Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Dynamic Programming \& Optimal Control (151-0563-01) Prof. R. D'Andrea

Solutions

Duration:

Number of Problems:

Permitted Aids:

45 minutes

1

None.
Use only the prepared sheets for your solutions.

Problem 1
100%
Consider the following dynamical system,

$$
\dot{x}(t)=u(t), 0 \leq t \leq T, x(0)=x_{0}
$$

where $x(t) \in \mathbb{R}$ and $u(t) \in \mathbb{R} . x_{0}$ and T are fixed and given.
a) Calculate the optimal trajectory $x^{*}(t)$ and optimal control input $u^{*}(t)$ that minimize

$$
J=\frac{1}{2} \int_{0}^{T}\left(x^{2}(t)+u^{2}(t)\right) d t
$$

b) Find $x^{*}(t)$ and $u^{*}(t)$ as $T \rightarrow \infty$. Furthermore, calculate the optimal cost

$$
J_{\infty}^{*}=\lim _{T \rightarrow \infty} \frac{1}{2} \int_{0}^{T}\left(x^{* 2}(t)+u^{* 2}(t)\right) d t
$$

c) Find a solution $V(t, x): \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ to the following partial differential equation

$$
0=\min _{u}\left(\frac{1}{2}\left(x^{2}+u^{2}\right)+\frac{\partial V(t, x)}{\partial t}+\frac{\partial V(t, x)}{\partial x} u\right), t \geq 0
$$

Solution 1

a) Apply the minimum principle:

- The Hamiltonian is given by

$$
H(x, u, p)=\frac{1}{2}\left(x^{2}+u^{2}\right)+p u
$$

- The adjoint equations follow from the equation above

$$
\dot{p}(t)=-\frac{\partial H}{\partial x}=-x(t), \quad p(T)=0(\text { no terminal cost })
$$

- The optimal input is obtained by minimizing the Hamiltonian along the optimal trajectory

$$
\frac{\partial H}{\partial u}=0 \quad \Rightarrow \quad u+p=0 \quad \Rightarrow \quad u=-p
$$

- Now $\dot{x}=-p$ and $\dot{p}=-x$ yield

$$
\ddot{x}=x, \text { with } x(0)=x_{0}, \dot{x}(T)=0
$$

- Solving the above differential equation gives
[Method 1: Candidate solution $x(t)=A \cosh (t)+B \sinh (t)]$
Using initial conditions $x(0)=x_{0}, \dot{x}(T)=0$ and $\dot{x}=A \sinh (t)+B \cosh (t)$,
we get $A=x_{0}$ and $B=-x_{0} \frac{\sinh (T)}{\cosh (T)}$. This gives,

$$
\begin{gathered}
x(t)=x_{0} \cosh (t)-x_{0} \frac{\sinh (T)}{\cosh (T)} \sinh (t) \\
u(t)=\dot{x}(t)=x_{0} \sinh (t)-x_{0} \frac{\sinh (T)}{\cosh (T)} \cosh (t)
\end{gathered}
$$

[Method 2: Candidate solution $x(t)=A^{\prime} e^{t}+B^{\prime} e^{-t}$]
Using initial conditions $x(0)=x_{0}, \dot{x}(T)=0$ and $\dot{x}=A^{\prime} e^{t}-B^{\prime} e^{-t}$, we get $A^{\prime}=\frac{x_{0}}{1+e^{2 T}}$ and $B^{\prime}=\frac{x_{0}}{1+e^{-2 T}}$. This gives,

$$
\begin{gathered}
x(t)=\frac{x_{0}}{1+e^{2 T}} e^{t}+\frac{x_{0}}{1+e^{-2 T}} e^{-t} \\
u(t)=\dot{x}(t)=\frac{x_{0}}{1+e^{2 T}} e^{t}-\frac{x_{0}}{1+e^{-2 T}} e^{-t}
\end{gathered}
$$

b) Optimal solution for infinite horizon setting:

- Using the solution of Method 1 in a)

$$
\begin{gathered}
x(t)=x_{0}\left(\frac{e^{t}+e^{-t}}{2}-\left(\frac{e^{T}-e^{-T}}{e^{T}+e^{-T}}\right)\left(\frac{e^{t}-e^{-t}}{2}\right)\right) \\
\text { as } T \rightarrow \infty, x(t) \rightarrow x_{0} e^{-t} \\
\text { similarly, } u(t) \rightarrow-x_{0} e^{-t} \\
J_{\infty}^{*}=\frac{1}{2} \int_{0}^{\infty}\left(x_{0}^{2} e^{-2 t}+x_{0}^{2} e^{-2 t}\right) d t=\left.\frac{x_{0}^{2}}{2} e^{-2 t}\right|_{\infty} ^{0}=\frac{x_{0}^{2}}{2}
\end{gathered}
$$

- Note: [Method 2: Rigorous Proof]

$$
\begin{aligned}
J^{*}(t, x) & =\frac{1}{2} \int_{0}^{T}\left(x^{* 2}(t)+u^{* 2}(t)\right) d t \\
& =\frac{x_{0}^{2}}{2} \frac{1-e^{-4 T}}{\left(1+e^{-2 T}\right)^{2}} \\
\Rightarrow J_{\infty}^{*}(t, x) & =\lim _{T \rightarrow \infty} J^{*}(t, x)=\frac{x_{0}^{2}}{2}
\end{aligned}
$$

c) This is the Hamilton-Jacobi-Bellman equation for the above optimal control problem. For the above problem, if we find ourselves at state x at time t, the optimal cost to go is $\frac{x^{2}}{2}$. Therefore, $V(t, x)=\frac{x^{2}}{2}$ is a candidate solution.
Verify:

$$
\begin{gathered}
\frac{\partial V}{\partial t}=0, \frac{\partial V}{\partial x}=x \\
\Rightarrow \min _{u}\left(\frac{1}{2}\left(x^{2}+u^{2}\right)+x u\right)
\end{gathered}
$$

occurs when $u=-x$. Then we have $\frac{1}{2}\left(x^{2}+x^{2}\right)-x^{2}=0$, as required.

