Eidgenössische Technische Hochschule Zürich

Dynamic Programming \& Optimal Control (151-0563-00) Prof. R. D'Andrea

Solutions

Exam Duration:	$\mathbf{1 5 0}$ minutes
Number of Problems:	$\mathbf{4}(25 \%$ each $)$
Permitted aids:	Textbook Dynamic Programming and Optimal Control by Dimitri P. Bertsekas, Vol. I, 3rd edition, 2005, 558 pages. Your written notes.
	No calculators.
Important:	Use only these prepared sheets for your solutions.

Problem 1

25%

Figure 1
Find the shortest path from node S to node T for the graph given in Figure 1. Apply the label correcting method. Use best-first search to determine at each iteration which node to remove from OPEN; that is, remove node i with

$$
d_{i}=\min _{j \text { in OPEN }} d_{j},
$$

where the variable d_{i} denotes the length of the shortest path from node S to node i that has been found so far.

Solve the problem by populating a table of the following form:

Iter- ation	Node exiting OPEN	OPEN	d_{S}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}	d_{7}	d_{8}	d_{9}	d_{10}	$d_{T}=$ UPPER
\ldots														

Solution 1

Iter- ation	Node exiting OPEN	OPEN	d_{S}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}	d_{7}	d_{8}	d_{9}	d_{10}	$d_{T}=$ UPPER
0	-	S	0	∞										
1	S	$1,2,3$	0	3	1	3	∞							
2	2	$1,3,4$	0	2	1	3	5	∞						
3	1	3,4	0	2	1	3	4	∞						
4	3	4,5	0	2	1	3	4	8	∞	∞	∞	∞	∞	∞
5	4	5,6	0	2	1	3	4	7	5	∞	∞	∞	∞	∞
6	6	5,9	0	2	1	3	4	7	5	∞	∞	6	∞	9
7	5	5	0	2	1	3	4	7	5	∞	∞	6	∞	7
	-	0	2	1	3	4	7	5	∞	∞	6	∞	7	

The shortest path is $S \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 6 \rightarrow 9 \rightarrow T$ with a total length of 7 .

Problem 2

Consider the dynamic system

$$
x_{k+1}=(1-a) w_{k}+a u_{k}, \quad 0 \leq a \leq 1, \quad k=0,1
$$

with initial state $x_{0}=-1$. The cost function, to be minimized, is given by

$$
\underset{w_{0}, w_{1}}{E}\left\{x_{2}^{2}+\sum_{k=0}^{1}\left(x_{k}^{2}+u_{k}^{2}+w_{k}^{2}\right)\right\} .
$$

The disturbance w_{k} takes the values 0 and 1 . If $x_{k} \geq 0$, both values have equal probability. If $x_{k}<0$, the disturbance w_{k} is 0 with probability 1 . The control u_{k} is constrained by

$$
0 \leq u_{k} \leq 1, \quad k=0,1
$$

Apply the Dynamic Programming algorithm to find the optimal control policy and the optimal final cost $J_{0}(-1)$.

Solution 2

The optimal control problem is considered over a time horizon $N=2$ and the cost, to be minimized, is defined by

$$
g_{2}\left(x_{2}\right)=x_{2}^{2} \quad \text { and } \quad g_{k}\left(x_{k}, u_{k}, w_{k}\right)=x_{k}^{2}+u_{k}^{2}+w_{k}^{2}, \quad k=0,1 .
$$

The DP algorithm proceeds as follows:

2nd stage:

$$
J_{2}\left(x_{2}\right)=x_{2}^{2}
$$

1st stage:

$$
\begin{aligned}
J_{1}\left(x_{1}\right) & =\min _{0 \leq u_{1} \leq 1} E\left\{x_{1}^{2}+u_{1}^{2}+w_{1}^{2}+J_{2}\left(x_{2}\right)\right\} \\
& =\min _{0 \leq u_{1} \leq 1} E\left\{x_{1}^{2}+u_{1}^{2}+w_{1}^{2}+J_{2}\left((1-a) w_{1}+a u_{1}\right)\right\} \\
& =\min _{0 \leq u_{1} \leq 1} E\left\{x_{1}^{2}+u_{1}^{2}+w_{1}^{2}+\left((1-a) w_{1}+a u_{1}\right)^{2}\right\}
\end{aligned}
$$

Distinguish two cases: $x_{1} \geq 0$ and $x_{1}<0$.
I) $x_{1} \geq 0$:

$$
J_{1}\left(x_{1}\right)=\min _{0 \leq u_{1} \leq 1} \underbrace{\left\{x_{1}^{2}+u_{1}^{2}+\frac{1}{2}\left(1+\left((1-a)+a u_{1}\right)^{2}\right)+\frac{1}{2}\left(0+\left((1-a) \cdot 0+a u_{1}\right)^{2}\right)\right\}}_{L\left(x_{1}, u_{1}\right)}
$$

Find the minimizing \bar{u}_{1} by

$$
\left.\frac{\partial L}{\partial u_{1}}\right|_{\bar{u}_{1}}=(1-a) a+2\left(1+a^{2}\right) \bar{u}_{1} \stackrel{!}{=} 0 \quad \Leftrightarrow \quad \bar{u}_{1}=\frac{-a(1-a)}{2\left(1+a^{2}\right)} \leq 0 \quad(!)
$$

Recall that the feasible set of inputs u_{1} is given by $0 \leq u_{1} \leq 1$.
However, using the information that $L\left(x_{1}, u_{1}\right)$ is convex in u_{1}; that is,

$$
\frac{\partial^{2} L}{\partial u_{1}^{2}}=2\left(1+a^{2}\right)>0
$$

it follows that \bar{u}_{1} is a local minimum and the feasible optimal control u_{1}^{*} is given by

$$
\Rightarrow u_{1}^{*}=\mu_{1}^{*}\left(x_{1}\right)=0 \quad \forall x_{1} \geq 0 .
$$

II) $x_{1}<0$:

$$
J_{1}\left(x_{1}\right)=\min _{0 \leq u_{1} \leq 1} \underbrace{\left\{x_{1}^{2}+\left(1+a^{2}\right) u_{1}^{2}\right\}}_{L\left(x_{1}, u_{1}\right)}
$$

Find the minimizing \bar{u}_{1} by

$$
\left.\frac{\partial L}{\partial u_{1}}\right|_{\bar{u}_{1}}=2\left(1+a^{2}\right) \bar{u}_{1} \stackrel{!}{=} 0 \quad \Leftrightarrow \quad \bar{u}_{1}=0
$$

Since the sufficient condition for a local minimum, $\left.\frac{\partial^{2} L}{\partial u_{1}^{2}}\right|_{\bar{u}_{1}}>0$, holds, the optimal control is

$$
\Rightarrow u_{1}^{*}=\mu_{1}^{*}\left(x_{1}\right)=0 \quad \forall x_{1}<0
$$

0th stage:

$$
J_{0}(-1)=\min _{0 \leq u_{0} \leq 1} \underset{w_{0}}{E}\left\{(-1)^{2}+u_{0}^{2}+w_{0}^{2}+J_{1}\left((1-a) w_{0}+a u_{0}\right)\right\}
$$

Since $x_{0}<0$, we get

$$
J_{0}(-1)=\min _{0 \leq u_{0} \leq 1} \underbrace{\left\{1+u_{0}^{2}+J_{1}\left(a u_{0}\right)\right\}}_{L\left(x_{0}, u_{0}\right)}
$$

where $a u_{0} \geq 0$. From above's results, the optimal cost-to-go function for $x_{1} \geq 0$ is

$$
J_{1}\left(x_{1}\right)=\frac{1}{2}+\frac{1}{2}(1-a)^{2}+x_{1}^{2}
$$

Finally, the minimizing \bar{u}_{0} results from

$$
\left.\frac{\partial L}{\partial u_{0}}\right|_{\bar{u}_{0}}=2 \bar{u}_{0}+2 a^{2} \bar{u}_{0} \stackrel{!}{=} 0 \quad \Leftrightarrow \quad \bar{u}_{0}=0
$$

Since $\left.\frac{\partial^{2} L}{\partial u_{0}^{2}}\right|_{\bar{u}_{0}}>0$, the optimal control u_{0}^{*} is

$$
\Rightarrow u_{0}^{*}=\mu_{0}^{*}(-1)=0
$$

With this, the optimal final cost reads as

$$
J_{0}(-1)=\frac{3}{2}+\frac{1}{2}(1-a)^{2}
$$

In brief, the optimal control policy is to always set the input to zero, which can also be verified by carefully looking at the equations given in the problem statement.

Problem 3

Figure 2
At time $t=0$, a unit mass is at rest at location $z=0$. The mass is on a frictionless surface and it is desired to apply a force $u(t), 0 \leq t \leq 1$, such that at time $t=1$, the mass is at location $z=1$ and again at rest. In particular,

$$
\begin{equation*}
\ddot{z}(t)=u(t), \quad 0 \leq t \leq 1, \tag{1}
\end{equation*}
$$

with initial and terminal conditions:

$$
\begin{array}{ll}
z(0)=0, & \dot{z}(0)=0, \\
z(1)=1, & \dot{z}(1)=0 .
\end{array}
$$

Of all the functions $u(t)$ that achieve the above objective, find the one that minimizes

$$
\frac{1}{2} \int_{0}^{1} u^{2}(t) d t
$$

Hint: The state for this system is $x(t)=\left[x_{1}(t), x_{2}(t)\right]^{T}$, where $x_{1}(t)=z(t)$ and $x_{2}(t)=\dot{z}(t)$.

Solution 3

Introduce the state vector

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
z \\
\dot{z}
\end{array}\right] .
$$

Using this notation, the dynamics read as

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
u
\end{array}\right]
$$

with initial and terminal conditions,

$$
\begin{array}{ll}
x_{1}(0)=0, & x_{2}(0)=0, \\
x_{1}(1)=1, & x_{2}(1)=0 .
\end{array}
$$

Apply the Minimum Principle.

- The Hamiltonian is given by

$$
\begin{aligned}
H(x, u, p) & =g(x, u)+p^{T} f(x, u) \\
& =\frac{1}{2} u^{2}+p_{1} x_{2}+p_{2} u .
\end{aligned}
$$

- The optimal input $u^{*}(t)$ is obtained by minimizing the Hamiltonian along the optimal trajectory. Differentiating the Hamiltonian with respect to u yields,

$$
u^{*}(t)+p_{2}(t)=0 \quad \Leftrightarrow \quad u^{*}(t)=-p_{2}(t) .
$$

Since the second derivative of H with respect to u is $1, u^{*}(t)$ is indeed a minimum.

- The adjoint equations,

$$
\begin{aligned}
& \dot{p}_{1}(t)=0 \\
& \dot{p}_{2}(t)=-p_{1}(t),
\end{aligned}
$$

are integrated and result in the following equations:

$$
\begin{aligned}
& p_{1}(t)=c_{1}, \quad c_{1} \text { constant } \\
& p_{2}(t)=-c_{1} t-c_{2}, \quad c_{2} \text { constant. }
\end{aligned}
$$

Using this result, the optimal input is given by

$$
u^{*}(t)=c_{1} t+c_{2} .
$$

- Recalling the initial and terminal conditions on x, we can solve for c_{1} and c_{2}.

With above's results, the optimal state trajectory $x_{2}^{*}(t)$ is

$$
\dot{x}_{2}^{*}(t)=c_{1} t+c_{2} \quad \Rightarrow \quad x_{2}^{*}(t)=\frac{1}{2} c_{1} t^{2}+c_{2} t+c_{3}, \quad c_{3} \text { constant },
$$

and, therefore,

$$
\begin{aligned}
x_{2}^{*}(0) & =0 \Rightarrow c_{3}=0 \\
x_{2}^{*}(1) & =0 \Rightarrow \frac{1}{2} c_{1}+c_{2}=0 \quad \Rightarrow \quad c_{1}=-2 c_{2}
\end{aligned}
$$

yielding to

$$
x_{2}^{*}(t)=-c_{2} t^{2}+c_{2} t .
$$

The optimal state $x_{1}^{*}(t)$ is given by

$$
\dot{x}_{1}^{*}(t)=x_{2}^{*}(t)=-c_{2} t^{2}+c_{2} t \Rightarrow x_{1}^{*}(t)=-\frac{1}{3} c_{2} t^{3}+\frac{1}{2} c_{2} t^{2}+c_{4}, \quad c_{4} \text { constant. }
$$

With the conditions on x_{1}, we get

$$
\begin{aligned}
x_{1}^{*}(0) & =0 \quad \Rightarrow \quad c_{4}=0 \\
x_{1}^{*}(1) & =1 \quad \Rightarrow \quad-\frac{1}{3} c_{2}+\frac{1}{2} c_{2}=1 \quad \Rightarrow \quad c_{2}=6 \quad \text { and } \quad c_{1}=-12 .
\end{aligned}
$$

- Finally, we obtain the optimal control

$$
u^{*}(t)=-12 t+6,
$$

and the optimal state trajectory

$$
\begin{aligned}
x_{1}^{*}(t) & =z^{*}(t) \\
x_{2}^{*}(t) & =-2 t^{3}+3 t^{2} \\
z^{*}(t) & =-6 t^{2}+6 t .
\end{aligned}
$$

Problem 4

Recall the Minimum Principle.
Under suitable technical assumptions, the following Proposition holds:
Given the dynamic system

$$
\dot{x}=f(x(t), u(t)), \quad x(0)=x_{0}, \quad 0 \leq t \leq T
$$

and the cost function,

$$
h(x(T))+\int_{0}^{T} g(x(t), u(t)) d t
$$

to be minimized, define the Hamiltonian function

$$
H(x, u, p)=g(x, u)+p^{T} f(x, u)
$$

Let $u^{*}(t), t \in[0, T]$ be an optimal control trajectory and $x^{*}(t)$ the resulting state trajectory. Then,

1. $\dot{p}(t)=-\frac{\partial H}{\partial x}\left(x^{*}(t), u^{*}(t), p(t)\right), \quad p(T)=\frac{\partial h}{\partial x}\left(x^{*}(T)\right)$,
2. $u^{*}(t)=\arg \min _{u \in U} H\left(x^{*}(t), u, p(t)\right)$,
3. $\quad H\left(x^{*}(t), u^{*}(t), p(t)\right)$ is constant.

Show that if the dynamics and the cost are time varying - that is, $f(x, u)$ is replaced by $f(x, u, t)$ and $g(x, u)$ is replaced by $g(x, u, t)$ - the Minimum Principle becomes:

1. $\dot{p}(t)=-\frac{\partial H}{\partial x}\left(x^{*}(t), u^{*}(t), p(t), t\right), \quad p(T)=\frac{\partial h}{\partial x}\left(x^{*}(T)\right)$,
2. $u^{*}(t)=\arg \min _{u \in U} H\left(x^{*}(t), u, p(t), t\right)$
3. $H\left(x^{*}(t), u^{*}(t), p(t), t\right)$ not necessarily constant,
where the Hamiltonian function is now given by

$$
H(x, u, p, t)=g(x, u, t)+p^{T} f(x, u, t)
$$

Solution 4

General idea:
Convert the problem to a time-independent one, apply the standard Minimum Principle presented in class, and simplify the obtained equations.

Follow the subsequent steps:

- Introduce an extra state variable $y(t)$ representing the time:

$$
y(t)=t, \quad \text { with } \quad \dot{y}(t)=1 \quad \text { and } \quad y(0)=0 .
$$

- Convert the problem into standard form by introducing the extended state $\xi=[x, y]^{T}$:

The dynamics read now as

$$
\dot{\xi}(t)=\tilde{f}(\xi, u)=[f(x, u, y), 1]^{T}
$$

and the cost is defined by

$$
\tilde{h}(\xi(T))+\int_{0}^{T} \tilde{g}(\xi, u) d t
$$

where $\tilde{g}(\xi, u)=g(x, u, y)$ and $\tilde{h}(\xi)=h(x)$.
The Hamiltonian follows from above's definitions:

$$
\tilde{H}(\xi, u, \tilde{p})=\tilde{g}(\xi, u)+\tilde{p}^{T} \tilde{f}(\xi, u) \quad \text { with } \quad \tilde{p}=\left[p, p_{y}\right]^{T} .
$$

- Apply the Minimum Principle:

Denoting the optimal control by $u^{*}(t)$ and the corresponding optimal state by $\xi^{*}(t)$, we get the following:

1. The adjoint equation is given by

$$
\begin{equation*}
\dot{\tilde{p}}(t)=-\frac{\partial \tilde{H}}{\partial \xi}\left(\xi^{*}(t), u^{*}(t), \tilde{p}(t)\right), \quad \tilde{p}(T)=\frac{\partial \tilde{h}}{\partial \xi}\left(\xi^{*}(T)\right) \tag{2}
\end{equation*}
$$

However,

$$
\tilde{H}(\xi, u, \tilde{p})=g(x, u, y)+p^{T} f(x, u, y)+p_{y}=H(x, u, p, y)+p_{y} ;
$$

that is,

$$
\frac{\partial \tilde{H}}{\partial x}=\frac{\partial H}{\partial x}, \quad \frac{\partial \tilde{H}}{\partial y}=\frac{\partial H}{\partial y} .
$$

Moreover,

$$
\frac{\partial \tilde{h}}{\partial x}=\frac{\partial h}{\partial x} \quad \text { and } \quad \frac{\partial \tilde{h}}{\partial y}=0
$$

From (2), we recover the first equation

$$
\dot{p}(t)=-\frac{\partial H}{\partial x}\left(x^{*}(t), u^{*}(t), p(t), t\right), \quad p(T)=\frac{\partial h}{\partial x}\left(x^{*}(T)\right) .
$$

In addition, replacing $y(t)$ by t again, we get

$$
\dot{p}_{y}(t)=-\frac{\partial H}{\partial t}\left(x^{*}(t), u^{*}(t), p(t), t\right), \quad p_{y}(T)=0 .
$$

2. The optimal input $u^{*}(t)$ is obtained by

$$
\begin{aligned}
u^{*}(t) & =\arg \min _{u \in U}\left\{H\left(x^{*}(t), u^{*}(t), p(t), t\right)+p_{y}(t)\right\} \\
& =\arg \min _{u \in U} H\left(x^{*}(t), u^{*}(t), p(t), t\right)
\end{aligned}
$$

3. Finally, the standard formulation gives us

$$
H\left(x^{*}(t), u^{*}(t), p(t), t\right)+p_{y}(t) \text { is constant. }
$$

However, $p_{y}(t)$ is constant only if $\frac{\partial H}{\partial t}=0$, which, in general, is only true if f and g do not depend on time.

