[^0]
Solutions

Duration:

Number of Problems:

Permitted Aids:

45 minutes 3

None.
Use only the prepared sheets for your solutions.

Problem 1

Consider the system equation

$$
\tilde{x}_{k+1}=\tilde{f}_{k}\left(\tilde{x}_{k}, \tilde{x}_{k-2}, \tilde{u}_{k}\right),
$$

and the cost

$$
\tilde{g}_{N}\left(\tilde{x}_{N}\right)+\sum_{k=0}^{N-1} \tilde{g}_{k}\left(\tilde{x}_{k}, \tilde{x}_{k-2}, \tilde{u}_{k}\right) .
$$

Reformulate this problem in the form of the basic problem that can directly be solved with the Dynamic Programming Algorithm, that is bring the problem in the form

$$
x_{k+1}=f_{k}\left(x_{k}, u_{k}\right),
$$

with the cost

$$
g_{N}\left(x_{N}\right)+\sum_{k=0}^{N-1} g_{k}\left(x_{k}, u_{k}\right) .
$$

Solution 1

Introducing the new state variable

$$
x_{k}=\left[\begin{array}{l}
x_{1, k} \\
x_{2, k} \\
x_{3, k}
\end{array}\right]:=\left[\begin{array}{c}
\tilde{x}_{k} \\
\tilde{x}_{k-1} \\
\tilde{x}_{k-2}
\end{array}\right],
$$

and the input variable $u_{k}:=\tilde{u}_{k}$, we can rewrite the system equation

$$
x_{k+1}:=\left[\begin{array}{c}
\tilde{x}_{k+1} \tag{1}\\
\tilde{x}_{k} \\
\tilde{x}_{k-1}
\end{array}\right]=\left[\begin{array}{c}
\tilde{f}_{k}\left(\tilde{x}_{k}, \tilde{x}_{k-2}, \tilde{u}_{k}\right) \\
\tilde{x}_{k} \\
\tilde{x}_{k-1}
\end{array}\right]=\left[\begin{array}{c}
\tilde{f}_{k}\left(x_{1, k}, x_{3, k}, u_{k}\right) \\
x_{1, k} \\
x_{2, k}
\end{array}\right]=: f_{k}\left(x_{k}, u_{k}\right)
$$

The cost becomes

$$
\begin{align*}
\tilde{g}_{N}\left(\tilde{x}_{N}\right)+\sum_{k=0}^{N-1} \tilde{g}_{k}\left(\tilde{x}_{k}, \tilde{x}_{k-2}, \tilde{u}_{k}\right) & =\tilde{g}_{N}\left(x_{N, 1}\right)+\sum_{k=0}^{N-1} \tilde{g}_{k}\left(x_{1, k}, x_{3, k}, u_{k}\right) \\
& =g_{N}\left(x_{N}\right)+\sum_{k=0}^{N-1} g_{k}\left(x_{k}, u_{k}\right) \tag{2}
\end{align*}
$$

where we defined $g_{N}\left(x_{N}\right):=\tilde{g}_{N}\left(x_{1, N}\right)$ and $g_{k}\left(x_{k}, u_{k}\right):=\tilde{g}_{k}\left(x_{1, k}, x_{3, k}, u_{k}\right)$. The system equation (1) and the cost (2) are in the desired form of the basic problem.

Problem 2

Consider the cost g_{k} at stage k :

$$
g_{k}\left(x_{k}, u_{k}, w_{k}\right)=x_{k}^{2}+2 x_{k} u_{k} w_{k}+2 w_{k}^{2}
$$

and the conditional probability distribution for w_{k}

$$
\begin{array}{rr}
P\left(w_{k}=0 \mid x_{k}=0\right)=\frac{1}{2} & P\left(w_{k}=-1 \mid x_{k}=1\right)=\frac{1}{6} \\
P\left(w_{k}=1 \mid x_{k}=0\right)=\frac{1}{2} & P\left(w_{k}=0 \mid x_{k}=1\right)=\frac{1}{2} \\
P\left(w_{k}=1 \mid x_{k}=1\right)=\frac{1}{3}
\end{array}
$$

Given the state $x_{k}=1$ and the input $u_{k}=2$, compute the expected value

$$
\underset{w_{k}}{E}\left(g_{k}\left(x_{k}, u_{k}, w_{k}\right)\right)
$$

Solution 2

In general, the expected value of a function $f(\cdot)$ of a discrete random variable W that takes the discrete values $w_{1}, w_{2}, \ldots, w_{N}$ with probability distribution $P\left(w_{i} \mid x_{k}\right)$ conditioned on x_{k} is

$$
E(f(W))=\sum_{i=1}^{N} f\left(w_{i}\right) P\left(w_{i} \mid x_{k}\right)
$$

For the given problem, since $x_{k}=1$ is given, the expected value of g_{k} is

$$
\begin{aligned}
E\left(g_{k}\left(x_{k}, u_{k}, w_{k}\right)\right)= & \sum_{i=1}^{3} g_{k}\left(x_{k}=1, u_{k}=2, w_{i}\right) P\left(w_{i} \mid x_{k}=1\right) \\
= & \frac{1}{6} g_{k}(1,2,-1)+\frac{1}{2} g_{k}(1,2,0)+\frac{1}{3} g_{k}(1,2,1) \\
= & \frac{1}{6} \cdot\left(1^{2}+2 \cdot 1 \cdot 2 \cdot(-1)+2 \cdot(-1)^{2}\right) \\
& +\frac{1}{2} \cdot\left(1^{2}+2 \cdot 1 \cdot 2 \cdot 0+2 \cdot 0^{2}\right) \\
& +\frac{1}{3} \cdot\left(1^{2}+2 \cdot 1 \cdot 2 \cdot 1+2 \cdot 1^{2}\right) \\
= & -\frac{1}{6}+\frac{1}{2}+\frac{7}{3} \\
= & \frac{8}{3}
\end{aligned}
$$

Problem 3

50%
Consider the dynamic system

$$
x_{k+1}=x_{k}+u_{k}, \quad x_{k}, u_{k} \in \mathbb{R},
$$

with initial state x_{0}. The cost function to be minimized is given by

$$
x_{2}^{2}+u_{0}^{2}+u_{1}^{2} .
$$

Apply the Dynamic Programming algorithm to find the optimal control policy $u_{k}^{*}=\mu_{k}^{*}\left(x_{k}\right), k=$ 0,1 , for the following two cases:
a) no constraints on u_{k}.
b) $\quad u_{k}$ can only take the values 1 and -1 .

Solution 3

The optimal control problem is considered over a time horizon $N=2$ and the cost, to be minimized, is defined by

$$
g_{2}\left(x_{2}\right)=x_{2}^{2} \quad \text { and } \quad g_{k}\left(x_{k}, u_{k}, w_{k}\right)=u_{k}^{2}, \quad k=0,1
$$

a) With $u_{k} \in \mathbb{R}$ and no further constraints, the DP algorithm proceeds as follows:

2nd stage:

$$
J_{2}\left(x_{2}\right)=x_{2}^{2}
$$

1st stage:

$$
J_{1}\left(x_{1}\right)=\min _{u_{1}}\left[u_{1}^{2}+J_{2}\left(x_{2}\right)\right]=\min _{u_{1}} \underbrace{\left[u_{1}^{2}+\left(x_{1}+u_{1}\right)^{2}\right]}_{L_{1}\left(x_{1}, u_{1}\right)}
$$

Since u_{1} is continuous, the minimizing input is found by

$$
\frac{\partial L_{1}}{\partial u_{1}}=2 u_{1}+2\left(x_{1}+u_{1}\right) \stackrel{!}{=} 0 \quad \Leftrightarrow \quad u_{1}=-\frac{1}{2} x_{1}
$$

The sufficient condition $\frac{\partial^{2} L_{1}}{\partial u_{1}^{2}}>0$ is satisfied. Therefore,

$$
\begin{aligned}
& \Rightarrow \mu_{1}^{*}\left(x_{1}\right)=u_{1}^{*}=-\frac{1}{2} x_{1} \quad \forall x_{1} \in \mathbb{R} \\
& \Rightarrow J_{1}\left(x_{1}\right)=\frac{1}{2} x_{1}^{2}
\end{aligned}
$$

0th stage:

$$
J_{0}\left(x_{0}\right)=\min _{u_{0}}\left[u_{0}^{2}+J_{1}\left(x_{1}\right)\right]=\min _{u_{0}} \underbrace{\left[u_{0}^{2}+\frac{1}{2}\left(x_{0}+u_{0}\right)^{2}\right]}_{L_{0}\left(x_{0}, u_{0}\right)}
$$

Again, since u_{0} is continuous, the minimizing input is found by

$$
\frac{\partial L_{0}}{\partial u_{0}}=2 u_{0}+\left(x_{0}+u_{0}\right) \stackrel{!}{=} 0 \quad \Leftrightarrow \quad u_{0}=-\frac{1}{3} x_{0}
$$

The sufficient condition $\frac{\partial^{2} L_{0}}{\partial u_{0}^{2}}>0$ is satisfied. Therefore,

$$
\begin{aligned}
& \Rightarrow \mu_{0}^{*}\left(x_{0}\right)=u_{0}^{*}=-\frac{1}{3} x_{0} \quad \forall x_{0} \in \mathbb{R} \\
& \Rightarrow J_{0}\left(x_{0}\right)=\frac{1}{3} x_{0}^{2}
\end{aligned}
$$

b) For the constrained set $u_{k} \in\{-1,1\}$, the DP algorithm results in:

2nd stage:

$$
J_{2}\left(x_{2}\right)=x_{2}^{2}
$$

1st stage:

$$
\begin{aligned}
J_{1}\left(x_{1}\right) & =\min _{u_{1}}\left[u_{1}^{2}+\left(x_{1}+u_{1}\right)^{2}\right]=1+\min _{u_{1}}\left[\left(x_{1}+u_{1}\right)^{2}\right] \\
& =2+x_{1}^{2}+2 \cdot \min _{u_{1}}\left[x_{1} u_{1}\right]
\end{aligned}
$$

Depending on the sign of x_{1},

$$
\operatorname{sgn}\left(x_{1}\right)=\left\{\begin{array}{lll}
1 & \text { for } \quad x_{1} \geq 0 \\
-1 & \text { for } \quad x_{1}<0
\end{array}\right.
$$

the minimizing input u_{1}^{*} is found as

$$
\begin{aligned}
& \Rightarrow \mu_{1}^{*}\left(x_{1}\right)=u_{1}^{*}=-\operatorname{sgn}\left(x_{1}\right) \quad \forall x_{1} \in \mathbb{R} \\
& \Rightarrow J_{1}\left(x_{1}\right)=1+\left(1-\left|x_{1}\right|\right)^{2}=2+x_{1}^{2}-2\left|x_{1}\right|
\end{aligned}
$$

0th stage:

$$
\begin{aligned}
J_{0}\left(x_{0}\right) & =\min _{u_{0}}\left[u_{0}^{2}+J_{1}\left(x_{1}\right)\right]=\min _{u_{0}}\left[u_{0}^{2}+1+\left(1-\left|x_{0}+u_{0}\right|\right)^{2}\right] \\
& =2+\min _{u_{0}}\left[\left(1-\left|x_{0}+u_{0}\right|\right)^{2}\right] \\
& =4+x_{0}^{2}+2 \cdot \min _{u_{0}}\left[x_{0} u_{0}-\left|x_{0}+u_{0}\right|\right]
\end{aligned}
$$

Distinguishing the cases $x_{0}<-1,-1 \leq x_{0} \leq 1$ and $x_{0}>1$, yields

$$
\mu_{0}^{*}\left(x_{0}\right)=u_{0}^{*}=\left\{\begin{array}{lcc}
1 & \text { for } & x_{0}<-1 \\
\pm 1 & \text { for } & -1 \leq x_{0} \leq 1 \\
-1 & \text { for } & x_{0}>1
\end{array}\right.
$$

In short, one optimal solution is

$$
\begin{aligned}
& \Rightarrow \mu_{0}^{*}\left(x_{0}\right)=u_{0}^{*}=-\operatorname{sgn}\left(x_{0}\right) \quad \forall x_{0} \in \mathbb{R} \\
& \Rightarrow J_{0}\left(x_{0}\right)=\left\{\begin{array}{cl}
2+x_{0}^{2} & \text { for }-1 \leq x_{0} \leq 1 \\
6+x_{0}^{2}-4\left|x_{0}\right| & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

[^0]: Dynamic Programming \& Optimal Control (151-0563-00) Prof. R. D'Andrea

