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Problem 1 25%

1

3

1

1

1

1

1

1 1 1

1

3 3

2

2

4

5

S

3

2

1

4

5

6

7

8

10

9

T

1 1

4

1

1

Figure 1

Find the shortest path from node S to node T for the graph given in Figure 1. Apply the label
correcting method. Use best-first search to determine at each iteration which node to remove
from OPEN; that is, remove node i with

di = min
j in OPEN

dj ,

where the variable di denotes the length of the shortest path from node S to node i that has
been found so far.

Solve the problem by populating a table of the following form:

Iter-
ation

Node exiting
OPEN

OPEN dS d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 dT =
UPPER

...
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Solution 1

Iter-
ation

Node exiting
OPEN

OPEN dS d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 dT =
UPPER

0 - S 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
1 S 1,2,3 0 3 1 3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
2 2 1,3,4 0 2 1 3 5 ∞ ∞ ∞ ∞ ∞ ∞ ∞
3 1 3,4 0 2 1 3 4 ∞ ∞ ∞ ∞ ∞ ∞ ∞
4 3 4,5 0 2 1 3 4 8 ∞ ∞ ∞ ∞ ∞ ∞
5 4 5,6 0 2 1 3 4 7 5 ∞ ∞ ∞ ∞ ∞
6 6 5,9 0 2 1 3 4 7 5 ∞ ∞ 6 ∞ 9
7 9 5 0 2 1 3 4 7 5 ∞ ∞ 6 ∞ 7
8 5 - 0 2 1 3 4 7 5 ∞ ∞ 6 ∞ 7

The shortest path is S → 2 → 1 → 4 → 6 → 9 → T with a total length of 7.
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Problem 2 25%

Consider the dynamic system

xk+1 = (1− a)wk + auk, 0 ≤ a ≤ 1, k = 0, 1 ,

with initial state x0 = −1. The cost function, to be minimized, is given by

E
w0,w1

{
x2

2 +
1∑

k=0

(
x2

k + u2
k + w2

k

)
}

.

The disturbance wk takes the values 0 and 1. If xk ≥ 0, both values have equal probability. If
xk < 0, the disturbance wk is 0 with probability 1. The control uk is constrained by

0 ≤ uk ≤ 1, k = 0, 1.

Apply the Dynamic Programming algorithm to find the optimal control policy and the optimal
final cost J0(−1).



Midterm Examination – Dynamic Programming & Optimal Control Page 5

Solution 2

The optimal control problem is considered over a time horizon N = 2 and the cost, to be
minimized, is defined by

g2(x2) = x2
2 and gk(xk, uk, wk) = x2

k + u2
k + w2

k, k = 0, 1.

The DP algorithm proceeds as follows:

2nd stage:

J2(x2) = x2
2

1st stage:

J1(x1) = min
0≤u1≤1

E
{
x2

1 + u2
1 + w2

1 + J2(x2)
}

= min
0≤u1≤1

E
w1

{
x2

1 + u2
1 + w2

1 + J2

(
(1− a) w1 + au1

)}

= min
0≤u1≤1

E
w1

{
x2

1 + u2
1 + w2

1 +
(
(1− a) w1 + au1

)2
}

Distinguish two cases: x1 ≥ 0 and x1 < 0.

I ) x1 ≥ 0:

J1(x1) = min
0≤u1≤1

{
x2

1 + u2
1 +

1
2

(
1 + ((1− a) + au1)

2
)

+
1
2

(
0 + ((1− a) · 0 + au1)

2
)}

︸ ︷︷ ︸
L(x1,u1)

Find the minimizing ū1 by

∂L

∂u1

∣∣∣∣
ū1

= (1− a) a + 2
(
1 + a2

)
ū1

!= 0 ⇔ ū1 =
−a (1− a)
2 (1 + a2)

≤ 0 (!).

Recall that the feasible set of inputs u1 is given by 0 ≤ u1 ≤ 1.

However, using the information that L (x1, u1) is convex in u1; that is,

∂2L

∂u2
1

= 2
(
1 + a2

)
> 0,

it follows that ū1 is a local minimum and the feasible optimal control u∗1 is given by

⇒ u∗1 = µ∗1 (x1) = 0 ∀ x1 ≥ 0.
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II ) x1 < 0:

J1(x1) = min
0≤u1≤1

{
x2

1 +
(
1 + a2

)
u2

1

}
︸ ︷︷ ︸

L(x1,u1)

Find the minimizing ū1 by

∂L

∂u1

∣∣∣∣
ū1

= 2
(
1 + a2

)
ū1

!= 0 ⇔ ū1 = 0.

Since the sufficient condition for a local minimum, ∂2L
∂u2

1

∣∣∣
ū1

> 0, holds, the optimal control is

⇒ u∗1 = µ∗1 (x1) = 0 ∀ x1 < 0.

0th stage:

J0(−1) = min
0≤u0≤1

E
w0

{
(−1)2 + u2

0 + w2
0 + J1

(
(1− a) w0 + au0

)}

Since x0 < 0, we get

J0(−1) = min
0≤u0≤1

{
1 + u2

0 + J1

(
au0

)}
︸ ︷︷ ︸

L(x0,u0)

,

where au0 ≥ 0. From above’s results, the optimal cost-to-go function for x1 ≥ 0 is

J1(x1) =
1
2

+
1
2

(1− a)2 + x2
1.

Finally, the minimizing ū0 results from

∂L

∂u0

∣∣∣∣
ū0

= 2ū0 + 2a2ū0
!= 0 ⇔ ū0 = 0.

Since ∂2L
∂u2

0

∣∣∣
ū0

> 0, the optimal control u∗0 is

⇒ u∗0 = µ∗0 (−1) = 0.

With this, the optimal final cost reads as

J0(−1) =
3
2

+
1
2

(1− a)2 .

In brief, the optimal control policy is to always set the input to zero, which can also be verified
by carefully looking at the equations given in the problem statement.
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Problem 3 25%

t = 1

u

t = 0

z = 0 z = 1

Figure 2

At time t = 0, a unit mass is at rest at location z = 0. The mass is on a frictionless surface and
it is desired to apply a force u(t), 0 ≤ t ≤ 1, such that at time t = 1, the mass is at location
z = 1 and again at rest. In particular,

z̈(t) = u(t), 0 ≤ t ≤ 1, (1)

with initial and terminal conditions:

z(0) = 0, ż(0) = 0,
z(1) = 1, ż(1) = 0.

Of all the functions u(t) that achieve the above objective, find the one that minimizes

1
2

∫ 1

0
u2(t)dt.

Hint: The state for this system is x(t) = [x1(t), x2(t) ]T , where x1(t) = z(t) and x2(t) = ż(t).
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Solution 3

Introduce the state vector

x =
[
x1

x2

]
=

[
z
ż

]
.

Using this notation, the dynamics read as
[
ẋ1

ẋ2

]
=

[
x2

u

]

with initial and terminal conditions,

x1(0) = 0, x2(0) = 0,
x1(1) = 1, x2(1) = 0.

Apply the Minimum Principle.

• The Hamiltonian is given by

H(x, u, p) = g(x, u) + pT f(x, u)

=
1
2
u2 + p1x2 + p2u.

• The optimal input u∗(t) is obtained by minimizing the Hamiltonian along the optimal
trajectory. Differentiating the Hamiltonian with respect to u yields,

u∗(t) + p2(t) = 0 ⇔ u∗(t) = −p2(t).

Since the second derivative of H with respect to u is 1, u∗(t) is indeed a minimum.

• The adjoint equations,

ṗ1(t) = 0
ṗ2(t) = −p1(t),

are integrated and result in the following equations:

p1(t) = c1, c1 constant
p2(t) = −c1t− c2, c2 constant.

Using this result, the optimal input is given by

u∗(t) = c1t + c2.

• Recalling the initial and terminal conditions on x, we can solve for c1 and c2.

With above’s results, the optimal state trajectory x∗2(t) is

ẋ∗2(t) = c1t + c2 ⇒ x∗2(t) =
1
2
c1t

2 + c2t + c3, c3 constant,
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and, therefore,

x∗2(0) = 0 ⇒ c3 = 0

x∗2(1) = 0 ⇒ 1
2
c1 + c2 = 0 ⇒ c1 = −2c2,

yielding to

x∗2(t) = −c2t
2 + c2t.

The optimal state x∗1(t) is given by

ẋ∗1(t) = x∗2(t) = −c2t
2 + c2t ⇒ x∗1(t) = −1

3
c2t

3 +
1
2
c2t

2 + c4, c4 constant.

With the conditions on x1, we get

x∗1(0) = 0 ⇒ c4 = 0

x∗1(1) = 1 ⇒ −1
3
c2 +

1
2
c2 = 1 ⇒ c2 = 6 and c1 = −12.

• Finally, we obtain the optimal control

u∗(t) = −12t + 6,

and the optimal state trajectory

x∗1(t) = z∗(t) = −2t3 + 3t2

x∗2(t) = ż∗(t) = −6t2 + 6t.
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Problem 4 25%

Recall the Minimum Principle.

Under suitable technical assumptions, the following Proposition holds:
Given the dynamic system

ẋ = f (x(t), u(t)) , x(0) = x0, 0 ≤ t ≤ T

and the cost function,

h (x(T )) +
∫ T

0
g (x(t), u(t)) dt,

to be minimized, define the Hamiltonian function

H(x, u, p) = g (x, u) + pT f (x, u) .

Let u∗(t), t ∈ [0, T ] be an optimal control trajectory and x∗(t) the resulting state trajectory.
Then,

1. ṗ(t) = −∂H
∂x (x∗(t), u∗(t), p(t)) , p(T ) = ∂h

∂x (x∗(T )) ,

2. u∗(t) = arg minu∈U H (x∗(t), u, p(t)) ,

3. H (x∗(t), u∗(t), p(t)) is constant.

Show that if the dynamics and the cost are time varying – that is, f (x, u) is replaced by f (x, u, t)
and g (x, u) is replaced by g (x, u, t) – the Minimum Principle becomes:

1. ṗ(t) = −∂H
∂x (x∗(t), u∗(t), p(t), t) , p(T ) = ∂h

∂x (x∗(T )) ,

2. u∗(t) = arg minu∈U H (x∗(t), u, p(t), t)

3. H (x∗(t), u∗(t), p(t), t) not necessarily constant,

where the Hamiltonian function is now given by

H(x, u, p, t) = g (x, u, t) + pT f (x, u, t) .
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Solution 4

General idea:

Convert the problem to a time-independent one, apply the standard Minimum Principle pre-
sented in class, and simplify the obtained equations.

Follow the subsequent steps:

• Introduce an extra state variable y(t) representing the time:

y(t) = t, with ẏ(t) = 1 and y(0) = 0.

• Convert the problem into standard form by introducing the extended state ξ = [ x, y ]T :

The dynamics read now as

ξ̇(t) = f̃(ξ, u) = [ f(x, u, y), 1 ]T

and the cost is defined by

h̃(ξ(T )) +
∫ T

0
g̃(ξ, u) dt,

where g̃(ξ, u) = g(x, u, y) and h̃(ξ) = h(x).
The Hamiltonian follows from above’s definitions:

H̃(ξ, u, p̃) = g̃(ξ, u) + p̃T f̃(ξ, u) with p̃ = [ p, py ]T .

• Apply the Minimum Principle:

Denoting the optimal control by u∗(t) and the corresponding optimal state by ξ∗(t), we
get the following:

1. The adjoint equation is given by

˙̃p(t) = −∂H̃

∂ξ
(ξ∗(t), u∗(t), p̃(t)) , p̃(T ) =

∂h̃

∂ξ
(ξ∗(T )) . (2)

However,

H̃(ξ, u, p̃) = g(x, u, y) + pT f(x, u, y) + py = H(x, u, p, y) + py;

that is,
∂H̃

∂x
=

∂H

∂x
,

∂H̃

∂y
=

∂H

∂y
.

Moreover,
∂h̃

∂x
=

∂h

∂x
and

∂h̃

∂y
= 0.

From (2), we recover the first equation

ṗ(t) = −∂H

∂x
(x∗(t), u∗(t), p(t), t) , p(T ) =

∂h

∂x
(x∗(T )) .

In addition, replacing y(t) by t again, we get

ṗy(t) = −∂H

∂t
(x∗(t), u∗(t), p(t), t) , py(T ) = 0.
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2. The optimal input u∗(t) is obtained by

u∗(t) = arg minu∈U

{
H(x∗(t), u∗(t), p(t), t) + py(t)

}

= arg minu∈U H(x∗(t), u∗(t), p(t), t).

3. Finally, the standard formulation gives us

H(x∗(t), u∗(t), p(t), t) + py(t) is constant.

However, py(t) is constant only if ∂H
∂t = 0, which, in general, is only true if f and g

do not depend on time.


