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Problem Set:
Deterministic Continuous-Time Optimal Control

Notes:

• Problems marked with BERTSEKAS are taken from the book Dynamic Programming and
Optimal Control by Dimitri P. Bertsekas, Vol. I, 3rd edition, 2005, 558 pages, hardcover.

• The solutions were derived by the teaching assistants in the previous class. Please report
any error that you may find to strimpe@ethz.ch or aschoellig@ethz.ch.



Problem Set 3

Problem 1 (LQR)

In the LQR problem discussed in class we assumed that

1. the optimal cost to go is of the form xTK(t)x,

2. the matrix K(t) is symmetric.

To rigorously show that (1) is true a-priori is not trivial, and is beyond the scope of the class.
We will tackle (2): prove that if the optimal cost to go is of the form xTK(t)x, then one can
assume, without loss of generality, that K(t) is symmetric.

Problem 2 (BERTSEKAS, p. 143, exercise 3.2)

A young investor has earned in the stock market a large amount of money S and plans to spend
it so as to maximize his enjoyment through the rest of his life without working. He estimates
that he will live exactly T more years and that his capital x(t) should be reduced to zero at time
T , i.e., x(T ) = 0. Also he models the evolution of his capital by the differential equation

dx(t)

dt
= αx(t)− u(t),

where x(0) = S is his initial capital, α > 0 is a given interest rate, and u(t) ≥ 0 is his rate of
expenditure. The total enjoyment he will obtain is given by∫ T

0
e−βt

√
u(t) dt.

Here β is some positive scalar, which serves to discount future enjoyment. Find the optimal{
u(t) | t ∈ [0, T ]

}
.

Problem 3 (Isoperimetric Problem, BERTSEKAS, p. 144, exercise 3.5)

Analyze the problem of finding a curve
{
x(t) | t ∈ [0, T ]

}
that maximizes the area under x,∫ T

0
x(t)dt,

subject to the constraints

x(0) = a, x(T ) = b,

∫ T

0

√
1 +

(
ẋ(t)

)2
dt = L,

where a, b, and L are given positive scalars. The last constraint is known as an isoperimetric
constraint; it requires that the length of the curve be L. Hint : Introduce the system ẋ1 = u,
ẋ2 =

√
1 + u2, and view the problem as a fixed terminal state problem. Show that the sine of

the optimal u∗(t) depends linearly on t.1 Under some assumptions on a, b and L, the optimal
curve is a circular arc.

1This is partly misleading. It should read: Show that the sine of the slope angle ϕ, defined by tan(ϕ) = dx
dt
, is

affine linear in t, i.e. ct+ d with constants c and d.
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Problem 4 (BERTSEKAS, p. 145, exercise 3.7)

A boat moves with constant unit velocity in a stream moving at constant velocity s. The problem
is to find the steering angle u(t), 0 ≤ t ≤ T , which minimizes the time T required for the boat
to move between the point (0, 0) to a given point (a, b). The equations of motion are

ẋ1(t) = s+ cosu(t), ẋ2(t) = sinu(t),

where x1(t) and x2(t) are the positions of the boat parallel and perpendicular to the stream
velocity, respectively. Show that the optimal solution is to steer at a constant angle.
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Sample Solutions

Problem 1 (Solution)

Consider a solution of the form

V (t, x) = xTK(t)x = xTKx (drop argument for convenience)

with a general square matrix K ∈ Rn×n.

• Decompose K into symmetric and skew-symmetric parts, Ks and Ks, respectively,

K =
1

2
K +

1

2
KT︸ ︷︷ ︸

=:Ks

+
1

2
K − 1

2
KT︸ ︷︷ ︸

=:Ks

,

where KT
s = Ks and KT

s = −Ks.

• For a skew-symmetric matrix Ks, it holds

xTKsx = (xTKsx)
T (xTKsx is a scalar)

= xTKT
s x

= −xTKsx

⇔ xTKsx = −xTKsx ⇒ xTKsx = 0.

• We write for V (t, x),

V (t, x) = xTKx = xT (Ks +Ks)x = xTKsx+ xTKsx︸ ︷︷ ︸
0

= xTKsx.

Therefore, without loss of generality, one can assume V (t, x) = xTKx with K symmetric.

Problem 2 (Solution)

• system:

dx

dt
= αx− u, x(T ) = 0, x(0) = S, α > 0

• “control” → expenditure u(t) ≥ 0 ∀t

• total gain → total enjoyment2∫ T

0
e−βt

√
u(t)dt , β > 0

Apply Minimum Principle

• Hamiltonian:

H(x, u, p) = g(x, u) + pT f(x, u)

H(x, u, p) = −e−βt√u+ p(αx− u)

2Here, the cost function g(·) explicitly depends on t. Refer to Sec. 3.4.4 of the class textbook for time-varying
cost.
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• Adjoint equation:

ṗ = −∇xH(x∗, u∗, p) = −αp

⇒ p(t) = c1e
−αt

• Find minimizing u∗:

u∗ = arg min
u≥0

H(x∗, u, p)

= arg min
u≥0

[
−e−βt√u+ p(αx∗ − u)

]
necessary condition: 1st derivative = 0:

d

du
H = −e−βt 1

2
u−

1
2 − p = 0

⇒ u∗(t) =
1

4p2
e−2βt

sufficient condition: 2nd derivative ̸= 0

d2

du2
H = e−βt 1

2
· 1
2
u−

3
2 =

1

4
e−βt 1√

u3
> 0 ∀t, u

⇒ u∗(t) =
1

4p2
e−2βt is a minimum.

• Thus, minimizing u∗ is

u∗(t) =
1

4c12
e(2α−2β)t.

We still need to determine c1, which will be done in the following.

• System equation with optimal u∗:

ẋ = αx− 1

4c12
e(2α−2β)t (1)

Equation (1) is a linear ODE. Its solution consists of the homogeneous solution xh(t) and
a particular solution xp(t): x(t) = xh(t) + xp(t).

Homogeneous solution:

xh(t) = c2e
αt , c2 = constant

Particular solution:
Case: α ̸= 2β:

Guessing

xp(t) = c3e
(2α−2β)t

and plugging it into the ODE, yields

c3(2α− 2β)e(2α−2β)t = αc3e
(2α−2β)t − 1

4c12
e(2α−2β)t.
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Thus,

c3 = − 1

4c12(α− 2β)

⇒ xp(t) = − 1

4c12(α− 2β)
e(2α−2β)t is a particular solution.

Thus, the general solution is

x(t) = xh(t) + xp(t) = c2e
αt − 1

4c12(α− 2β)
e(2α−2β)t.

Determine c1 and c2 from x(0) = S and x(T ) = 0:

1

4c12
=

−S(α− 2β)

1− e(α−2β)T

c2 =
−Se(α−2β)T

1− e(α−2β)T
.

Case: α = 2β:

ODE:

ẋ = αx− 1

4c12
eαt

Guessing

xp(t) = c4te
αt

and plugging it into ODE, yields

c4e
αt + c4αte

αt = c4αte
αt − 1

4c12
eαt.

Thus,

c4 = − 1

4c12
.

General solution:

x(t) = xh(t) + xp(t) = c2e
αt − 1

4c12
teαt.

Determine c1 and c2 from x(0) = S and x(T ) = 0:

1

4c12
=

S

T

c2 = S.

Therefore, the resulting optimal control u∗ and optimal state trajectory x∗ are:

α ̸= 2β : x∗(t) =
−Se(α−2β)T

1− e(α−2β)T
eαt +

S

1− e(α−2β)T
e(2α−2β)t

u∗(t) =
S(2β − α)

1− e(α−2β)T
e(2α−2β)t

α = 2β : x∗(t) = Seαt − S

T
teαt = S

(
1− t

T

)
eαt

u∗(t) =
S

T
e(2α−2β)t =

S

T
eαt
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Problem 3 (Solution)

• system:

ẋ1(t) = ẋ(t) = u(t)

ẋ2(t) =

√
1 +

(
u(t)

)2
x1(0) = a , x1(T ) = b

x2(0) = 0 , x2(T ) = L

since

∫ T

0

√
1 + u2dt =

∫ T

0
ẋ2dt = x2|T0 = x2(T )− x2(0) = L

• maximize∫ T

0
x1dt =

∫ T

0
xdt ⇔ min

∫ T

0
−x1dt

Apply Minimum Principle

• Hamiltonian:

H = g + pT f = (−x) +
[
p1 p2

] [ u√
1 + u2

]
H = −x1 + p1u+ p2

√
1 + u2

• Adjoint equation:

ṗ = −∇xH = −
[
−1
0

]
=

[
1
0

]

⇒ p1(t) = t− c1 , c1 = constant

p2(t) = c2 , c2 = constant

• Optimal control:

u∗ = argmin
u

H = argmin
u

(
−x∗1 + p1u+ p2

√
1 + u2

)
︸ ︷︷ ︸

(∗)

Differentiate (∗) with respect to u:

d

du
: p1 + p2

u√
1 + u2

= 0

⇔ u√
1 + u2

=
−p1
p2

=
c1 − t

c2
(2)

Second derivative of (∗):

d2

du2
:

p2√
1 + u2

(
1

1 + u2

)
> 0 (since p2 > 0 which will be seen later)
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• We have from (2),

ẋ∗√
1 + ẋ∗2

=
c1 − t

c2
, (3)

which has to be solved by the wanted curve x∗(t). We will show next, that (3) is solved
by a circular arc.

We consider a graphical solution:3

• Let ϕ be the slope angle, i.e. the angle defined by tan
(
ϕ(t)

)
= ẋ(t) = dx

dt .

• Note that

sinϕ =
dx√

dt2 + dx2
=

dx
dt√

1 + dx2

dt2

=
ẋ√

1 + ẋ2
.

• With (3), we have

sin
(
ϕ(t)

)
=

c1 − t

c2
, (4)

that is, the sine of ϕ is affine linear in t.

• The condition (4) is satisfied by a circle, which can be seen from the following drawing:

and by noting that α = ϕ and

sin(α) =
tm − t̃

r
,

where t̃ is the parameter that changes as one moves along the curve.

3Alternatively, it can be shown that the circle equation (x− xm)2 + (t− tm)2 = r2 solves (3).
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Now that we have shown that the problem is solved by a circular arc, we can derive the pa-
rameters defining the circle from geometric reasoning. From the following drawing, we get:

• Arc length: L = βr

• Length l of secant from (0, α) to (T, b): l =
√

(b− a)2 + T 2

• For β, it holds

sin

(
β

2

)
=

l
2

r

with β = L
r can solve this for r (e.g. numerically).

• The missing parameters tm, xm in the circle equation (x − xm)2 + (t − tm)2 = r2 can be
obtained by plugging in the points (0, a), (T, b):

x(0) =
√

r2 − t2m + xm = a

x(T ) =
√

r2 − (T − tm)2 + xm = b,

which can be solved for tm, xm.

Such a circular arc does not exist if L is either too small or too large.

Problem 4 (Solution)

• system:

ẋ1(t) = s+ cos
(
u(t)

)
ẋ2(t) = sin

(
u(t)

)
0 ≤ t ≤ T

• minimize the time T to go from
[
x1(0), x2(0)

]
=

[
0, 0

]
to

[
x1(T ), x2(T )

]
=

[
a, b

]
→ cost =

∫ T

0
1dt = T

→g(x, u) = 1
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Apply Minimum Principle

• Hamiltonian:

H = 1 + pT f(x, u)

H = 1 + p1
(
s+ cos(u)

)
+ p2

(
sin(u)

)
• Adjoint equation:

ṗ(t) = −∇xH = −

[
∂H
∂x1
∂H
∂x2

]
= 0

⇒ p1(t) = c1 = const

p2(t) = c2 = const

• Optimal u∗(t):

u∗ = argmin
u∈U

H = argmin
u

(
1 + p1

(
s+ cos(u)

)
+ p2

(
sin(u)

))
Differentiate with respect to u and set to 0:4

d

du
:− p1 sin(u) + p2 cos(u) = 0

⇒ u = tan−1

(
c2
c1

)
=: Θ = const

• To get the optimal angle, we plug in u = Θ into the system equation and solve the ODE:

ẋ1 = s+ cos(Θ)

ẋ2 = sin(Θ)

→x1(t) =
(
s+ cos(Θ)

)
t+ c3

x2(t) = sin(Θ)t+ c4

with constants c3, c4 ∈ R.

• Plug in initial and terminal values

x1(0) = c3 = 0 ⇒ c3 = 0

x2(0) = c4 = 0 ⇒ c4 = 0

x1(T ) =
(
s+ cos(Θ)

)
T = a

x2(T ) = sin(Θ)T = b

The last to equations can be solved for the unknowns Θ and T for given a, b, s.

4Note that we would have to check that this is indeed a minimum (e.g. by checking 2nd derivative). Here,
however, we only want to show that the minimum, which we know that it exists from the problem description, is
constant.
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