈ {0, 1, . . . , N − 1}, where

θ(k) = 2π
x(k)

N
.

The dynamics are

x(k) = mod (x(k − 1) + v(k) , N), k = 1, 2, . . . ,

where v(k) = 1 with probability p and v(k) = −1 otherwise. Note that mod (N, N) = 0 and
mod (−1, N) = N − 1. The distance sensor measures

z(k) =
(

(L− cos θ (k))2 + (sin θ (k))2
)

1

2

+ w(k),

where w(k) represents the sensor error which is uniformly distributed on [−e, e]. We assume
that x(0) is uniformly distributed and x(0), v(k) and w(k) are independent.

Simulate object movement and implement a Bayesian tracking algorithm that calculates for each
time step k the probability density function f(x(k)|z(1 : k)).

a) Test the following settings and discuss the results: N = 100, x(0) = N
4
, e = 0.5,

L = 2, p = 0.5,
L = 2, p = 0.55,
L = 0.1, p = 0.55,
L = 0, p = 0.55.

b) How robust is the algorithm? Set N = 100, x(0) = N
4
, e = 0.5, L = 2, p = 0.55 in the

simulation, but use slightly different values for p and e in your estimation algorithm, p̂ and
ê, respectively. Test the algorithm and explain the result for:

p̂ = 0.45, ê = e,
p̂ = 0.5, ê = e,
p̂ = 0.9, ê = e,
p̂ = p, ê = 0.9,
p̂ = p, ê = 0.45.
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% Problem Set2 - Problem 12
%
% *Object on Circle - Recursive Filtering Algorithm*
%
% Recursive Filtering and Estimation
% Spring 2010
%
% --
% ETH Zurich
% Institute for Dynamic Systems and Control
% Angela Schöllig
% aschoellig@ethz.ch
%
% --
% Revision history
% [14.03.10, AS]    first version
%
 
 
clear
 
rand('state',0);
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Configuration Constants
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
% Number of simulation steps
T = 100;
 
% Number of discrete steps around circle
N = 100;
 
% Actual probability of going CCW
PROB = 0.55;
 
% Model of probability of going CCW
PROB_MODEL = PROB;
%PROB_MODEL = 0.45;
 
% Location of distance sensor, as a multiple of the circle radius.  Can be
% less than 1 (inside circle), but must be positive (WLOG).
SENSE_LOC = 2;
 
% The sensor error is modeled as additive (a time of flight sensor, for
% example), uniformly distributed around the actual distance.  The units
% are in circle radii.  
ERR_SENSE = 0.50;
 
% Model of what the sensor error is
ERR_SENSE_MODEL = ERR_SENSE;
%ERR_SENSE_MODEL = 0.45;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Initialization
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
% W(k,i) denotes the probability that the object is at location i at time
% k, given all measurements up to, and including, time k.  At time 0, this
% is initialized to 1/N, all positions are equally likely.
W = zeros(T+1,N);
W(0+1,:) = 1/N;
 
% The intermediate prediction weights, initialize here for completeness.
% We don't keep track of their time history.
predictW = zeros(1,N);
 
% The initial location of the object, an integer between 0 and N-1.
loc = zeros(T+1,1);
loc(0+1) = round(N/4);
 
%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%
% Simulation
%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%
 
for t = 1:T    
    %%%%%%%%%%%%%%%%%
    % Simulate System
    %%%%%%%%%%%%%%%%%
    
    % Process dynamics.  With probability PROB we move CCW, otherwise CW
    if (rand < PROB)
        loc(t+1) = mod(loc(t) + 1,N);
    else
        loc(t+1) = mod(loc(t) - 1,N);
    end
    
    % The physical location of the object is on the unit circle
    xLoc = cos(2*pi * loc(t+1)/N);
    yLoc = sin(2*pi * loc(t+1)/N);
        
    % Can calculate the actual distance to the object
    dist = sqrt( (SENSE_LOC - xLoc)^2 + yLoc^2);
    
    % Corrupt the distance by noise
    dist = dist + ERR_SENSE * 2 * (rand - 0.5);
    
    %%%%%%%%%%%%%%%%%%
    % Update Estimator
    %%%%%%%%%%%%%%%%%%
    
    % Prediction Step.  Here we form the intermediate weights which capture
    % the pdf at the current time, but not using the latest measurement.
    for i = 1:N
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        predictW(i) = PROB_MODEL*W(t, 1+mod(i-2,N)) + (1-PROB_MODEL)*W(t, 1+ mod(i,
N));
    end
    
    % Fuse prediction and measurement.  We simply scale the prediction step
    % weight by the conditional probability of the observed measurement
    % at that state.  We then normalize.
    for i = 1:N
        
        xLocHypo = cos(2*pi * (i-1)/N);
        yLocHypo = sin(2*pi * (i-1)/N);
        
        distHypo = sqrt( (SENSE_LOC - xLocHypo)^2 + yLocHypo^2);
        
        if abs(dist-distHypo) < ERR_SENSE_MODEL
            condProb = 1/(2*ERR_SENSE_MODEL);
        else
            condProb = 0;
        end
        
        W(t+1,i) = condProb * predictW(i);
        
    end
    
    % Normalize the weights.  If the normalization is zero, it means that
    % we received an inconsistent measurement.  We can either use the old
    % valid data, re-initialize our estimator, or crash. To be as
    % robust as possible, we simply re-initialize the estimator.
    normConst = sum(W(t+1,:));
    
    % Uncomment this line if we want to allow the program to crash.
    W(t+1,:) = W(t+1,:)/normConst;    normConst = 1.0;
    
    if (normConst > 1e-6)
        W(t+1,:) = W(t+1,:)/normConst;
    else
        W(t+1,:) = W(1,:);
    end
    
end
       
%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%
% Visualize the results
%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%
 
figure(1)
xVec = (0:N-1)/N;
yVec = 0:T;
mesh(xVec,yVec,W);
xlabel('POSITION x(k)/N ');
ylabel('TIME STEP k');
view([-30,40]);
hold on
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% actual simulated position
plot3(loc/N,(0:T)',ones(T+1,1)*max(max(W)));
hold off 
 
findfigs
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