
Final Recitation Class Dec 12th, 2012

Dynamic Programming & Optimal Control (151-0563-00) Mohanarajah G.

Examples

Number of Examples: 7



Final Recitation Class – Dynamic Programming & Optimal Control Page 1

Example 1

A burglar broke into a house and found N ∈ Z+ items1. Let vi > 0 denote the value and wi ∈ Z+

the weight of the ith item. There is a limit, W ∈ Z+, on the total weight the burglar can carry
(the total weight of all stolen items must be less than or equal to W ) and obviously he wants to
maximize the total value of the items that he can take.

a) Case A: A burglar who did not take the Dynamic Programming and Optimal Control class

How many different combinations of items does the burglar have to consider to find the
combination with the highest value that he can take?

b) Case B: A burglar who did take the Dynamic Programming and Optimal Control class

b.1) Formulate the burglar’s problem by defining the state space, control space, system
dynamics, stage cost and terminal cost.

b.2) State the Dynamic Programming Algorithm that is required to solve the burglar’s prob-
lem.

b.3) Using the Dynamic Programming Algorithm from b.2, solve the burglar’s problem where
N = 3, W = 5, v1 = 6, v2 = 10, v3 = 12, w1 = 1, w2 = 2 and w3 = 3.

c) Briefly compare Case A and Case B in terms of computational cost.

1Z+ denotes the set of positive integers



Final Recitation Class – Dynamic Programming & Optimal Control Page 2

Solution 1

a) 2N (Cardinality of the power set)

b) b.1) Let xk, k > 1, be the total weight of the items the burglar has decided to take from
the set of {1, .., k − 1} items and x1 = 0. Furthermore, let uk ∈ {0, 1} be the binary
decision variable that controls if item k goes into the burglar’s bag or not.

State space Sk ∈ [0,W ] ⊂ {0,Z+}, k = 1, . . . , N + 1.
Control space Uk: if xk + wkuk > W , Uk = {0} else, Uk = {0, 1}, k = 1, . . . , N.
System dynamics: xk+1 = xk + wkuk, x1 = 0, k = 1, . . . , N.
Stage cost: gk(xk, uk) = −vkuk, k = 1, . . . , N.
Terminal cost: gN+1(xN+1) = 0, ∀xN+1 ∈ SN+1.

b.2) Now applying the Dynamic Programming Algorithm (DPA) gives

JN+1(xN+1) = gN+1(xN+1) = 0, ∀xN+1 ∈ SN+1

Jk(xk) = min
uk

{−vkuk + Jk+1(xk+1)}, k = 1, . . . , N.

b.3) Applying the above DPA for N = 3, W = 5, v1 = 6, v2 = 10, v3 = 12, w1 = 1, w2 = 2
and w3 = 3, gives:
J4(x4) = 0, ∀x4 ∈ {0, 1, 2, 3, 4, 5}
k = 3

J3(0) = min{−12 · 0 + J4(0 + 0 · 3),−12 · 1 + J4(0 + 1 · 3)} = −12, µ3(0) = 1

J3(1) = min{−12 · 0 + J4(1 + 0 · 3),−12 · 1 + J4(1 + 1 · 3)} = −12, µ3(1) = 1

J3(2) = min{−12 · 0 + J4(2 + 0 · 3),−12 · 1 + J4(2 + 1 · 3)} = −12, µ3(2) = 1

J3(3) = min{−12 · 0 + J4(3 + 0 · 3)} = 0, µ3(3) = 0

J3(4) = min{−12 · 0 + J4(4 + 0 · 3)} = 0, µ3(4) = 0

J3(5) = min{−12 · 0 + J4(5 + 0 · 3)} = 0, µ3(5) = 0

k = 2

J2(0) = min{−10 · 0 + J3(0 + 0 · 2),−10 · 1 + J3(0 + 1 · 2)} = −22, µ2(0) = 1

J2(1) = min{−10 · 0 + J3(1 + 0 · 2),−10 · 1 + J3(1 + 1 · 2)} = −12, µ2(1) = 0

J2(2) = min{−10 · 0 + J3(2 + 0 · 2),−10 · 1 + J3(2 + 1 · 2)} = −12, µ2(2) = 0

J2(3) = min{−10 · 0 + J3(3 + 0 · 2)− 10 · 1 + J3(3 + 1 · 2)} = −10, µ2(3) = 1

J2(4) = min{−10 · 0 + J3(4 + 0 · 2)} = 0, µ2(4) = 0

J2(5) = min{−10 · 0 + J3(5 + 0 · 2)} = 0, µ2(5) = 0

k = 1

J1(0) = min{−6 · 0 + J2(0 + 0 · 1),−6 · 1 + J2(0 + 1 · 1)} = −22, µ1(0) = 0.

Therefore, optimal solution is to leave the first item and take the second and third items.

c) Case A has a time complexity O(2N ) which is exponential in N and Case B has a time com-
plexity O(WN) which is linear in N . Therefore, for large N Case B (DPA) is computationally
less expensive than Case A (Brute force approach).



Final Recitation Class – Dynamic Programming & Optimal Control Page 3

Example 2

Consider the dynamic system

xk+1 = xk + xk−1 + uk + wk , k = 0, 1,

where the input uk is restricted to be 1 or −1, and the disturbance wk takes values 1 and −1
with equal probability.

Given x0 = 0 and x−1 = 0, find the optimal control policy that minimizes

2∑
k=0

(xk − 1)2

using the dynamic programming algorithm. Furthermore, calculate the corresponding optimal
cost.



Final Recitation Class – Dynamic Programming & Optimal Control Page 4

Solution 2

Introduce a new state variable yk = xk−1. This allows the system to be rewritten as

x̃k+1 :=

[
xk+1

yk+1

]
=

[
xk + yk + wk + uk

xk

]
,

with initial condition x̃0 = (0, 0). Now, find all the states x̃k that can be reached from x̃0 = (0, 0)
with every possible uk and wk for k = 1, 2.
k=1 and x̃0 = (0, 0):

{u0 = 1 and w0 = 1} ⇒ x̃1 = (2, 0)

{u0 = 1 and w0 = −1} or {u0 = −1 and w0 = 1} ⇒ x̃1 = (0, 0)

{u0 = −1 and w0 = −1} ⇒ x̃1 = (−2, 0)

k=2 and x̃1 = (2, 0):

{u1 = 1 and w1 = 1} ⇒ x̃2 = (4, 2)

{u1 = 1 and w1 = −1} or {u1 = −1 and w1 = 1} ⇒ x̃2 = (2, 2)

{u1 = −1 and w1 = −1} ⇒ x̃2 = (0, 2)

k=2 and x̃1 = (0, 0):

{u1 = 1 and w1 = 1} ⇒ x̃2 = (2, 0)

{u1 = 1 and w1 = −1} or {u1 = −1 and w1 = 1} ⇒ x̃2 = (0, 0)

{u1 = −1 and w1 = −1} ⇒ x̃2 = (−2, 0)

k=2 and x̃1 = (−2, 0):

{u1 = 1 and w1 = 1} ⇒ x̃2 = (0,−2)

{u1 = 1 and w1 = −1} or {u1 = −1 and w1 = 1} ⇒ x̃2 = (−2,−2)

{u1 = −1 and w1 = −1} ⇒ x̃2 = (−4,−2)

Calculate the terminal cost J2(x̃2) = (x2 − 1)2, for all possible states at k = 2.

J2((4, 2)) = 9 J2((2, 0)) = 1 J2((0,−2)) = 1

J2((2, 2)) = 1 J2((0, 0)) = 1 J2((−2,−2)) = 9

J2((0, 2)) = 1 J2((−2, 0)) = 9 J2((−4,−2)) = 25.

Now, using the the dynamic programming algorithm,

Jk(x̃k) = Jk((xk, xk−1)) = min
uk∈{−1, 1}

E
wk

{
(xk − 1)2 + Jk+1

(
x̃k+1

)}
,

for k = 1 and 0 gives

J1((2, 0)) = 2 with µ∗1((2, 0)) = −1,

J1((0, 0)) = 2 with µ∗1((0, 0)) = 1,

J1((−2, 0)) = 14 with µ∗1((−2, 0)) = 1, and

J0((0, 0)) = 3 with µ∗0((0, 0)) = 1.



Final Recitation Class – Dynamic Programming & Optimal Control Page 5

Example 3

Consider the following transition graph.

A

FC

B

E

D

10

15

-20

0

-5

10

10

5

a) Calculate the optimal cost to go and the shortest path from A to F using the dynamic
programming algorithm.

b) Calculate the optimal cost to go and the shortest path from A to F using the label correct-
ing algorithm. Use Breadth-first (First-in/First-out) search to determine at each iteration
which node to remove from the OPEN bin.

Solve the problem by populating a table of the following form,

Iteration Node exiting OPEN OPEN dA dB dC dD dE dF
0 - ...
...

where the variable di denotes the length of the shortest path from node A to node i that
has been found so far. State the resulting shortest path and the optimal cost-to-go.

c) How would the label correcting algorithm behave if a new arc from D to B is introduced
with a weight of 10 ?



Final Recitation Class – Dynamic Programming & Optimal Control Page 6

Solution 3

a) Dynamic Programming Algorithm:

J(F ) = 0

J(D) = J(F ) + 10 = 10 with µ∗(D) = D → F

J(E) = min{10 + J(F ),−5 + J(D)} = 5 with µ∗(E) = E → D

J(C) = min{0 + J(E), 5 + J(D)} = 5 with µ∗(E) = C → E

J(B) = −20 + J(C) = −15 with µ∗(B) = B → C

J(A) = min{15 + J(B), 10 + J(C)} = 0 with µ∗(A) = A→ B

Therefore, the optimal cost to go from A to F is 0 and the shortest Path is A → B →
C → E → D → F

b) Label Correcting Algorithm:

Iteration Node exiting OPEN OPEN dA dB dC dD dE dF

0 – A 0 ∞ ∞ ∞ ∞ ∞
1 A B,C 0 15 10 ∞ ∞ ∞
2 B C 0 15 -5 ∞ ∞ ∞
3 C D,E 0 15 -5 0 -5 ∞
4 D E,F 0 15 -5 0 -5 10

5 E F,D 0 15 -5 -10 -5 5

6 F D 0 15 -5 -10 -5 5

7 D F 0 15 -5 -10 -5 0

8 F – 0 15 -5 -10 -5 0

Therefore, optimal cost to go from A to F is 0 and the shortest Path is A → B → C →
E → D → F

c) The new arc will introduce a negative cycle (D → B → C → D ) and the label correcting
algorithm will not terminate.



Final Recitation Class – Dynamic Programming & Optimal Control Page 7

Example 4

Consider the stochastic shortest path problem shown in Figure 1

1 2

0

p12(u)

p11(u)

p10(u)

p21(u)
p22(u)

p20(u)

p00(u)

Figure 1: Transition graph of the stochastic shortest path problem

with the control sets

U(0) = {a0}
U(1) = {a1, b1, c1}
U(2) = {a2, b2},

the transition probabilities

p10(a1) = 1/3 p20(a2) = 0 p00(a0) = 1

p11(a1) = 1/3 p21(a2) = 2/3

p12(a1) = 1/3 p22(a2) = 1/3

p10(b1) = 1/3 p20(b2) = 1/3

p11(b1) = 2/3 p21(b2) = 1/3

p12(b1) = 0 p22(b2) = 1/3

p10(c1) = 0

p11(c1) = 2/3

p12(c1) = 1/3

and the cost function

g(i, µ(i)) = 1 i = 1, 2 and µ(i) ∈ U(i)

g(0, a0) = 0.

a) Using policy iteration, perform 2 iterations for the given problem. Start with evaluating
the initial policies µ0(1) = a1 and µ0(2) = a2.

b) Has the policy iteration converged after 2 iterations? If so, please explain why. If it has
not converged, please explain the criterion that it would need to fulfill for convergence.
Also, if it has not converged, can you comment on the possible outcome of iteration 3?



Final Recitation Class – Dynamic Programming & Optimal Control Page 8

Solution 4

a) From the given information we can see that node 0 is the cost free terminal node.
Therefore we do not need to consider it.

Iteration 1:
Policy evaluation:

J1(1) = 1 + p11(a1)J
1(1) + p12(a1)J

1(2)

= 1 +
1

3
J1(1) +

1

3
J1(2)

⇒ J1(1) =
3

2
+

1

2
J1(2) (1)

J1(2) = 1 + p21(a2)J
1(1) + p22(a2)J

1(2)

= 1 +
2

3
J1(1) +

1

3
J1(2)

using (1)
= 1 +

2

3

(
3

2
+

1

2
J1(2)

)
+

1

3
J1(2)

= 2 +
2

3
J1(2)

⇒ J1(2) = 6, J1(1) = 9/2

Policy improvement:

µ1(1) = argmin
u∈U(1)

[
1 + p11(a1)J

1(1) + p12(a1)J
1(2),

1 + p11(b1)J
1(1) + p12(b1)J

1(2),

1 + p11(c1)J
1(1) + p12(c1)J

1(2)
]

= argmin
u∈U(1)

[1 + 1/3 · 9/2 + 1/3 · 6, 1 + 2/3 · 9/2 + 0 · 6, 1 + 2/3 · 9/2 + 1/3 · 6]

= argmin
u∈U(1)

[9/2, 4, 6]

µ1(1) = b1

µ1(2) = argmin
u∈U(2)

[
1 + p21(a2)J

1(1) + p22(a2)J
1(2),

1 + p21(b2)J
1(1) + p22(b2)J

1(2)
]

= argmin
u∈U(2)

[1 + 2/3 · 9/2 + 1/3 · 6, 1 + 1/3 · 9/2 + 1/3 · 6]

= argmin
u∈U(2)

[6, 9/2]

µ1(2) = b2



Final Recitation Class – Dynamic Programming & Optimal Control Page 9

Iteration 2:
Policy evaluation:

J2(1) = 1 +
2

3
J2(1) + 0 ∗ J2(2)

⇒ J2(1) = 3

J2(2) = 1 +
1

3
J2(1) +

1

3
J2(2) = 2 +

1

3
J2(2)

⇒ J2(2) = 3

Policy improvement:

µ2(1) = argmin
u∈U(1)

[1 + 1/3 · 3 + 1/3 · 3, 1 + 2/3 · 3, 1 + 2/3 · 3 + 1/3 · 3]

= argmin
u∈U(1)

[3, 3, 4]

µ2(1) = a1 or b1

µ2(2) = argmin
u∈U(2)

[1 + 2/3 · 3 + 1/3 · 3, 1 + 1/3 · 3 + 1/3 · 3]

= argmin
u∈U(2)

[4, 3]

µ2(2) = b2

b) Policy iteration has converged, if Jk(i) = Jk−1(i) holds for all nodes i at iteration k. This
is clearly not the case for k = 2. Therefore, policy iteration has not converged yet.

Even though policy iteration has not converged yet, we can still comment on the policy
that the iteration will converge to.

Let’s first pick µ2(1) = b1 for iteration 3. In this case we apply the same combination of
inputs as in iteration 2 and the transition probabilities in the policy evaluation step of
iteration 3 will be the same. Therefore it will yield the same costs as in iteration 2, i.e.,
J2(i) = J3(i) for all nodes i. Hence, policy iteration has converged to the policy µ(1) = b1
and µ(2) = b2.

Now, if we pick µ2(1) = a1 for iteration 3 the only thing that we can tell about the
convergence is that this choice will also eventually lead to convergence. But we cannot
say after how many iterations or to which policy.

Additional information:
In fact, if you do iteration 3 with µ2(1) = a1 you would also see that J2(i) = J3(i) holds for
all nodes i. Therefore, both choices for µ2(1) are feasible outcomes of the policy iteration.



Final Recitation Class – Dynamic Programming & Optimal Control Page 10

Example 5

Consider the one-dimensional linear system

ẋ(t) = ax(t) + bu(t), x(0) = x0 ∈ R, t ∈ [0, T ],

where u ∈ R is the input, T is given, and a, b ∈ R. The objective is to find an optimal policy
that minimizes the quadratic cost

x2(T ) +

∫ T

0
(x2(t) + u2(t))dt.

Show that the cost-to-go function given by

J(t, x) = k(t)x2,

where k(t) ∈ R is the solution to

k̇(t) = −2a k(t) + b2k2(t)− 1, k(T ) = 1, t ∈ [0, T ],

is the optimal cost-to-go function and find the corresponding optimal policy as a function of k(t)
and x.

Solution 5

Let
G(t, x) := min

u∈U

[
g(x, u) +∇tV (t, x) +∇xV

T(t, x)f(x, u)
]

denote the right hand side of the Hamilton-Jacobi-Bellman equation. Now substituting g(x, u) =
x2 +u2 (stage cost) and V (t, x) = J(t, x) = k(t)x2 (optimal cost-to-go function candidate) gives

G(t, x) = min
u∈U

[
x2 + u2 + k̇(t)x2 + 2k(t)x(ax+ bu)

]
. (2)

The minimum is attained at a u for which the gradient with respect to u is zero; that is,

2u+ 2bk(t)x = 0

or
u = −bk(t)x.

Substituting the minimizing value of u in (2) gives

G(t, x) = x2 + b2k2(t)x2 + k̇(t)x2 + 2ak(t)x2 − 2b2k2(t)x2

= x2(k̇(t) + 2ak(t)− b2k2(t) + 1)

= 0 ∀x, t ∈ [0, T ].

Note that the last equality results from the fact that k(t) is a solution to

k̇(t) = −2ak(t) + b2k2(t)− 1.

Furthermore,

V (T, x) = J(T, x) = k(T )x2 = x2 = h(x)(terminal cost), ∀x.

Therefore, J(t, x) is the optimal cost-to-go, i.e., J∗(t, x) = J(t, x) and the corresponding optimal
policy is given by

µ∗(t, x) = −bk(t)x.



Final Recitation Class – Dynamic Programming & Optimal Control Page 11

Example 6

Consider the dynamic system
ẋ(t) = x(t) + u(t)

with the initial state x(0) = x0 and t ∈ [0, T ], T ∈ R+.

Use the Minimum Principle to find the optimal input u∗(t) that minimizes the following cost
function

1

2
x2(T ) +

1

2

∫ T

0
u2(t)dt

and the corresponding optimal trajectory x∗(t).



Final Recitation Class – Dynamic Programming & Optimal Control Page 12

Solution 6

Applying the Minimum Principle:

The system equation is
ẋ(t) = x(t) + u(t). (3)

The Hamiltonian is given by

H(x(t), u(t), p(t)) = g(x(t), u(t)) + p(t)f(x(t), u(t))

=
1

2
u2(t) + p(t)x(t) + p(t)u(t).

The adjoint equation can be calculated as follows

ṗ(t) = −∂H
∂x

(x(t), u(t), p(t)) = −p(t),

with the boundary condition
p(T ) = ∇h(x(T )) = x(T ).

Solving this differential equation leads to

p(t) = ζe−t, ζ = x(T )eT (4)

The optimal input u∗(t) is obtained by minimizing the Hamiltonian along the optimal trajectory

u∗(t) = argmin
u

(
1

2
u2(t) + p(t)x(t) + p(t)u(t))

⇒ u∗(t) = −p(t). (5)

Now, (3), (4), and (5) give
ẋ(t) = x(t)− ζe−t, x(0) = x0.

The general solution of the above inhomogeneous ordinary differential equation is the sum of
the homogeneous solution xh(t) = λet and a particular solution xp(t) = 1

2ζe
−t giving

x(t) = xh(t) + xp(t) = λet +
1

2
ζe−t.

The above general solution with the initial condition x(0) = x0, and ζ = x(T )eT gives

λ =
x0

1 + e2T
and ζ =

2x0e
2T

1 + e2T
.

This implies

u∗(t) = − 2x0e
2T

1 + e2T
e−t

and

x∗(t) =
x0

1 + e2T
et +

x0e
2T

1 + e2T
e−t.



Final Recitation Class – Dynamic Programming & Optimal Control Page 13

Example 7

Consider the system of water reservoirs shown in Figure 2

Figure 2: water reservoir system

where xi, i = 1, 2 is the water volume of reservoir i and u is the flow rate of water into reservoir
1 via an external pump. Water exits reservoir 1 at a rate x1 and enters reservoir 2.

a) Taking flow rate u as the control, find the system equations of the water reservoir system
shown in Figure 2.

b) Assuming the external pump is unidirectional and has a maximum inflow rate of 2, i.e.
u ∈ Ub = [0, 2] compute the time optimal maneuver to fill each of the two empty reservoirs
with 1 unit of water by applying the Minimum Principle. (When x2 reaches 1 unit of water
the valve between reservoir 1 and 2 will be closed to prevent more water flowing into reservoir 2.)

c) If the external pump is bidirectional and has a maximum flow rate of 2, i.e. u ∈ Uc = [−2, 2],
will the optimal maneuver to fill the two empty reservoirs with one unit of water be faster,
slower or take the same amount of time as in the case with the unidirectional pump? Explain
the reasons for your answer.



Final Recitation Class – Dynamic Programming & Optimal Control Page 14

Solution 7

a)

ẋ1(t) = −x1(t) + u(t)

ẋ2(t) = x1(t)

b)

• The boundary conditions for the system are x1(0) = x2(0) = 0 and x1(T ) = x2(T ) = 1.

• The objective to minimize is

T =

∫ T

0
1 dt.

• The Hamiltonian is

H(x(t), u(t), p(t)) = 1− p1(t)x1(t) + p1(t)u(t) + p2(t)x1(t).

• Adjoint equations

ṗ2 = 0 ⇒ p2(t) = c

ṗ1 = p1 − p2 = p1 − c ⇒ p1(t) = ξet + c→ max. one zero crossing

• If u∗(t)is the optimal control and x∗(t) is the optimal state trajectory, then the necessary
condition for optimality is

u∗(t) = argmin
u∈U

H(x∗(t), u, p(t)).

• Since the Hamiltonian is linear in u, u will always be on a boundary of U :

u∗(t) =

{
0 if p1(t) ≥ 0

2 if p1(t) < 0

• Since both containers are initially empty we start at u = 2. We know that we have at
most one zero crossing of p1. Therefore we will have to apply u = 2 until we have enough
water in the reservoirs.

x1(Tb) + x2(Tb) = 2 =

∫ Tb

0
u(t) dt =

∫ tswitch

0
2 dt+

∫ Tb

tswitch

0 dt = 2tswitch

⇒ The optimal solution is to run the pump at u = 2 for 1 time unit and then switch it off
and wait until enough water has run down into reservoir 2.

c) First of all, since the control set Ub is a subset of the control set Uc the maneuver cannot be
slower because we can apply the solution obtained in b). To show that the maneuver using Uc

is faster than the maneuver using Ub we can use a proof by contradiction:

Assume that the solution obtained in b) with Ub is also an optimal solution for c) with Uc.
Then the solution from b) also needs to be a minimizer of the Hamiltonian given Uc. Since the
adjoint equations and the Hamiltonian do not change, p1 still has at most one zero crossing
and the Hamiltonian is still linear in u. Therefore we know that the optimal solution is on the
boundary of Uc and switches at most one time. But the solution obtained in b) is not on the
boundary of Uc and therefore is not a minimizer for the Hamiltonian anymore. So the solution
using Uc must be faster than the solution using Ub.


