
Dynamic Programming and
Optimal Control

Fall 2009

Problem Set:
The Dynamic Programming Algorithm

Notes:

• Problems marked with BERTSEKAS are taken from the book Dynamic Programming and
Optimal Control by Dimitri P. Bertsekas, Vol. I, 3rd edition, 2005, 558 pages, hardcover.

• The solutions were derived by the teaching assistants in the previous class. Please report
any error that you may find to strimpe@ethz.ch or aschoellig@ethz.ch.

Problem Set

Problem 1 (BERTSEKAS, p. 51, exercise 1.1 a, c)

Consider the system

xk+1 = xk + uk + wk, k = 0, 1, 2, 3,

with initial state x0 = 5, and the cost function

3∑
k=0

(x2k + u2k).

Apply the DP algorithm for the following two cases:

a) The control constraint set Uk(xk) is {u | 0 ≤ xk + u ≤ 5, u : integer} for all xk and k, and
the disturbance wk is equal to zero for all k.

b) The control constraint is as in part (a) and the disturbance wk takes the values −1 and 1
with equal probability 1

2 for all xk and uk, except if xk + uk is equal to 0 or 5, in which
case wk = 0 with probability 1.

Problem 2 (BERTSEKAS, p. 52, exercise 1.3)

Suppose we have a machine that is either running or is broken down. If it runs throughout one
week, it makes a gross profit of $100. If it fails during the week, gross profit is zero. If it is
running at the start of the week and we perform preventive maintenance, the probability that it
will fail during the week is 0.4. If we do not perform such maintenance, the probability of failure
is 0.7. However, maintenance will cost $20. When the machine is broken down at the start of the
week, it may either be repaired at cost of $40, in which case it will fail during the week with a
probability of 0.4, or it may be replaced at a cost of $150 by a new machine that is guaranteed to
run through its first week of operation. Find the optimal repair, replacement, and maintenance
policy that maximizes total profit over four weeks, assuming a new machine at the start of the
first week.

Problem 3 (Discounted Cost per Stage, BERTSEKAS, p. 53, exercise 1.6)

In the framework of the basic problem, consider the case where the cost is of the form

E
wk

k=0,1,...,N−1

{
αNgN (xN) +

N−1∑
k=0

αkgk(xk, uk, wk)

}
,

where α is a discount factor with 0 < α < 1. Show that an alternative form of the DP algorithm
is given by

VN (xN) = gN (xN),

Vk(xk) = min
uk∈Uk(xk)

E
wk

{
gk(xk, uk, wk) + αVk+1

(
fk(xk, uk, wk)

)}
.

2

Problem 4 (Exponential Cost Function, BERTSEKAS, p. 53, exercise 1.7)

In the framework of the basic problem, consider the case where the cost is of the form

E
wk

k=0,1,...,N−1

{
exp

(
gN (xN) +

N−1∑
k=0

gk(xk, uk, wk)

)}
.

.

a) Show that the optimal cost and optimal policy can be obtained from the DP-like algorithm

JN (xN) = exp
(
gN (xN)

)
,

Jk(xk) = min
uk∈Uk(xk)

E
wk

{
Jk+1

(
fk(xk, uk, wk)

)
exp
(
gk(xk, uk, wk)

)}
.

b) Define the function Vk(xk) = lnJk(xk). Assume also that gk is a function of xk and uk
only (and not of wk). Show that the above algorithm can be rewritten as

VN (xN) = gN (xN),

Vk(xk) = min
uk∈Uk(xk)

{
gk(xk, uk) + ln E

wk

{
exp
(
Vk+1

(
fk(xk, uk, wk)

))}}
.

Note: the exponential cost function is an example of a risk-sensitive cost function that
can be used to encode a preference for policies with a small variance of the cost gN (xN) +∑N−1

k=0 gk(xk, uk, wk). The associated problems have a lot of interesting properties, which
are discussed in several sources, e.g. Whittle [Whi90], Fernandez-Gaucherand and Markus
[FeM94], James, Baras, and Elliott [JBE94]. Basar and Bernhard [BaB95].

Problem 5 (Terminating Process, BERTSEKAS, p. 54, exercise 1.8)

In the framework of the basic problem, consider the case where the system evolution terminates
at time i when a given value wi of the disturbance at time i occurs, or when a termination
decision ui is made by the controller. If termination occurs at time i, the resulting cost is

T +

i∑
k=0

gk(xk, uk, wk),

where T is a termination cost. If the process has not terminated up to the final time N , the
resulting cost is gN (xN) +

∑N−1
k=0 gk(xk, uk, wk). Reformulate the problem into the framework of

the basic problem. Hint : Augment the state space with a special termination state.

Problem 6 (Inscribed Polygon of Maximal Perimeter, BERTSEKAS, p. 59,
exercise 1.22)

Consider the problem of inscribing an N -side polygon in a given circle, so that the polygon has
maximal perimeter.

a) Formulate the problem as a DP problem involving sequential placement of N points in the
circle.

b) Use DP to show that the optimal polygon is regular (all sides are equal).

3

Sample Solutions

Problem 1 (Solution)

System:

xk+1 = xk + uk + wk, k = 0, 1, 2, 3

Cost to minimize:

3∑
k=0

(x2k + u2k).

a) • wk = 0 (no disturbance)

• control constraint set Uk(xk) := {u | 0 ≤ xk + u ≤ 5, u : integer}

0 ≤ xk + uk ≤ 5 ∀k
⇔ 0 ≤ xk+1 ≤ 5 ∀k

with x0 = 5 ⇒ 0 ≤ xk ≤ 5 ∀k

⇒ states only take the values 0, . . . , 5

• N = 4

Apply the Dynamic Programming Algorithm (DPA)

• k = N

JN (xN) = 0 = J4(x4)

• k = 3

J3(x3) = min
−x3≤u3≤5−x3

(
x23 + u23 + J4(x3 + u3)

)
= min

−x3≤u3≤5−x3

(
x23 + u23 + 0

)
⇒ optimal control: u3 = µ3(x3) = 0

⇒ J3(x3) = x23

• k = 2

J2(x2) = min
−x2≤u2≤5−x2

(
x22 + u22 + J3(x2 + u2)

)
= min

−x2≤u2≤5−x2

(
2x22 + 2x2u2 + 2u22

)
Evaluate expression for all possible x2, u2:

u2 = −5 -4 -3 -2 -1 0 1 2 3 4 5

x2 = 0 - - - - - 0 2 8 18 32 50
1 - - - - 2 2 6 14 24 42 -
2 - - - 8 6 8 14 24 38 - -
3 - - 18 14 14 18 26 38 - - -
4 - 32 26 24 26 32 42 - - - -
5 50 42 38 38 42 50 - - - - -

4

Therefore, the optimal cost and policy:
x2 J2(x2) µ2(x2)

0 0 0
1 2 -1 or 0
2 6 -1
3 14 -2 or -1
4 24 -2
5 38 -3 or -2

• k = 1

J1(x1) = min
−x1≤u1≤5−x1

(
x21 + u21 + J2(x1 + u1)

)
u1 = −5 -4 -3 -2 -1 0 1 2 3 4 5

x1 = 0 - - - - - 0 3 10 23 40 63
1 - - - - 2 3 8 19 34 55 -
2 - - - 8 7 10 19 32 51 - -
3 - - 18 15 16 23 34 51 - - -
4 - 32 27 26 31 40 55 - - - -
5 50 43 40 43 50 63 - - - - -

x1 J1(x1) µ1(x1)

0 0 0
1 2 -1
2 7 -1
3 15 -2
4 26 -2
5 40 -3

• k = 0

J0(x0) = min
−x0≤u0≤5−x0

(
x20 + u20 + J1(x0 + u0)

)
given: x0 = 5

J0(5) = min
−5≤u0≤0

(
25 + u20 + J1(5 + u0)

)
x0 -5 -4 -3 -2 -1 0

5 50 43 41 44 52 65

→ µ0(x0 = 5) = −3 , J0(x0 = 5) = 41

System evolution:

x0 = 5 → u0 = −3 g0 = 34

x1 = 2 → u1 = −1 g1 = 5

x2 = 1 → u2 = −1 or 0 g2 = 2 or 1

x3 = 0 or 1 → u3 = 0 g3 = 0 or 1

b)

3∑
k=0

(x2k + u2k)

xk+1 = xk + uk + wk , uk ∈ Uk(xk) := {u | 0 ≤ xk + u ≤ 5, u : integer}

5

• As noted in a) xk + uk is always between 0 and 5.

• In case where xk + uk equals 0 or 5, wk = 0; otherwise wk can take values {−1, 1}.
Thus xk+1 also takes values 0 . . . 5 only.

Apply DPA

• k = N

J4(x4) = 0

• k = 3

J3(x3) = min
−x3≤u3≤5−x3

E
w3

(
x23 + u23 + J4(x4)

)
= min

−x3≤u3≤5−x3

(
x23 + u23

)
= x23

→ µ3(x3) = 0 , J3(x3) = x23

• k = 2

J2(x2) = min
−x2≤u2≤5−x2

E
w2

(
x22 + u22 + J3(x2 + u2 + w2)

)

Case u2 + x2 = 5 or u2 + x2 = 0 :

J2(x2) = min
(
x22 + u22 + J3(x2 + u2)

)
Case u2 + x2 ̸= 5 and u2 + x2 ̸= 0 :

J2(x2) = min
(
x22 + u22 +

1
2J3(x2 + u2 + 1) + 1

2J3(x2 + u2 − 1)
)

x2 J2(x2) µ2(x2)

0 0 0
1 2 -1
2 7 -1
3 15 -2 or -1
4 25 -2
5 39 -2 or -3

• k = 1

J1(x1) = min
−x1≤u1≤5−x1

E
w1

(
x21 + u21 + J2(x1 + u1 + w1)

)

Case u2 + x2 = 5 or u2 + x2 = 0 :

J1(x1) = min
(
x21 + u21 + J2(x1 + u1)

)
Case u2 + x2 ̸= 5 and u2 + x2 ̸= 0 :

J1(x1) = min
(
x21 + u21 +

1
2J2(x1 + u1 + 1) + 1

2J2(x1 + u1 − 1)
)

6

x1 J1(x1) µ1(x1)

0 0 0
1 2 -1
2 8 -2
3 16.5 -2
4 28.5 -3 or -2
5 42.5 -3

• k = 0

J0(x0) = min
−x0≤u0≤5−x0

E
(
x20 + u20 + J1(x0 + u0 + w0)

)
→ µ0(x0 = 5) = −3 , J0(x0 = 5) = 43.25

Problem 2 (Solution)

• States x: R : machine running, B : machine broken

• Control actions u:

n : no maintenance
m : maintenance

}
if x = R

r : repair
l : replace

}
if x = B

• Costs C:

n → 0

m → 20

r → 40

l → 150

• Gain (, negative cost): −100 if not broken

Week 3

x3 = R u3 = n C = 0.7(0) + 0.3(−100) =− 30

u3 = m C = 20 + 0.6(−100) =− 40

x3 = B u3 = r C = 40 + 0.6(−100) =− 20

u3 = l C = 150 + (−100) =50

→ J3(R) = −40 µ3(R) = m

J3(B) = −20 µ3(B) = r

Week 2

x2 = R u2 = n C = 0 + 0.7(−20) + 0.3(−100− 40) =− 56

u2 = m C = 20 + 0.4(−20) + 0.6(−140) =− 72

x2 = B u2 = r C = 40 + 0.4(−20) + 0.6(−140) =− 52

u2 = l C = 150− 100− 40 =10

7

→ J2(R) = −72 µ2(R) = m

J2(B) = −52 µ2(B) = r

Week 1

x1 = R u1 = n C = 0 + 0.7(−52) + 0.3(−100− 72) =− 88

u1 = m C = 20 + 0.4(−52) + 0.6(−172) =− 104

x1 = B u1 = r C = 40 + 0.4(−52) + 0.6(−172) =− 84

u1 = l C = 150− 100− 72 =− 22

→ J1(R) = −104 µ1(R) = m

J1(B) = −84 µ1(B) = r

Week 0

x0 = R Machine is guaranteed to run in the 1st week (since it is new)

→ J0(R) = −100− 104 = −204 , µ0(R) = n

• Conclusion:

– always maintain a running machine

– always repair a broken machine

– expected profit −J0(R) = 204

Problem 3 (Solution)

Proof. Apply the general DP algorithm to the given problem:

JN (xN) = αNgN (xN) ⇔ JN (xN) · α−N︸ ︷︷ ︸
=:VN (xN)

= gN (xN)

Jk(xk) = min
uk∈Uk(xk)

E
wk

(
αkgk(xk, uk, wk) + Jk+1

(
fk(xk, uk, wk)

))
⇔ Jk(xk) · α−k = min

uk

E
wk

(
gk(xk, uk, wk) + α−kJk+1

(
fk(xk, uk, wk)

))
⇔ Jk(xk) · α−k︸ ︷︷ ︸

Vk(xk)

= min
uk

E
wk

(
gk(xk, uk, wk) + α · Jk+1

(
xk+1

)
· α−(k+1)︸ ︷︷ ︸

Vk+1(xk+1)

)

In general, defining Vk(xk) := Jk(xk) · α−k, yields

VN (xN) = gN (xN)

Vk(xk) = min
uk

E
wk

(
gk(xk, uk, wk) + α · Vk+1

(
fk(xk, uk, wk)

))

8

Problem 4 (Solution)

a) Proof. Definitions:

πk := {µk, µk+1, . . . , µN−1}

J∗
k (xk) := min

πk
E
wi

i=k,...,N−1

(
exp

(
gN (xN) +

N−1∑
i=k

gi(xi, µi, wi)

))
J∗
N (xN) := exp

(
gN (xN)

)

Show by induction that J∗
k are equal to Jk, i.e. for k = 0 we obtain desired result.

Start:

k = N → J∗
N (xN) = exp

(
gN (xN)

)
= JN (xN) (by definition)

Hypothesis: Assume, for k and all xk+1, we have J∗
k+1(xk+1) = Jk+1(xk+1).

Step: Since πk = {µk, π
k+1}, ∀xk

J∗
k (xk) = min

πk
E
wi

i=k,...,N−1

(
exp

(
gN (xN) +

N−1∑
i=k+1

gi(xi, µi, wi) + gk(xk, µk, wk)

))
⇓ Principle of Optimality argument

= min
µk

E
wk

(
exp
(
gk(xk, µk, wk)

)
·

min
πk+1

E
wi

i=k+1,...,N−1

(
exp
(
gN (xN) +

N−1∑
i=k+1

gi(xi, µi, wi)
)))

= min
µk

E
wk

(
exp
(
gk(xk, µk, wk)

)
· J∗

k+1(xk+1)

)

= min
uk∈Uk

E
wk

(
Jk+1(xk+1) · exp

(
gk(xk, uk, wk)

))
= Jk(xk)

b) Definitions

gk = gk(xk, uk)

Vk(xk) : = lnJk(xk).

9

Proof.

VN (xN) = ln JN (xN) = ln
(
exp
(
gN (xN)

))
= gN (xN)

Vk(xk) = ln Jk(xk)

= ln

(
min
uk∈Uk

E
wk

(
Jk+1(xk+1) · exp

(
gk(xk, uk)

)))
⇓ ∗

= min
uk∈Uk

ln

(
exp
(
gk(xk, uk)

)
E
wk

(
Jk+1(xk+1)

))

= min
uk∈Uk

(
gk(xk, uk) + ln

(
E
wk

(
Jk+1(xk+1)

)))

= min
uk∈Uk

(
gk(xk, uk) + ln E

wk

(
Jk+1

(
fk(xk, uk, wk)

)))

∗ Interchange of ln and min is admissible since ln is monotonically increasing for positive
arguments.

Problem 5 (Solution)

Augment the state space by state x:

xk =

{
1 the process has not been terminated at 0, . . . , k − 1
0 otherwise

.

With this, the system equation reads:

x̃k+1 :=

[
xk+1

xk+1

]
=

 xk+1 = fk(xk, uk, wk)

xk+1 =

{
0 if xk = 0 ∨ uk = uk ∨ wk = wk

1 otherwise

 ,

where uk : termination decision

wk : termination disturbance.

The cost function reads:

g̃k(x̃k, uk, wk) =
{ gk(xk, uk, wk) + T if (uk = uk ∨ wk = wk) ∧ xk = 1

xk · gk(xk, uk, wk) otherwise
.

The total cost is

N∑
k=0

g̃k(x̃k, uk, wk),

with gN (xN , uN , wN) = gN (xN).

10

Problem 6 (Solution)

a) Formulate DP algorithm

• Let state xk denote the angle on the circle specifying the location of the k-th point.

• Without loss of generality, we set x0 = 0. Furthermore, xk ∈ [0, 2π) ∀k = 1, . . . , N .

• Let uk be the difference between xk+1 and xk.

• Thus the update equation reads:

xk+1 = xk + uk,with x0 = 0, xN < 2π, uk > 0 ∀k = 1, . . . , N − 1. (1)

• The length l of the line joining xk+1 and xk is

sin
(uk
2

)
=

l

2r
⇔ l = 2r sin

(uk
2

)
,

where r denotes the radius of the circle.

• The length of the last segment joining xN and x0 is

2r sin

(
2π − xN

2

)
= 2r sin

(
π − xN

2

)
= 2r sin

(xN
2

)
,

where we used

sin(x− π) = − sin(x)
sin(+x) = − sin(−x)

}
sin(−x+ π) = sin(x). (2)

• Defining

gN (xN) := 2r sin
(xN

2

)
gk(uk) := 2r sin

(uk
2

)
the Dynamic Programming Problem is given by (1) and the objective to maximize
the perimeter

max
π

[
gN (xN) +

N−1∑
k=0

gk(uk)

]
. (3)

b) Apply the DPA:

11

• Stage k = N :

JN (xN) = gN (xN) = 2r sin
(xN

2

)
• Stage k = N − 1:

JN−1(xN−1) = max
uN−1

[gN−1(uN−1) + JN (xN−1 + uN−1)]

= 2r max
uN−1>0

[
sin
(uN−1

2

)
+ sin

(
xN−1 + uN−1

2

)]
differentiate with respect to uN−1 and set to zero:

1

2
cos
(uN−1

2

)
+

1

2
cos

(
xN−1 + uN−1

2

)
= 0

A sufficient condition for optimality is

uN−1

2
= −xN−1 + uN−1

2
+ π

uN−1 = π − xN−1

2

One can show graphically that this is indeed the maximum.

Plug this into JN−1(xN−1):

JN−1(xN−1) = 2r
[
sin
(π
2
− xN−1

4

)
+ sin

(xN−1

2
+

π

2
− xN−1

4

)]
= 4r sin

(π
2
− xN−1

4

)
• Stage k = N − 2:

JN−2(xN−2) = max
[
2r sin

(uN−2

2

)
+ JN−1(xN−2 + uN−2)

]
= 2rmax

[
sin
(uN−2

2

)
+ 2 sin

(π
2
− xN−2

4
− uN−2

4

)]
differentiate, set to 0:

1

2
cos
(uN−2

2

)
− 1

2
cos
(π
2
− xN−2

4
− uN−2

4

)
= 0

sufficient condition:

uN−2 =
2π

3
− xN−2

3

plug in into JN−2(xN−2):

JN−2(xN−2) = 6r sin
(π
3
− xN−2

6

)
• From the first two iterations, we guess the general form:

JN−k(xN−k) = 2(k + 1) · r sin
(

π

k + 1
− xN−k

2(k + 1)

)
(4)

uN−k =
2π

k + 1
− xN−k

k + 1
(5)

12

We prove by induction that this is indeed the solution.

Proof. (by induction)

• We have shown that (4), (5) are true for k = 0, 1, 2.

• Assume that (4), (5) are true for k; show that (4), (5) are true for k + 1,

JN−k−1(xN−k−1)

= max
uN−k−1

[
2r sin

(uN−(k+1)

2

)
+ JN−k(xN−k)

]
⇓ Induction hypothesis

= 2r max
uN−k−1

[
sin
(uN−k−1

2

)
+ (k + 1) sin

(
π

k + 1
− xN−k

2(k + 1)

)]
= 2r max

uN−k−1

[
sin
(uN−k−1

2

)
+ (k + 1) sin

(
π

k + 1
− xN−k−1 + uN−k−1

2(k + 1)

)]
differentiate, set to 0, solve for uN−k−1:

uN−k−1 =
2π

k + 2
− xN−k−1

k + 2

plug into JN−k−1:

JN−k−1(xN−k−1) = 2r(k + 2) sin

(
π

k + 2
− xN−k−1

2(k + 2)

)
In particular, for k = N , we have

JN−N (xN−N) = J0(x0) = 2(N + 1) · r · sin
(

π

N + 1
− x0

2(N + 1)

)
= 2r(N + 1) sin

(
π

N + 1

)
,

which is the perimeter of a (N + 1)-side polygon and

u0 =
2π

N + 1
, x0 = 0.

It still needs to be shown that uk = u0 =
2π

N+1 ∀k = 0, . . . , N − 1, i.e. all segments are the
same length.

Conjecture:

xk =
k · 2π
N + 1

uk =
2π

N + 1

Proof. (by induction)

• Conjecture is true for k = 0.

• Assume true for some k, show that true for k + 1:

xk+1
(1)
= xk + uk =

k · 2π
N + 1

+
2π

N + 1
=

(k + 1) · 2π
N + 1

uk+1
(5)
=

2π

(N − (k + 1)) + 1
−

xN−(N−(k+1))

(N − (k + 1)) + 1

=
2π

N + 1

→ All side lengths are the same, 2π
N+1 , thus the (N + 1)-side polygon is regular.

13

