Eidgenössische Technische Hochschule Zürich

Dynamic Programming \& Optimal Control (151-0563-00)

Solutions

Duration:

45 minutes

Number of Problems:
Permitted Aids:

None.
Use only the prepared sheets for your solutions.

Problem 1

Given is the following system equation

$$
x_{k+1}=x_{k}+2 x_{k-2}^{2}-x_{k-3}+3 u_{k}^{2}-u_{k-1}+w_{k} u_{k} x_{k}
$$

with $x_{k}, u_{k}, w_{k} \in \mathbb{R}$ and $w_{k} \sim P\left(\cdot \mid x_{k}, u_{k}\right)$.
To apply the Dynamic Programming algorithm, the system must be reformulated into the basic problem format:

$$
\tilde{x}_{k+1}=\tilde{f}_{k}\left(\tilde{x}_{k}, u_{k}, w_{k}\right)
$$

with $\tilde{x}_{k}=\left[\tilde{x}_{k, 1}, \ldots, \tilde{x}_{k, m}\right]^{T} \in \mathbb{R}^{m}$ being the augmented state.
a) What dimension m does the augmented state \tilde{x}_{k} have?
b) Please circle the correct representation of the augmented state \tilde{x}_{k}.

$$
\begin{aligned}
& \tilde{x}_{k}=\left[\begin{array}{l}
x_{k} \\
u_{k}
\end{array}\right] \quad \tilde{x}_{k}=\left[\begin{array}{c}
x_{k} \\
x_{k-2} \\
x_{k-3}
\end{array}\right] \quad \tilde{x}_{k}=\left[\begin{array}{c}
x_{k} \\
x_{k-2} \\
x_{k-3} \\
u_{k-1}
\end{array}\right] \quad \tilde{x}_{k}=\left[\begin{array}{c}
x_{k} \\
x_{k-1} \\
x_{k-2} \\
x_{k-3}
\end{array}\right] \\
& \tilde{x}_{k}=\left[\begin{array}{c}
x_{k} \\
x_{k-2} \\
x_{k-3} \\
u_{k} \\
u_{k-1}
\end{array}\right] \quad \tilde{x}_{k}=\left[\begin{array}{c}
x_{k} \\
x_{k-1} \\
x_{k-2} \\
x_{k-3} \\
u_{k-1}
\end{array}\right] \quad \tilde{x}_{k}=\left[\begin{array}{c}
x_{k} \\
x_{k-2} \\
x_{k-3} \\
u_{k} \\
u_{k-1}
\end{array}\right] \quad \tilde{x}_{k}=\left[\begin{array}{c}
x_{k} \\
x_{k-1} \\
x_{k-2} \\
x_{k-3} \\
u_{k}
\end{array}\right] \\
& \tilde{x}_{k}=\left[\begin{array}{c}
x_{k} \\
x_{k-1} \\
x_{k-2} \\
x_{k-3} \\
u_{k-1}
\end{array}\right] \quad \tilde{x}_{k}=\left[\begin{array}{c}
x_{k} \\
x_{k-2} \\
x_{k-3} \\
u_{k-1} \\
w_{k}
\end{array}\right] \quad \tilde{x}_{k}=\left[\begin{array}{c}
x_{k} \\
x_{k-2} \\
x_{k-3} \\
u_{k} \\
u_{k-1} \\
w_{k}
\end{array}\right] \quad \tilde{x}_{k}=\left[\begin{array}{c}
x_{k} \\
x_{k-1} \\
x_{k-2} \\
x_{k-3} \\
u_{k} \\
u_{k-1}
\end{array}\right] \\
& \tilde{x}_{k}=\left[\begin{array}{c}
x_{k} \\
x_{k-1} \\
x_{k-2} \\
x_{k-3} \\
u_{k} \\
u_{k-1} \\
w_{k}
\end{array}\right]
\end{aligned}
$$

c) Rewrite the given system in the form $\tilde{x}_{k+1}=\tilde{f}_{k}\left(\tilde{x}_{k}, u_{k}, w_{k}\right)$ using the augmented state $\tilde{x}_{k}=\left[\tilde{x}_{k, 1}, \ldots, \tilde{x}_{k, m}\right]^{T}$.

Solution 1

a) 5
b) $\quad \tilde{x}_{k}=\left[\begin{array}{c}x_{k} \\ x_{k-1} \\ x_{k-2} \\ x_{k-3} \\ u_{k-1}\end{array}\right]=\left[\begin{array}{c}\tilde{x}_{k, 1} \\ \tilde{x}_{k, 2} \\ \tilde{x}_{k, 3} \\ \tilde{x}_{k, 4} \\ \tilde{x}_{k, 5}\end{array}\right]$
c) $\quad \tilde{x}_{k+1}=\left[\begin{array}{c}\tilde{x}_{k, 1}+2 \tilde{x}_{k, 3}^{2}-\tilde{x}_{k, 4}+3 u_{k}^{2}-\tilde{x}_{k, 5}+w_{k} u_{k} \tilde{x}_{k, 1} \\ \tilde{x}_{k, 1} \\ \tilde{x}_{k, 2} \\ \tilde{x}_{k, 3} \\ u_{k}\end{array}\right]$

Problem 2

Consider the system

$$
x_{k+1}=x_{k}+u_{k}+w_{k}, \quad k=0,1,
$$

with initial state $x_{0}=0$. The disturbance w_{k} takes values -1 and 1 with equal probability. The cost for the above system is given by

$$
\left(x_{2}-x_{2}^{*}\right)^{2}+\left(x_{1}-x_{1}^{*}\right)^{2}+u_{1}^{2}+u_{0}^{2}
$$

with $x_{1}^{*}=2$ and $x_{2}^{*}=1$.
a) Assume a discrete input $u_{k}, u_{k} \in\{-1,0,1\}$ for $k=0,1$:
i) Find all states x_{k} that can be reached from $x_{0}=0$ in stage $1(k=1)$ and in stage 2 ($k=2$).
ii) Calculate the optimal cost-to-go $J_{0}\left(x_{0}\right)$ and the optimal policy $\left\{\mu_{0}^{*}\left(x_{0}\right), \mu_{1}^{*}\left(x_{1}\right)\right\}$.
iii) Will the optimal policy be affected by adding $\left(x_{0}-x_{0}^{*}\right)^{2}, x_{0}^{*}=1$, to the cost? If so, how?
b) Assume a continuous input $u_{k}, u_{k} \in[-1,1]$ for $k=0,1$:
i) Calculate the optimal cost-to-go $J_{1}\left(x_{1}\right)$ and the optimal policy $\mu_{1}^{*}\left(x_{1}\right)$ for $x_{1}=2,1,-2$.

Solution 2

a) Discrete input case:
i) State evolution for $k=1$ and 2:

For $\mathrm{k}=1$ and $x_{0}=0$,

$$
\begin{aligned}
\left\{u_{0}=1, w_{0}=1\right\} & \Rightarrow x_{1}=2 \\
\left\{u_{0}=0, w_{0}=1\right\} & \Rightarrow x_{1}=1 \\
\left\{u_{0}=1, w_{0}=-1\right\} \text { or }\left\{u_{0}=-1, w_{0}=1\right\} & \Rightarrow x_{1}=0 \\
\left\{u_{0}=0, w_{0}=-1\right\} & \Rightarrow x_{1}=-1 \\
\left\{u_{0}=-1, w_{0}=-1\right\} & \Rightarrow x_{1}=-2
\end{aligned}
$$

Similarly for $k=2$,

$$
\begin{aligned}
& x_{1}=2 \Rightarrow x_{2} \in\{4,3,2,1,0\} \\
& x_{1}=1 \Rightarrow \\
& x_{2} \in\{3,2,1,0,-1\} \\
& x_{1}=0 \Rightarrow \\
& x_{2} \in\{2,1,0,-1,-2\} \\
& x_{1}=-1 \Rightarrow \\
& x_{2} \in\{1,0,-1,-2,-3\} \\
& x_{1}=-2 \Rightarrow x_{2} \in\{0,-1,-2,-3,-4\} .
\end{aligned}
$$

This implies:

$$
x_{1} \in\{2,1,0,-1,-2\} \text { and } x_{2} \in\{4,3,2,1,0,-1,-2,-3,-4\} .
$$

ii) Optimal cost-to-go and the optimal policy:

Calculate the terminal cost $J_{2}\left(x_{2}\right)=\left(x_{2}-x_{2}^{*}\right)^{2}$, for all possible states at $k=2$.

$$
\begin{array}{rrr}
J_{2}(4)=9 & J_{2}(3)=4 & J_{2}(2)=1 \\
J_{2}(1)=0 & J_{2}(0)=1 & J_{2}(-1)=4 \\
J_{2}(-2)=9 & J_{2}(-3)=16 & J_{2}(-4)=25 .
\end{array}
$$

Now, using the the Dynamic Programming Algorithm for $k=1$,

$$
J_{1}\left(x_{1}\right)=\min _{u_{1} \in\{-1,0,1\}} \underset{w_{1}}{E}\left\{\left(x_{1}-x_{1}^{*}\right)^{2}+u_{1}^{2}+J_{2}\left(x_{1}+u_{1}+w_{1}\right)\right\},
$$

gives

$$
\begin{aligned}
& J_{1}(2)=2 \quad \text { with } \quad \mu_{1}^{*}(2)=0 \text { or }-1, \\
& J_{1}(1)=2 \quad \text { with } \quad \mu_{1}^{*}(1)=0, \\
& J_{1}(0)=6 \quad \text { with } \quad \mu_{1}^{*}(0)=0 \text { or } 1, \\
& J_{1}(-1)=12 \quad \text { with } \quad \mu_{1}^{*}(-1)=1 \text {, } \\
& J_{1}(-2)=22 \text { with } \mu_{1}^{*}(-2)=1 .
\end{aligned}
$$

Similarly, using the the Dynamic Programming Algorithm for $k=0$,

$$
J_{0}\left(x_{0}\right)=\min _{u_{0} \in\{-1,0,1\}} \underset{w_{0}}{E}\left\{u_{0}^{2}+J_{1}\left(x_{0}+u_{0}+w_{0}\right)\right\}
$$

gives

$$
J_{0}(0)=5 \quad \text { with } \quad \mu_{0}^{*}(2)=1
$$

iii) Effect of adding $\left(x_{0}-x_{0}^{*}\right)^{2}$: There won't be any effect on the optimal policy since it is a fixed constant value.
b) Continuous input case where $u_{k} \in[-1,1]$ for $k=0,1$:
i) Optimal cost-to-go and the optimal policy for $x_{1}=2,1$, and -2

Terminal cost: $\left(x_{2}-x_{2}^{*}\right)^{2}=J_{2}\left(x_{2}\right)$
Now, using the the Dynamic Programming Algorithm for $k=1$ gives

$$
\begin{align*}
J_{1}\left(x_{1}\right)= & \min _{u_{1} \in[-1,1]} \mathbb{E}_{w_{1}}\left\{\left(x_{1}-x_{1}^{*}\right)^{2}+u_{1}^{2}+J_{2}\left(x_{1}+u_{1}+w_{1}\right)\right\} \\
= & \min _{u_{1} \in[-1,1]}\left\{\left(x_{1}-x_{1}^{*}\right)^{2}+u_{1}^{2}+0.5\left(x_{1}+u_{1}+1-x_{2}^{*}\right)^{2}\right. \\
& \left.+0.5\left(x_{1}+u_{1}-1-x_{2}^{*}\right)^{2}\right\} . \tag{1}
\end{align*}
$$

Since u_{1}^{2} in (1) has a positive coefficient, the minimization can be done by setting the derivative with respect to u_{1} to zero.

$$
0=4 u_{1}+2 x_{1}-2 x_{2}^{*} .
$$

This implies,

$$
\begin{equation*}
\mu_{1}\left(x_{1}\right)=\frac{x_{2}^{*}-x_{1}}{2} \tag{2}
\end{equation*}
$$

Now, for $x_{1}=2$ and 1 a straight forward substitution yields,

$$
\begin{aligned}
\mu_{1}^{*}\left(x_{1}=2\right)=-0.5 & J_{1}\left(x_{1}=2\right)=1.5 \\
\mu_{1}^{*}\left(x_{1}=1\right)=0 & J_{1}\left(x_{1}=1\right)=2
\end{aligned}
$$

For $x_{1}=-2$ an additional step is required since $\mu_{1}\left(x_{1}=-2\right)=1.5$ is not a feasible input. Since the function to be minimized in (1) is monotonically decreasing in u_{1} 's feasible range $[-1,1], \mu_{1}\left(x_{1}=-2\right)=1$ is the feasible minimizer. Finally,

$$
\mu_{1}^{*}\left(x_{1}=-2\right)=1 \quad \Longrightarrow \quad J_{1}\left(x_{1}=-2\right)=22
$$

