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Problem 1 25%
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Figure 1

Find the shortest path from node S to node T for the graph given in Figure 1. Apply the label
correcting method. Use best-first search to determine at each iteration which node to remove
from OPEN; that is, remove node ¢ with

d; = min dj,
7 in OPEN

where the variable d; denotes the length of the shortest path from node S to node ¢ that has
been found so far.

Solve the problem by populating a table of the following form:

Iter-
ation

dy | do | dg |ds|ds |de|dr|dsg|dy|dio

Node exiting | OPEN | dg
OPEN
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Solution 1

Iter- | Node exiting | OPEN | dg | dy | do | d3 | d4 | ds | dg | d7 | dg | do | d1g | dp =

ation | OPEN UPPER

0 - S 0 |loco|oo|ow|o0|o0|oo|oo|oo|oo| o | o0

1 S 12310 3| 1|3 |oc|oo|oo|oo|oo|o0| | oo

2 2 1,34 0 | 2 113 |5 ||| |0]|o0]| o |0

3 1 3,4 0| 2|13 |4 |c0|oc0|o0|0|x0| 0|00

4 3 4.5 02|13 |48 |c0|x|ow|oco]| o0 |x

5 4 5,6 0| 2|13 |4|7]|5>5]|]co|w|x| oc0]|oc

6 6 5,9 02|13 |47 |5 |oco|loo|6]|oc0]9

7 9 5 0| 2| 1|3 |4]|7]5|co|loo| 6| x|T7

8 5 - 0| 2| 1|3 |4]|T7]5|c0|low| 6| x|T7

The shortest path is

S—-2—-1—-4—-6—->9—T with a total length of 7.
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Problem 2 25%

Consider the dynamic system

rp1 = (1 — a) wy + aug, 0<a<l, k=01,
with initial state o = —1. The cost function, to be minimized, is given by
1
2 2 2 2
w(?wl {.132 + kz (xk + u, +w/€)} :
=0

The disturbance wy, takes the values 0 and 1. If x > 0, both values have equal probability. If
xp < 0, the disturbance wy is 0 with probability 1. The control uy is constrained by

0<u, <1, k=01

Apply the Dynamic Programming algorithm to find the optimal control policy and the optimal
final cost Jy(—1).
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Solution 2

The optimal control problem is considered over a time horizon N = 2 and the cost, to be
minimized, is defined by

g2(z2) = 23 and 9k (T, ug, wy) = azi + u% + w,%, k=0,1.

The DP algorithm proceeds as follows:

2nd stage:

Jo(x2) = 23

1st stage:

Ji(x1) = 0213121 FE {l’% —i—u% +w% + JQ(.TQ)}

o 2 2 2
_051}1%1 E{xl—l—ul—i—wl +J2((1—a)w1+au1)}

:051}121 E {:E%—Fu%—l—w%—l— (1—a)w —|—au1)2}

Distinguish two cases: x1 > 0 and z1 < 0.

I)z; >0:

Ji(z1) = min {x% +ud + 1 (1 +((1—a)+ au1)2> + % (0 +((1—a)-0+ au1)2>}

0<u1<1 2
L(z1,u1)
Find the minimizing u; by
OLI _ (1 wat2(0+addmio o a=_21"9 4
=(1-a)a a®) ) = Ul = ————5v 1.
dur |, ! T o+

Recall that the feasible set of inputs u; is given by 0 < wuy < 1.

However, using the information that L (z1,u;) is convex in up; that is,

O*L
8711%:2(14“042) >07

it follows that u; is a local minimum and the feasible optimal control u] is given by

= u; =p; (1) =0 Vx> 0.
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IT) 21 < O:

Ji(xy) = 0%%111%1 {27+ (1+a*) ui}

L(ml,ul)

Find the minimizing %; by

oL
| =2(1+a®)um =0 & @ =0
8’11,1 1
Since the sufficient condition for a local minimum, ZZT% > 0, holds, the optimal control is
1 luy

= uj=p; (r1)=0 vV <0.

Oth stage:

Jo(—1) = qultigl g(') {(—1)2 + u% + w% + Ji ((1 —a)wy + auo)}

Since zg < 0, we get

Jo(=1) = min {1 +ug+ Ji(auo)},

-~

L(zo,u0)

where aug > 0. From above’s results, the optimal cost-to-go function for z; > 0 is

[a—

1
Ji(wn) =5+ 5 (1= a)? 4 =3,

Finally, the minimizing ug results from

oL _ 9_ ! _
—| =2up+2a°ug=0 < 1uy=0.
8u0 o
Since i% > 0, the optimal control u is
oug o 0

= wp = p (~1) = 0.

With this, the optimal final cost reads as

—_

Jo(—1) :;—l—f(l—a)Z.

[\)

In brief, the optimal control policy is to always set the input to zero, which can also be verified
by carefully looking at the equations given in the problem statement.
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Problem 3 25%

//3/////////3//
z=0 z=1
Figure 2

At time t = 0, a unit mass is at rest at location z = 0. The mass is on a frictionless surface and
it is desired to apply a force u(t), 0 < ¢t < 1, such that at time ¢ = 1, the mass is at location
z =1 and again at rest. In particular,

Zt)=u(t), 0<t<1, (1)
z(0) =0, £(0)=0,
z 1, 0.

Of all the functions u(t) that achieve the above objective, find the one that minimizes

1/1u2(t)dt
2 Jo '

Hint: The state for this system is x(t) = [x1(t), z2(t)]7, where x1(t) = 2(t) and z2(t) = 2(¢).



Page 8 Midterm Examination — Dynamic Programming & Optimal Control

Solution 3

Introduce the state vector
Using this notation, the dynamics read as

=[]

le(O)
131(1)

with initial and terminal conditions,

o o

0, .232(0)
1, :L'Q(l)

Apply the Minimum Principle.
e The Hamiltonian is given by
L g
= iu + p1x2 + pau.

e The optimal input «*(¢) is obtained by minimizing the Hamiltonian along the optimal
trajectory. Differentiating the Hamiltonian with respect to u yields,

u () +p2(t) =0 & u'(t) = —pa(t).
Since the second derivative of H with respect to u is 1, u*(¢) is indeed a minimum.

e The adjoint equations,

pi(t) =0
p2(t) = —p1(t),

are integrated and result in the following equations:

pi(t) =c1, ¢1 constant

p2(t) = —c1t — ¢, o constant.
Using this result, the optimal input is given by
u*(t) = e1t + co.

e Recalling the initial and terminal conditions on x, we can solve for ¢; and cs.

With above’s results, the optimal state trajectory z5(¢) is

1
T5(t) =ct+ca = x3(t) = §clt2 + cot +¢3, c3 constant,
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Page 9

and, therefore,

z5(0)=0 = ¢3=0

z5(1)=0 = %cl +c=0 = ¢ =—2c,
yielding to

z5(t) = —cot® + cot.
The optimal state z7(t) is given by

1 1
Ti(t) = a3(t) = —cat® + ot = x}(t) = —gcQt?’ + 5c2t2 + ¢4,

With the conditions on x;, we get
z7(0)=0 = c1=0

1 1
ri(l)=1 = —5024—502:1 = =6 and ¢ = —12.

e Finally, we obtain the optimal control

w*(t) = —12t + 6,

and the optimal state trajectory

c4 constant.
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Problem 4 25%

Recall the Minimum Principle.

Under suitable technical assumptions, the following Proposition holds:
Given the dynamic system

= f(x(t), u(t)), =(0)=z, 0<t<T
and the cost function, .
b))+ [ g, o) .
to be minimized, define the Hamiltonian function
H(z,u,p) = g (z,u) +p" f(z,u).

Let u*(t), t € [0,T] be an optimal control trajectory and x*(t) the resulting state trajectory.
Then,

Lo pt) = =52 (2*(t),u*(t),p(t)), p(T) =% (x*(T)),
2. w(t) =argmin, gy H (2*(t),u,p(t)),

3.  H(z*(t),u*(t),p(t)) is constant.

Show that if the dynamics and the cost are time varying — that is, f (x, u) is replaced by f (z, u, t)
and g (z,u) is replaced by g (z,u,t) — the Minimum Principle becomes:

L) = 2 @), (0,00, 1), p(T) = 2 (a*(T)).

2. w(t) =argmin, g H (x*(t), u,p(t),t)

3. H(z*(t),u*(t),p(t),t) not necessarily constant,
where the Hamiltonian function is now given by

H(x7u7p7t) :g(m7u7t)+pr(x7u7t)'
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Solution 4

General idea:

Convert the problem to a time-independent one, apply the standard Minimum Principle pre-
sented in class, and simplify the obtained equations.

Follow the subsequent steps:

e Introduce an extra state variable y(t) representing the time:

y(t) =t, with g(t) =1 and y(0)=0.

e Convert the problem into standard form by introducing the extended state £ = [z, y]T:

The dynamics read now as
1) = Fl& u) = [ Fleuy), 11T
and the cost is defined by
e + [ s,

where §(¢,u) = g(z,u,y) and h(§) = h(z).
The Hamiltonian follows from above’s definitions:

H(&u,p) = §(&u) + 57 f(&u)  with p=[p,p,]".

e Apply the Minimum Principle:

Denoting the optimal control by u*(¢) and the corresponding optimal state by £*(t), we
get the following:

1. The adjoint equation is given by

B(t) = —%f € (). (1), (), HT) = ‘;’g (1)) 2)

However,

‘H(Eauvﬁ) = g(m,u,y)+pr(l’,u,y)+py = H($,U,p,y)+py7

that is, B B
oi _oH o _oH
or Oz’ dy Oy’
Moreover, ) B
Oh  0h Oh
% = % and aiy =0
From (2), we recover the first equation
. 8H * * _ % *

In addition, replacing y(t) by ¢ again, we get

5ot =~ (1), 0t (1), p(0),1), py(T) =0,
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2. The optimal input u*(t) is obtained by
W (8) = arg min,err { H(2*(8), u"(6),p(t), 1) + py (1) |
= argmin,;; H(z"(t),u"(t),p(t),1).
3. Finally, the standard formulation gives us
H(z"(t),u"(t),p(t),t) + py(t) is constant.

However, p,(t) is constant only if %—? = 0, which, in general, is only true if f and g
do not depend on time.



