
Quiz 2 December 9th, 2009

Dynamic Programming & Optimal Control (151-0563-00) Prof. R. D’Andrea

Solutions

Duration: 45 minutes

Number of Problems: 2

Permitted Aids: None.

Use only the prepared sheets for your solutions.
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Problem 1 20 %

Please circle either ‘Yes’ or ‘No’ or ‘Not enough information’ in the following questions.

a) A given deterministic continuous-time optimal control problem is known to have an op-
timal solution. Furthermore, there exists a unique solution pair

{(
x(t), u(t)

)
| t ∈ [0, T ]

}
that satisfies the Minimum Principle.

Is the solution pair
{(

x(t), u(t)
)
| t ∈ [0, T ]

}
optimal?

Yes No Not enough information

b) For a given deterministic continuous-time optimal control problem, you find a solution
to the Hamilton-Jacobi-Bellman Equation and a feedback law µ(t, x) which attains the
minimum in the corresponding Hamilton–Jacobi-Bellman Equation.

Is the resulting feedback law µ(t, x) optimal?

Yes No Not enough information

Note: For each question you get: +10 % for a correct answer, -5 % for an incorrect answer and
0 % for no answer. If you change your mind, please cross out all options (‘Yes’ and ‘No’ and
‘Not enough information’) and write either ‘Yes’ or ‘No’ or ‘Not enough information’ alongside,
or leave it blank.

Solution 1

a) Yes.

The Minimum Principle is a necessary condition for optimality; that is, not every solution
pair

{(
x(t), u(t)

)
| t ∈ [0, T ]

}
that satisfies the Minimum Principle, has to be optimal; but,

every optimal solution has to satisfy the Minimum Principle. In our case, we know that
an optimal solution exists to the problem and there is only one solution pair satisfying the
Minimum Principle. Therefore, the solution pair is optimal.

b) Yes.

The Hamilton-Jacobi-Bellman Equation is a sufficient condition; that is, if there is a
solution to the Hamilton-Jacobi-Bellman Equation, it is optimal.
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Problem 2 80%

t = 1

u

t = 0

z = 0 z = 1

Figure 1

At time t = 0, a mass m = 2 is at rest at location z = 0. The mass is on a frictionless surface
and it is desired to apply a force u(t), 0 ≤ t ≤ 1, such that at time t = 1, the mass is at location
z = 1 with velocity ż = 1. In particular,

z̈(t) =
1

2
u(t), 0 ≤ t ≤ 1, (1)

with initial and terminal conditions:

z(0) = 0, ż(0) = 0,

z(1) = 1, ż(1) = 1.

Of all the functions u(t) that achieve the above objective, find the one that minimizes∫ 1

0
ρu2(t)dt,

where ρ > 0 is a given constant.
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Solution 2

Introduce the state vector

x =

[
x1
x2

]
=

[
z
ż

]
.

Using this notation, the system dynamics read

ẋ(t) =

[
ẋ1(t)
ẋ2(t)

]
=

[
x2(t)
1
2u(t)

]
= f

(
x(t), u(t)

)
with initial and terminal conditions

x1(0) = 0, x2(0) = 0,

x1(1) = 1, x2(1) = 1.

Apply the Minimum Principle1.

• The Hamiltonian is given by

H(x, u, p) = g(x, u) + pT f(x, u)

= ρu2 + p1x2 +
1

2
p2u.

• The optimal input u∗(t) is obtained by minimizing the Hamiltonian along the optimal
trajectory. Differentiating the Hamiltonian with respect to u yields,

2ρu+
1

2
p2(t) = 0 ⇔ u = − 1

4ρ
p2(t).

Since the second derivative of H with respect to u is 2ρ > 0, u∗(t) = − 1
4ρp2(t) is indeed

the minimum.

• The adjoint equations,

ṗ1(t) = 0

ṗ2(t) = −p1(t),

are integrated and result in the following equations:

p1(t) = c̃1, c̃1 constant

p2(t) = −c̃1t− c̃2, c̃2 constant.

Using this result, the optimal input is given by

u∗(t) =
1

4ρ
(c̃1t+ c̃2) = c1t+ c2,

where the new constants c1 := c̃1
4ρ and c2 := c̃2

4ρ have been introduced for notational
simplicity.

1Note that the terminal state is given in this problem. Therefore, there is no terminal condition on the co-states
(as in the standard Minimum Principle), but the terminal condition on the states can be used instead to solve
the set of differential equations.
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• Using the initial and terminal conditions on x, we will solve for c1 and c2 next. For this
purpose, we first need to solve for the state trajectories x∗1(t) and x∗2(t) using the system
equation,

ẋ∗2(t) =
1

2
u∗(t) =

1

2
(c1t+ c2) ⇒ x∗2(t) =

1

4
c1t

2 +
1

2
c2t+ c3, c3 constant,

and

ẋ∗1(t) = x∗2(t) =
1

4
c1t

2 +
1

2
c2t+ c3 ⇒ x∗1(t) =

1

12
c1t

3 +
1

4
c2t

2 + c3t+ c4, c4 constant.

Using the initial conditions x1(0) = 0 and x2(0) = 0, it follows that

c3 = c4 = 0.

Using this and the terminal conditions x1(1) = 1 and x2(1) = 1, we obtain

x∗1(t) =
1

12
c1 +

1

4
c2 = 1

x∗2(1) =
1

4
c1 +

1

2
c2 = 1.

Solving for c1 and c2 yields
c1 = −12, c2 = 8.

• Therefore, the optimal control is

u∗(t) = −12t+ 8,

and the optimal state trajectory is

x∗1(t) = z∗(t) = −t3 + 2t2

x∗2(t) = ż∗(t) = −3t2 + 4t.


