
Final Exam January 22, 2013

Dynamic Programming & Optimal Control (151-0563-00) Angela Schoellig

Solutions

Exam Duration: 150 minutes

Number of Problems: 4

Permitted aids: One A4 sheet of paper.

Use only the provided sheets for your solutions.
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Problem 1 25%

Consider the following discrete-time system

xk+1 = xk + uk + wk, xk, uk, wk ∈ R, k = 0, 1,

where xk is the state of the system at stage k, uk is the input and wk is a (piecewise) continuous
disturbance uniformly distributed between−1 and +1. Finally, the cost function to be minimized
is given by

E
w0,w1

{
x22 + u20 + u21

}
.

a) Explain what the cost E
w0,w1

{
x22 + u20 + u21

}
penalizes.

b) Find the optimal policy u∗1 = µ1(x1) and the optimal cost-to-go J1(x1)
1.

c) Assume wk = 0 for all k, i.e. there is no disturbance. Find the optimal policy u∗1 = µ1(x1)
and the optimal cost-to-go J1(x1).

d) Compare the optimal cost-to-go in b) and c) and give an intuitive explanation for your
observation.

e) How does the optimal policy change in c) if the input is constrained by 0 ≤ uk ≤ 1 for all
k ?

1Hint: Let x be a continuous random variable with probability density function p(x). The expected value of
an arbitrary function g(x) is given by

E {g(x)} =

∫ +∞

−∞
g(x)p(x)dx.
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Solution 1

a) The cost penalizes the control effort and the final state error, i.e. the deviation of the
final state from zero; the solution will be a trade-off between minimizing the input and
minimizing the final state error.

b) The optimal control problem is considered over a time horizon N = 2 and the cost to be
minimized is defined by

g2(x2) = x22 and gk(xk, uk, wk) = u2k, k = 0, 1.

We apply the Dynamic Programming Algorithm:
Stage 2:

J2(x2) = g2(x2) = x22.

Stage 1:

J1(x1) = min
u1

[
Ew1

{
u21 + J2(x2)

}]
= min

u1

[
Ew1

{
u21 + (x1 + u1 + w1)

2
}]

= min
u1

[
Ew1

{
u21 + (x1 + u1)

2 + w2
1 + (x1 + u1)w1

}]
= min

u1

[
u21 + (x1 + u1)

2 + Ew1{w2
1}+ (x1 + u1)Ew1{w1}

]
Now, using Ew1{w1} = 0 and Ew1{w2

1} =
∫ +1
−1 w

2
1p(w1)dw1 = 1

2

∫ +1
−1 w

2
1dw1 = 1

3 ,

J1(x1) = min
u1

[
u21 + (x1 + u1)

2 +
1

3

]
=: min

u1

C1(u1).

The minimum is attained at a u1 for which the gradient with respect to u1 is zero; that is,

∂C1

∂u1
= 2u1 + 2(x1 + u1) = 0 ⇒ u1 = −1

2
x1.

Since the second derivative ∂2C1

∂u2
1

= 4 > 0, u1 = −1
2x1 is the minimizing input.

Finally, the corresponding optimal cost-to-go is given by

J∗1 (x1) =
1

2
x21 +

1

3
.

c) Similar calculations as in the above part yield

u∗1 = −1

2
x1 and J∗1 (x1) =

1

2
x21.

d) Although the optimal policies are the same, due to the quadratic term x22 in the cost and
the linear term of the disturbance in the dynamics with coefficient 1, the expected value
of the optimal cost-to-go in the presence of a disturbance is increased by the variance of
the disturbance w1, Ew1{w2

1} = 1
3 , compared to the case where there is no disturbance.

e) We obtain:

1. if x1 ≤ −2: u∗1 = 1,

2. if −2 < x1 ≤ 0: u∗1 = −1
2x1,

3. if x1 > 0: u∗1 = 0.
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Problem 2 25%

Consider the transition graph shown in Figure 1.
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Figure 1: Transition graph of the shortest path problem.

a) Calculate the shortest path from node 1 to node 12 and the corresponding optimal cost
using the Label Correcting Algorithm. Use the depth-first (last-in/first-out) method to
determine at each iteration which node exits the OPEN bin.
Instructions: If a node that is already in the OPEN bin enters the OPEN bin again, remove
the one that has already been in the OPEN bin. If two nodes enter the OPEN bin in the same
iteration, add the one with the largest node number first. Example: OPEN bin: 2, 3, 4; Node
exiting OPEN: 2 (nodes entering OPEN: 3, 7); new OPEN bin: 3, 7, 4; Node exiting OPEN: 3.
From a secret source you know that the distance from 1 to 12 is smaller than 13. Make
use of this information.
Solve the problem by populating a table of the following form2: State the resulting shortest

Iteration Node exiting OPEN OPEN d1 d2 d3 ... d12
0 - ...
1 1 ...

path and its associated cost.

b) Assume all nodes are on a grid as indicated in Figure 1. The problem is again to find the
shortest path from node 1 to node 12. The distance dij between two nodes i and j satisfies
the following equation:

dij ≥ |ri − rj |+ |ci − cj | ,
where ri is the number of the row of node i and ci is the number of the column of node i.
Use this information to strengthen the condition on whether a node enters the OPEN bin
of the algorithm that was given in a). Solve the problem by populating a similar table.

c) Can this problem also be solved using the backwards Dynamic Programming Algorithm?
Give a short explanation.

d) Can this problem also be solved using the forward Dynamic Programming Algorithm?
Give a short explanation.

2Please use the paper in landscape orientation for the table.
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Solution 2

a) Iter. Node
exiting
OPEN

OPEN d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12

0 - 1 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 13
1 1 2, 3, 4 0 2 8 5 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 13
2 2 3, 7, 4 0 2 3 5 ∞ ∞ 6 ∞ ∞ ∞ ∞ 13
3 3 5, 6, 7, 4 0 2 3 5 9 5 6 ∞ ∞ ∞ ∞ 13
4 5 9, 6, 7, 4 0 2 3 5 9 5 6 ∞ 11 ∞ ∞ 13
5 9 6, 7, 4 0 2 3 5 9 5 6 ∞ 11 ∞ ∞ 13
6 6 9, 7, 4 0 2 3 5 9 5 6 ∞ 6 ∞ ∞ 13
7 9 10, 7, 4 0 2 3 5 9 5 6 ∞ 6 8 ∞ 11
8 10 7, 4 0 2 3 5 9 5 6 ∞ 6 8 ∞ 10
9 7 4 0 2 3 5 9 5 6 ∞ 6 8 ∞ 10
10 4 8 0 2 3 5 9 5 6 7 6 8 ∞ 10
11 8 11 0 2 3 5 9 5 6 7 6 8 9 10
12 11 - 0 2 3 5 9 5 6 7 6 8 9 10

Optimal path: 1 7→ 2 7→ 3 7→ 6 7→ 9 7→ 10 7→ 12 Cost: 10

b) Iter. Node
exiting
OPEN

OPEN d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12

0 - 1 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 13
1 1 2, 3, 4 0 2 8 5 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 13
2 2 3, 7, 4 0 2 3 5 ∞ ∞ 6 ∞ ∞ ∞ ∞ 13
3 3 6, 7, 4 0 2 3 5 ∞ 5 6 ∞ ∞ ∞ ∞ 13
4 6 9, 7, 4 0 2 3 5 ∞ 5 6 ∞ 6 ∞ ∞ 13
5 9 10, 7, 4 0 2 3 5 ∞ 5 6 ∞ 6 8 ∞ 11
6 10 7, 4 0 2 3 5 ∞ 5 6 ∞ 6 8 ∞ 10
7 7 4 0 2 3 5 ∞ 5 6 ∞ 6 8 ∞ 10
8 4 - 0 2 3 5 ∞ 5 6 ∞ 6 8 ∞ 10

Optimal path: 1 7→ 2 7→ 3 7→ 6 7→ 9 7→ 10 7→ 12 Cost: 10

c) Yes, a shortest path problem can be converted to a deterministic Dynamic Programming problem.

d) Yes, since the optimal control problem is deterministic.
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Problem 3 25%

Consider a sufficiently wide and straight river, where the water speed v linearly increases with
the distance x2 from the river bank, i.e. v(x2) = ax2, where a > 0, x2 > 0.

x2

x1river bank

v = ax2

The dynamics of a boat on the river is given by

ẋ1(t) = ax2(t) + u1(t),

ẋ2(t) = u2(t), t ∈ [0, T ], x1(0) = 0, x2(0) = 0,

where x1 is the position of the boat along the straight river bank, x2 is the distance from the
river bank, u1, u2 are the inputs along x1 and x2, and T is fixed.
The control objective is to maximize x1(T ), the distance travelled along the river bank. Note
that the objective does not require x2(T ) to be zero.

a) Find the optimal input (u∗1(t), u
∗
2(t)) for t ∈ [0, T ] under the constraints |u1| ≤ 1 and

|u2| ≤ 1.

b) Find the optimal input (u∗1(t), u
∗
2(t)) for t ∈ [0, T ] under the constraint u21 + u22 ≤ 1.
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Solution 3

The boundary conditions of the continuous-time optimal control problem are x1(0) = 0 and
x2(0) = 0. The objective is to minimize −x1(T ). Let x := (x1, x2)

T, u := (u1, u2)
T and

p := (p1, p2)
T.

Applying the Minimum Principle:

With stage cost g(x, u) = 0 and terminal cost h(x) = −x1(T ) the Hamiltonian is given by

H(x, u, p) = 0 +
[
p1 p2

] [ ax2 + u1
u2

]
= p1(ax2 + u1) + p2u2.

The adjoint equations

ṗ1(t) = −∂H
∂x1

= 0, ⇒ p1(t) = constant for t ∈ [0, T ],

ṗ2(t) = −∂H
∂x2

= −ap1(t)

with the boundary condition

p1(T ) =
∂h

∂x1
= −1 and p2(T ) =

∂h

∂x2
= 0

result in
p1(t) = −1 and p2(t) = a(t− T ).

The optimal input (u∗1(t), u
∗
2(t)) is obtained by minimizing the Hamiltonian along the optimal

trajectory

u∗(t) = argmin
(u1,u2)

[−(ax2 + u1) + a(t− T )u2]

= argmin
(u1,u2)

[−u1 − a(T − t)u2] =: argmin
(u1,u2)

[Ct] , t ∈ [0, T ]. (1)

a) |u1| ≤ 1 and |u2| ≤ 1:
Since the Hamiltonian is linear in u1, u2 with negative coefficients, the minimizing input
is given by (u∗1(t), u

∗
2(t)) = (1, 1), t ∈ [0, T ].

b) u21 + u22 ≤ 1:
Method 1: Since the Hamiltonian is linear in u1, u2 and the constraint set is convex the
optimal solution will lie on the border, i.e. u1 =

√
1− u22. Note that u1 = −

√
1− u22 is

not an optimal candidate due to the negative coefficient of u1 in the Hamiltonian, which
needs to be minimized.

This implies,

u∗2(t) = argmin
u2

[
−
√

1− u22 − a(T − t)u2
]

=: argmin
u2

[
C̄t(u2)

]
. (2)

The minimum is attained at a u2 for which the gradient with respect to u2 is zero; that is,

∂C̄t

∂u2
=

u2√
1− u22

− a(T − t) = 0 ⇒ u2 =
a(T − t)√

1 + a2(T − t)2
.
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Since the second derivative

∂2C̄t

∂u22

∣∣∣∣
u2=

a(T−t)√
1+a2(T−t)2

= (1 + a2(T − t)2)
3
2 > 0,

u2 = a(T−t)√
1+a2(T−t)2

is the minimizing input.

Note that here again we exclude u2 = − a(T−t)√
1+a2(T−t)2

from the optimal candidate due to

the negative coefficient of u2 in the Hamiltonian, which needs to be minimized. Finally
the optimal input is given by

(u∗1(t), u
∗
2(t)) = (

1√
1 + a2(T − t)2

,
a(T − t)√

1 + a2(T − t)2
)

Method 2:(graphical)

u1 = −a(T − t)u2

θ

u21 + u22 = 1

u1 = −a(T − t)u2 − Ct

−Ct

θ = tan−1(a(T − t))

(u∗1, u
∗
2)

u1

u2

Graphically, minimizing Ct translates into maximizing the intercept −Ct of the line u1 =
−a(T − t)u2 − Ct. This yields

(u∗1(t), u
∗
2(t)) = (

1√
1 + a2(T − t)2

,
a(T − t)√

1 + a2(T − t)2
).
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Problem 4 25%

Mr. Lucky’s goal in life is to win the jackpot in a lottery and become rich. The three cities
Lefttown (L), Middletown (M), and Righttown (R) offer daily lotteries. Let xk ∈ {L,M,R}
is the location of Mr. Lucky on the kth day. However, he is only allowed to participate in the
lottery of the city in which he is currently staying. Each day he wins either a ticket to go to
another city, a hotel voucher to stay in his current city, or the jackpot. He is always making
use of his prize on the same day. If he wins the jackpot, he retires and lives happily ever after
(xk = T ).
The above stochastic shortest path problem is represented by the following transition graph:

L M R

T

pLM (u)

pLL(u)

pLT (u)

pML(u)

pMM (u)

pMR(u)

pMT (u)

pRM (u)

pRR(u)

pRT (u)

pTT (u)
Every city’s lottery is offering different plans from which Mr. Lucky can choose each day (e.g.
if he is in city L he can choose lottery plan aL or bL),

U(L) = {aL, bL}
U(M) = {aM , bM , cM}
U(R) = {aR, bR}
U(T ) = {aT },

resulting in different probabilities for winning the prizes:
pLL(aL) = 1/2 pML(aM ) = 1/4 pMR(bM ) = 0 pRR(aR) = 1/2 pTT (aT ) = 1.

pLM (aL) = 1/4 pMM (aM ) = 0 pMT (bM ) = 3/4 pRM (aR) = 1/4

pLT (aL) = 1/4 pMR(aM ) = 1/4 pML(cM ) = 1/4 pRT (aR) = 1/4

pLL(bL) = 1/2 pMT (aM ) = 1/2 pMM (cM ) = 1/4 pRR(bR) = 0

pLM (bL) = 1/2 pML(bM ) = 0 pMR(cM ) = 1/4 pRM (bR) = 1/2

pLT (bL) = 0 pMM (bM ) = 1/4 pMT (cM ) = 1/4 pRT (bR) = 1/2

The objective is to find a stationary policy µ(xk) for Mr. Lucky that minimizes the expected time to win
the jackpot starting from a given initial city i ∈ {L,M,R}, i.e. a policy that minimizes the following
cost

Jπ(i) = lim
N→∞

E

{
N−1∑
k=0

g (xk, µ (xk)) |x0 = i

}
with g(xk, µ(xk)) =

{
0 if xk = T,

1 otherwise.

Note: Part a) and b) can be solved independently.

a) Find the optimal policy µ(xk), xk ∈ {L,M,R} for the given problem using policy iteration.
Start with evaluating the initial policies µ0(L) = aL, µ0(M) = cM , and µ0(R) = aR.

b) Using value iteration, perform two iterations for the given problem and state the minimiz-
ing inputs at each iteration. Start with the initial values J0(L) = J0(M) = J0(R) = 4.

c) How do you know when to terminate the value iteration algorithm?
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Solution 4

a) Iteration 1:
Policy evaluation:

J1(L) = 1 + pLL(aL)J1(L) + pLM (aL)J1(M) + pLT (aL) J1(T )︸ ︷︷ ︸
=0

= 1 +
1

2
J1(L) +

1

4
J1(M)

⇒ J1(L) = 2 +
1

2
J1(M) (3)

J1(R) = 1 + pRR(aR)J1(R) + pRM (aR)J1(M) + pRT (aR) J1(T )︸ ︷︷ ︸
=0

= 1 +
1

2
J1(R) +

1

4
J1(M)

⇒ J1(R) = 2 +
1

2
J1(M) (4)

J1(M) = 1 + pML(cM )J1(L) + pMM (cM )J1(M) + pMR(cM )J1(R) + pMT (cM ) J1(T )︸ ︷︷ ︸
=0

= 1 +
1

4
J1(L) +

1

4
J1(M) +

1

4
J1(R)

using (3) and (4)
= 2 +

1

2
J1(M) = 4

⇒ J1(L) = J1(M) = J1(R) = 4

Policy improvement:

µ1(L) = argmin
u∈U(L)

[
1 + pLL(aL)J1(L) + pLM (aL)J1(M), 1 + pLL(bL)J1(L) + pLM (bL)J1(M)

]
= argmin

u∈U(L)
[4, 5] = aL

µ1(R) = argmin
u∈U(R)

[
1 + pRR(aR)J1(R) + pRM (aR)J1(M), 1 + pRR(bR)J1(R) + pRM (bR)J1(M)

]
= argmin

u∈U(R)
[4, 3] = bR

µ1(M) = argmin
u∈U(M)

[
1 + pML(aM )J1(L) + pMM (aM )J1(M) + pMR(aM )J1(R),

1 + pML(bM )J1(L) + pMM (bM )J1(M) + pMR(bM )J1(R),

1 + pML(cM )J1(L) + pMM (cM )J1(M) + pMR(cM )J1(R)
]

= argmin
u∈U(M)

[3, 2, 4] = bM
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Iteration 2:
Policy evaluation:

J2(L) = 1 + pLL(aL)J2(L) + pLM (aL)J2(M)

= 1 +
1

2
J2(L) +

1

4
J2(M)

⇒ J2(L) = 2 +
1

2
J2(M) (5)

J2(R) = 1 + pRR(bR)J2(R) + pRM (bR)J2(M)

⇒ J2(R) = 1 +
1

2
J2(M) (6)

J2(M) = 1 + pML(bM )J2(L) + pMM (bM )J2(M) + pMR(bM )J2(R)

using (5) and (6)
= 1 +

1

4
J2(M)

⇒ J2(M) =
4

3
, J2(L) =

8

3
, J2(R) =

5

3

Policy improvement:

µ2(L) = argmin
u∈U(L)

[
1 + pLL(aL)J2(L) + pLM (aL)J2(M), 1 + pLL(bL)J2(L) + pLM (bL)J2(M)

]
= argmin

u∈U(L)

[
8

3
,
9

3

]
= aL

µ2(R) = argmin
u∈U(R)

[
1 + pRR(aR)J2(R) + pRM (aR)J2(M), 1 + pRR(bR)J2(R) + pRM (bR)J2(M)

]
= argmin

u∈U(R)

[
13

6
,
10

6

]
= bR

µ2(M) = argmin
u∈U(M)

[
1 + pML(aM )J2(L) + pMM (aM )J2(M) + pMR(aM )J2(R),

1 + pML(bM )J2(L) + pMM (bM )J2(M) + pMR(bM )J2(R),

1 + pML(cM )J2(L) + pMM (cM )J2(M) + pMR(cM )J2(R)
]

= argmin
u∈U(M)

[
25

12
,
16

12
,
29

12

]
= bM

Iteration 3:
Policy evaluation:

⇒ J3(M) =
4

3
, J3(L) =

8

3
, J3(R) =

5

3

Since J3(i) = J2(i) holds for all nodes i the policy iteration algorithm has converged.
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b) Iteration 1:

J1(L) = min
[
1 + pLL(aL)J0(L) + pLM (aL)J0(M), 1 + pLL(bL)J0(L) + pLM (bL)J0(M)

]
= min [4, 5] = 4⇒ u1(L) = aL

J1(R) = min
[
1 + pRR(aR)J0(R) + pRM (aR)J0(M), 1 + pRR(bR)J0(R) + pRM (bR)J0(M)

]
= min [4, 3] = 3⇒ u1(R) = bR

J1(M) = min
[
1 + pMR(aM )J0(R) + pMM (aM )J0(M) + pML(aM )J0(L),

1 + pMR(bM )J0(R) + pMM (bM )J0(M) + pML(bM )J0(L),

1 + pMR(cM )J0(R) + pMM (cM )J0(M) + pML(cM )J0(L)
]

= min [3, 2, 4] = 2⇒ u1(R) = bM

Iteration 2:

J2(L) = min
[
1 + pLL(aL)J1(L) + pLM (aL)J1(M), 1 + pLL(bL)J1(L) + pLM (bL)J1(M)

]
= min

[
7

2
,
8

2

]
=

7

2
⇒ u2(L) = aL

J2(R) = min
[
1 + pRR(aR)J1(R) + pRM (aR)J1(M), 1 + pRR(bR)J1(R) + pRM (bR)J1(M)

]
= min [3, 2] = 2⇒ u2(R) = bR

J2(M) = min
[
1 + pMR(aM )J1(R) + pMM (aM )J1(M) + pML(aM )J1(L),

1 + pMR(bM )J1(R) + pMM (bM )J1(M) + pML(bM )J1(L),

1 + pMR(cM )J1(R) + pMM (cM )J1(M) + pML(cM )J1(L)
]

= min

[
11

4
,
6

4
,
13

4

]
=

3

2
⇒ u2(R) = bM

c) Value iteration requires the definition of a stopping criterion, e.g. Jk(i)− Jk−1(i) < ε for
all nodes i. If this stopping criterion is fulfilled, the algorithm is terminated. However, it
is not guaranteed that the policy has converged.


