# Dynamic Programming \& Optimal Control (151-0563-01) 

## Solutions

| Exam Duration: | $\mathbf{1 5 0}$ minutes |
| :--- | :--- |
| Number of Problems: | $\mathbf{4}(25 \%$ each $)$ |
| Permitted Aids: | Textbook Dynamic Programming and Optimal Control by <br>  <br>  <br>  <br>  <br>  <br>  <br> Dimitri P. Bertsekas, Vol. I, 3rd edition, 2005, 558 pages. <br>  <br>  |
|  | No calculators. |
|  | Use only these prepared sheets for your solutions. |

General Hints: $\quad E(\cdot)$ denotes the expected value. $\quad$|  | $E(r s)=E(r) E(s)$, if two random variables $r, s$ are inde- |
| :--- | :--- |
| pendent. |  |



Figure 1
Find the shortest path from node $S$ to node $T$ for the graph given in Figure 1. Apply the Label Correcting Method. Use Depth-First Search to determine at each iteration which node to remove from OPEN; that is, the node is always removed from the top of OPEN and each node entering OPEN is placed at the top of OPEN (last-in/first-out policy).
Solve the problem by populating a table of the following form:

| Iter- <br> ation | Node exiting <br> OPEN | OPEN | $d_{S}$ | $d_{1}$ | $d_{2}$ | $d_{3}$ | $d_{4}$ | $d_{5}$ | $d_{6}$ | $d_{7}$ | $d_{8}$ | $d_{9}$ | $d_{T}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | - | $\ldots$ |  |  |  |  |  |  |  |  |  |  |  |
| 1 | S | $\ldots$ |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 4 | $\ldots$ |  |  |  |  |  |  |  |  |  |  |  |
| $\ldots$ |  |  |  |  |  |  |  |  |  |  |  |  |  |

where the variable $d_{i}$ denotes the length of the shortest path from node $S$ to node $i$ that has been found so far. Note that the first two nodes exiting OPEN are given.
State the resulting shortest path and its length.

Solution 1

| Iter- <br> ation | Node exiting <br> OPEN | OPEN | $d_{S}$ | $d_{1}$ | $d_{2}$ | $d_{3}$ | $d_{4}$ | $d_{5}$ | $d_{6}$ | $d_{7}$ | $d_{8}$ | $d_{9}$ | $d_{T}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | - | S | 0 | $\infty$ |
| 1 | S | $4,3,1$ | 0 | 2 | $\infty$ | 1 | 3 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 2 | 4 | $5,3,1$ | 0 | 2 | $\infty$ | 1 | 3 | 4 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 3 | 5 | $6,3,1$ | 0 | 2 | $\infty$ | 1 | 3 | 4 | 6 | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 4 | 6 | $8,3,1$ | 0 | 2 | $\infty$ | 1 | 3 | 4 | 6 | $\infty$ | 7 | $\infty$ | $\infty$ |
| 5 | 8 | 3,1 | 0 | 2 | $\infty$ | 1 | 3 | 4 | 6 | $\infty$ | 7 | $\infty$ | 8 |
| 6 | 3 | 4,1 | 0 | 2 | $\infty$ | 1 | 2 | 4 | 6 | $\infty$ | 7 | $\infty$ | 8 |
| 7 | 4 | 5,1 | 0 | 2 | $\infty$ | 1 | 2 | 3 | 6 | $\infty$ | 7 | $\infty$ | 8 |
| 8 | 5 | 6,1 | 0 | 2 | $\infty$ | 1 | 2 | 3 | 5 | $\infty$ | 7 | $\infty$ | 8 |
| 9 | 6 | 8,1 | 0 | 2 | $\infty$ | 1 | 2 | 3 | 5 | $\infty$ | 6 | $\infty$ | 8 |
| 10 | 8 | 1 | 0 | 2 | $\infty$ | 1 | 2 | 3 | 5 | $\infty$ | 6 | $\infty$ | 7 |
| 11 | - | 0 | 2 | $\infty$ | 1 | 2 | 3 | 5 | $\infty$ | 6 | $\infty$ | 7 |  |

## Alternative solution:

| Iter- <br> ation | Node exiting <br> OPEN | OPEN | $d_{S}$ | $d_{1}$ | $d_{2}$ | $d_{3}$ | $d_{4}$ | $d_{5}$ | $d_{6}$ | $d_{7}$ | $d_{8}$ | $d_{9}$ | $d_{T}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | - | S | 0 | $\infty$ |
| 1 | S | $4,1,3$ | 0 | 2 | $\infty$ | 1 | 3 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 2 | 4 | $5,1,3$ | 0 | 2 | $\infty$ | 1 | 3 | 4 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 3 | 5 | $6,1,3$ | 0 | 2 | $\infty$ | 1 | 3 | 4 | 6 | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 4 | 6 | $8,1,3$ | 0 | 2 | $\infty$ | 1 | 3 | 4 | 6 | $\infty$ | 7 | $\infty$ | $\infty$ |
| 5 | 8 | 1,3 | 0 | 2 | $\infty$ | 1 | 3 | 4 | 6 | $\infty$ | 7 | $\infty$ | 8 |
| 6 | 1 | 2,3 | 0 | 2 | 7 | 1 | 3 | 4 | 6 | $\infty$ | 7 | $\infty$ | 8 |
| 7 | 3 | 3 | 0 | 2 | 7 | 1 | 3 | 4 | 6 | $\infty$ | 7 | $\infty$ | 8 |
| 8 | 4 | 4 | 0 | 2 | 7 | 1 | 2 | 4 | 6 | $\infty$ | 7 | $\infty$ | 8 |
| 10 | 5 | 5 | 0 | 2 | 7 | 1 | 2 | 3 | 6 | $\infty$ | 7 | $\infty$ | 8 |
| 11 | 6 | 6 | 0 | 2 | 7 | 1 | 2 | 3 | 5 | $\infty$ | 7 | $\infty$ | 8 |
| 12 | 8 | 8 | 0 | 2 | 7 | 1 | 2 | 3 | 5 | $\infty$ | 6 | $\infty$ | 8 |
| 8 | - | 0 | 2 | 7 | 1 | 2 | 3 | 5 | $\infty$ | 6 | $\infty$ | 7 |  |

The shortest path is $\quad S \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 8 \rightarrow T$ with a total length of 7 .

## Problem 2

Consider the following system

$$
x_{k+1}=f_{i_{k}}\left(x_{k}, u_{k}, w_{k}\right), \quad i_{k}=1,2,
$$

where

$$
\begin{aligned}
& f_{1}\left(x_{k}, u_{k}, w_{k}\right)=w_{k} x_{k}+w_{k} u_{k} \\
& f_{2}\left(x_{k}, u_{k}, w_{k}\right)=w_{k} x_{k}-2 w_{k} u_{k} .
\end{aligned}
$$

The disturbance $w_{k}$ takes the values 0 and 1 with equal probability. The input $u_{k}$ is restricted to be 1 or -1 .
State constraints are given as follows:

$$
-2 k \leq x_{k} \leq 2 k
$$

Starting from an initial state $x_{0}=0$, the goal is to minimize the cost

$$
\underset{w_{0}, w_{1}}{E}\left\{x_{0}^{2}+x_{1}^{2}+x_{2}^{2}\right\} .
$$

The control inputs are $u_{k}$ and $i_{k}$.

Apply the Dynamic Programming algorithm to find the optimal control policy and the optimal $\operatorname{cost} J_{0}(0)$.

## Solution 2

The optimal control problem is considered over a time horizon $N=2$ and the cost, to be minimized, is defined by

$$
g_{2}\left(x_{2}\right)=x_{2}^{2} \quad \text { and } \quad g_{k}\left(x_{k}, u_{k}, w_{k}\right)=x_{k}^{2}, \quad k=0,1
$$

Note that the state $x_{k}$ takes on only integer values since $w_{k} \in\{0,1\}, u_{k} \in\{-1,1\}$, and $x_{0}=0$.

The DP algorithm proceeds as follows:

## 2nd stage:

The recursion is started with

$$
J_{2}\left(x_{2}\right)=x_{2}^{2}
$$

for all feasible $x_{2} \in\{-4,-3, \ldots, 2,3,4\}$.

## 1st stage:

Proceeding backwards, we get:

$$
\begin{aligned}
J_{1}\left(x_{1}\right) & =\min _{\substack{i_{1} \in\{1,2\} \\
u_{1} \in\{-1,1\}}} \underset{w_{1}}{E}\left\{x_{1}^{2}+J_{2}\left(f_{i_{1}}\left(x_{1}, u_{1}, w_{1}\right)\right)\right\} \\
& =\min _{\substack{i_{1} \in\{1,2\} \\
u_{1} \in\{-1,1\}}} \underset{w_{1}}{E}\left\{x_{1}^{2}+\left(f_{i_{1}}\left(x_{1}, u_{1}, w_{1}\right)\right)^{2}\right\}
\end{aligned}
$$

The functions $f_{1}\left(x_{k}, u_{k}, w_{k}\right)$ and $f_{2}\left(x_{k}, u_{k}, w_{k}\right)$ are rewritten as

$$
\begin{aligned}
f_{1}\left(x_{k}, u_{k}, w_{k}\right) & =w_{k}\left(x_{k}+u_{k}\right)
\end{aligned}=w_{k} h_{1}\left(x_{k}, u_{k}\right) ~ 子 ~\left(x_{k}, u_{k}, w_{k}\right)=w_{k}\left(x_{k}-2 u_{k}\right)=w_{k} h_{2}\left(x_{k}, u_{k}\right) .
$$

Using these definitions, we get

$$
\begin{aligned}
J_{1}\left(x_{1}\right) & =\min _{\substack{i_{1} \in\{1,2\} \\
u_{1} \in\{-1,1\}}} \underset{w_{1}}{E}\left\{x_{1}^{2}+w_{1}^{2}\left(h_{i_{1}}\left(x_{1}, u_{1}\right)\right)^{2}\right\} \\
& =\min _{\substack{i_{1} \in\{1,2\} \\
u_{1} \in\{-1,1\}}}\left\{x_{1}^{2}+0.5 \cdot 0^{2}+0.5 \cdot 1^{2} \cdot\left(h_{i_{1}}\left(x_{1}, u_{1}\right)\right)^{2}\right\} \\
& =x_{1}^{2}+0.5 \cdot \min _{\substack{i_{1} \in\{1,2\} \\
u_{1} \in\{-1,1\}}}\left\{\left(h_{i_{1}}\left(x_{1}, u_{1}\right)\right)^{2}\right\}
\end{aligned}
$$

Now, by evaluating $h_{i_{1}}\left(x_{1}, u_{1}\right)$ for all feasible $x_{1} \in\{-2,-1,0,1,2\}$ considering possible input pairs,

$$
\left(u_{1}, i_{1}\right) \in\{(1,-1),(1,1),(2,-1),(2,1)\}
$$

the state-dependent minimizing input and the corresponding cost-to-go $J_{1}\left(x_{1}\right)$ are found:

$$
\begin{array}{lll}
J_{1}(-2)=4+0=4, & \text { with } & \mu^{*}(-2)=(2,-1) \\
J_{1}(-1)=1+0=1, & \text { with } & \mu_{1}^{*}(-1)=(1,1) \\
J_{1}(0)=0+0.5=0.5, & \text { with } & \mu_{1}^{*}(0)=(1, \pm 1) \\
J_{1}(1)=1+0=4, & \text { with } & \mu_{1}^{*}(1)=(1,-1) \\
J_{1}(2)=4+0=4, & \text { with } & \mu_{1}^{*}(2)=(2,1) .
\end{array}
$$

## 0th stage:

Finally with the initial condition $x_{0}=0$, the optimal cost is calculated by

$$
\begin{aligned}
J_{0}(0) & =\min _{\substack{i_{0} \in\{1,2\} \\
u_{0} \in\{-1,1\}}} \underset{w_{0}}{E}\left\{0^{2}+J_{1}\left(f_{i_{0}}\left(0, u_{0}, w_{0}\right)\right)\right\} \\
& =\min _{\substack{i_{0} \in\{1,2\} \\
u_{0} \in\{-1,1\}}}\left\{0.5 \cdot J_{1}\left(f_{i_{0}}\left(0, u_{0}, 0\right)\right)+0.5 \cdot J_{1}\left(f_{i_{0}}\left(0, u_{0}, 1\right)\right)\right\} \\
& =\min _{\substack{i_{0} \in\{1,2\} \\
u_{0} \in\{-1,1\}}}\left\{0.5 \cdot J_{1}(0)+0.5 \cdot J_{1}\left(f_{i_{0}}\left(0, u_{0}, 1\right)\right)\right\} .
\end{aligned}
$$

The input,

$$
\mu_{0}^{*}(0)=(1, \pm 1)
$$

minimizes the cost function and results in

$$
\begin{aligned}
J_{0}(0) & =0.5 \cdot J_{1}(0)+0.5 \cdot J_{1}( \pm 1) \\
& =0.25+0.5=0.75
\end{aligned}
$$

## Problem 3

Consider the following discrete-time system:

$$
\begin{aligned}
x_{k+1} & =x_{k}+u_{k}+w_{k}, \quad k=0,1, \ldots, \infty \\
y_{k} & =x_{k},
\end{aligned}
$$

where $x_{k}, u_{k}, w_{k}$, and $y_{k}$ are real numbers. The initial condition is $x_{0}=1$. The $w_{k}$ are independent random numbers with $E\left(w_{k}\right)=0$ and $E\left(w_{k}^{2}\right)=1$.
The cost function is the following:

$$
J=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N-1} E\left(\frac{x_{k}^{2}}{2}+u_{k}^{2}\right) .
$$

We restrict ourselves to the following class of feedback laws:

$$
u_{k}=F y_{k},
$$

where $F$ is a constant gain.
a) Find the gain $F$ that minimizes the cost $J$.
b) Now consider the measurement corrupted by noise:

$$
y_{k}=x_{k}+v_{k},
$$

where the $v_{k}$ are independent random numbers with $E\left(v_{k}\right)=0$ and $E\left(v_{k}^{2}\right)=1$. What is the cost $J$ if the same feedback gain that you found in part a) is used?

## Solution 3

a) This is an infinite horizon, perfect information problem for a linear system with a quadratic cost function. The optimal feedback strategy is a constant gain, which coincides with the class of feedback laws that we are considering in this problem. We therefore just have to find the optimal LQR gain for

$$
A=1, \quad B=1, \quad Q=\frac{1}{2}, \quad \text { and } \quad R=1
$$

Solve the Riccati equation:

$$
K=K-\frac{K^{2}}{K+1}+\frac{1}{2} \quad \Leftrightarrow \quad \frac{K^{2}}{K+1}=\frac{1}{2}
$$

The positive solution therefore is $K=1$. The optimal feedback gain is thus

$$
F=\frac{-K}{K+1}=-\frac{1}{2}
$$

b) Consider the closed loop with $u_{k}=-\frac{1}{2} y_{k}=-\frac{1}{2} x_{k}-\frac{1}{2} v_{k}$ :

$$
\begin{equation*}
x_{k+1}=x_{k}-\frac{1}{2} x_{k}-\frac{1}{2} v_{k}+w_{k}=\frac{1}{2} x_{k}-\frac{1}{2} v_{k}+w_{k} . \tag{1}
\end{equation*}
$$

The cost becomes

$$
\begin{aligned}
J & =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N-1}\left(E\left(\frac{x_{k}^{2}}{2}+u_{k}^{2}\right)\right) \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N-1}\left(\frac{1}{2} E\left(x_{k}^{2}\right)+E\left(\frac{1}{4} x_{k}^{2}+\frac{1}{2} x_{k} v_{k}+\frac{1}{4} v_{k}^{2}\right)\right) \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N-1}\left(\frac{1}{2} E\left(x_{k}^{2}\right)+\frac{1}{4} E\left(x_{k}^{2}\right)+\frac{1}{4} E\left(v_{k}^{2}\right)\right) \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N-1}\left(\frac{3}{4} E\left(x_{k}^{2}\right)+\frac{1}{4}\right)
\end{aligned}
$$

where we used $E\left(x_{k} v_{k}\right)=E\left(x_{k}\right) E\left(v_{k}\right)=0$, which holds because $v_{k}$ is an independent random variable and $E\left(v_{k}\right)=0$.
Now, using (1) and by independence of $v_{k}$ and $w_{k}$, we have

$$
\begin{align*}
E\left(x_{k+1}^{2}\right) & =E\left(\frac{1}{4} x_{k}^{2}+\frac{1}{4} v_{k}^{2}+w_{k}^{2}-\frac{1}{2} x_{k} v_{k}+x_{k} w_{k}-v_{k} w_{k}\right) \\
& =\frac{1}{4} E\left(x_{k}^{2}\right)+\frac{1}{4} E\left(v_{k}^{2}\right)+E\left(w_{k}^{2}\right) \\
& =\frac{1}{4} E\left(x_{k}^{2}\right)+\frac{1}{4}+1 \\
& =\frac{1}{4} E\left(x_{k}^{2}\right)+\frac{5}{4} \tag{2}
\end{align*}
$$

Let $\alpha=\lim _{k \rightarrow \infty} E\left(x_{k}^{2}\right)$, which exists since the recursion (1) is stable. Substituting this in (2), we can solve for $\alpha$,

$$
\alpha=\frac{1}{4} \alpha+\frac{5}{4} \quad \Leftrightarrow \quad \alpha=\frac{5}{3} .
$$

Therefore, the cost is

$$
\begin{aligned}
J & =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N-1}\left(\frac{3}{4} \cdot \frac{5}{3}+\frac{1}{4}\right) \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N-1}\left(\frac{3}{2}\right) \\
& =\frac{3}{2}
\end{aligned}
$$

## Problem 4

Consider the following nonlinear differential equations

$$
\begin{aligned}
& \dot{x}_{1}(t)=x_{2}(t) u_{1}(t) \\
& \dot{x}_{2}(t)=x_{1}(t) u_{2}(t)
\end{aligned}
$$

with initial conditions

$$
\begin{aligned}
& x_{1}(0)=-1 \\
& x_{2}(0)=0
\end{aligned}
$$

where all variables are real numbers.
The control inputs have the following constraints:

$$
\left|u_{1}(t)\right| \leq 1 \quad \text { and } \quad\left|u_{2}(t)\right| \leq 1
$$

a) Find control inputs $u_{1}(t), u_{2}(t)$ which drive the system to $\left(x_{1}, x_{2}\right)=(1,0)$ as quickly as possible.
b) Does it take longer or shorter to drive the system to $\left(x_{1}, x_{2}\right)=(0,0)$ ?

## Solution 4

a) The goal is to find an input trajectory $\left(u_{1}(t), u_{2}(t)\right), t \in[0, T]$ which accomplishes the transfer from

$$
\left(x_{1}(0), x_{2}(0)\right)=(-1,0) \quad \text { to } \quad\left(x_{1}(T), x_{2}(T)\right)=(1,0)
$$

in minimum time. Thus, we want to

$$
\operatorname{minimize} T=\int_{0}^{T} 1 d t
$$

Using the standard notation of the cost functional,

$$
h(x(T))+\int_{0}^{T} g(x(t), u(t)) d t
$$

that is

$$
g(x)=1 \quad \text { and } \quad h(x(T))=0 .
$$

## Apply the Minimum Principle.

- The Hamiltonian is given by

$$
\begin{aligned}
H(x, u, p) & =g(x, u)+p^{T} f(x, u) \\
& =1+p_{1} x_{2} u_{1}+p_{2} x_{1} u_{2} .
\end{aligned}
$$

- The adjoint equations follow from the equation above:

$$
\begin{aligned}
& \dot{p}_{1}(t)=-\frac{\partial H}{\partial x_{1}}\left(x^{*}(t), u^{*}(t), p(t)\right) \\
&=-p_{2}(t) u_{2}^{*}(t) \\
& \dot{p}_{2}(t)=-\frac{\partial H}{\partial x_{2}}\left(x^{*}(t), u^{*}(t), p(t)\right)
\end{aligned}=-p_{1}(t) u_{1}^{*}(t) . ~ \$
$$

Since we have a Fixed Terminal State Problem, there are no boundary conditions on p.

- In addition, for optimal time problems, the Hamiltonian satisfies

$$
\begin{equation*}
H\left(x^{*}(t), u^{*}(t), p(t)\right)=1+p_{1}(t) x_{2}^{*}(t) u_{1}^{*}(t)+p_{2}(t) x_{1}^{*}(t) u_{2}^{*}(t)=0 \tag{3}
\end{equation*}
$$

for all $t \in[0, T]$.

- The optimal input $u^{*}(t)$ is obtained by minimizing the Hamiltonian along the optimal trajectory

$$
u^{*}(t)=\underset{\substack{\left|u_{1}\right| \leq 1 \\\left|u_{2}\right| \leq 1}}{\arg \min }\left\{H\left(x^{*}(t), u, p(t)\right)\right\}=\underset{\substack{\left|u_{1}\right| \leq 1 \\\left|u_{2}\right| \leq 1}}{\arg \min }\left\{1+p_{1} x_{2}^{*} u_{1}+p_{2} x_{1}^{*} u_{2}\right\}
$$

Since the Hamiltonian is linear in $u_{1}$ and $u_{2}$, it follows that the optimal strategy is bang-bang; that is,

$$
u_{1}^{*}(t)=\left\{\begin{align*}
-1, & \text { if } p_{1} x_{2}^{*} \geq 0  \tag{4}\\
1, & \text { if } p_{1} x_{2}^{*}<0
\end{align*}\right.
$$

and

$$
u_{2}^{*}(t)=\left\{\begin{align*}
-1, & \text { if } p_{2} x_{1}^{*} \geq 0  \tag{5}\\
1, & \text { if } p_{2} x_{1}^{*}<0
\end{align*}\right.
$$

assuming that there are no intervals $\mathcal{T}=\left[t_{1}, t_{2}\right], 0 \leq t_{1}<t_{2} \leq T$, where

$$
\begin{equation*}
p_{1}(t) x_{2}^{*}(t)=0 \quad \text { or } \quad p_{2}(t) x_{1}^{*}(t)=0, \quad \forall t \in \mathcal{T} \tag{6}
\end{equation*}
$$

## Prove bang-bang strategy.

In order to have a bang-bang time-optimal solution, we have to show that assumption (6) holds.
First, assume $x_{1}^{*}(t) \equiv 0 \quad \forall t \in \mathcal{T}$. Then,

$$
\dot{x}_{2}^{*}(t)=x_{1}^{*}(t) u_{2}^{*}(t) \equiv 0 \quad \forall t \in \mathcal{T}
$$

It follows that

$$
x_{2}^{*}(t) \equiv \text { const } \quad \forall t \in \mathcal{T}
$$

That is, we do not move anywhere! Since the differential equations for $x_{1}$ and $x_{2}$ are symmetric, we can proceed in the same way for $x_{2}^{*}(t) \equiv 0 \quad \forall t \in \mathcal{T}$. So, the case, where $x_{1}$ or $x_{2}$ are 0 for any interval $\mathcal{T}$, is not interesting, since nothing happens. We do not move. Now, assume $p_{1}(t) \equiv 0 \quad \forall t \in \mathcal{T}$. Then,

$$
\dot{p}_{1}(t)=-p_{2}(t) u_{2}^{*}(t) \stackrel{!}{=} 0 \quad \forall t \in \mathcal{T}
$$

In order to satisfy the equation above, we have two options:
a) $\quad p_{2}(t) \equiv 0 \quad \forall t \in \mathcal{T}$; however, this is a contradiction to (3).
b) $\quad u_{2}^{*}(t) \equiv 0 \quad \forall t \in \mathcal{T}$; but then, (3) does not hold either.

Because of symmetry, we can do the same for $p_{2}(t) \equiv 0 \quad \forall t \in \mathcal{T}$.
To sum up, above's considerations show that the optimal input $u^{*}(t)$ has to be bang-bang.

## Consider zero-switch solution.

We first consider the case, where $u_{1}^{*}(t)=$ const and $u_{2}^{*}(t)=$ const over the whole time horizon $0 \leq t \leq T$.
Distinguish two different cases:
I) $\mathbf{u}_{\mathbf{1}}^{*}=\mathbf{u}_{\mathbf{2}}^{*}=\mathbf{u}= \pm \mathbf{1}$ :

In this case,

$$
\begin{aligned}
\dot{x}_{1}^{*} & =x_{2}^{*} u \\
\dot{x}_{2}^{*} & =x_{1}^{*} u
\end{aligned}
$$

That is,

$$
\begin{align*}
& \ddot{x}_{1}^{*}=u^{2} x_{1}^{*}=x_{1}^{*} \quad \text { and }  \tag{7}\\
& x_{2}^{*}=\frac{\dot{x}_{1}^{*}}{u} \tag{8}
\end{align*}
$$

It follows that,

$$
\begin{aligned}
& x_{1}^{*}(t)=A \cosh t+B \sinh t \\
& x_{2}^{*}(t)=\frac{A}{u} \sinh t+\frac{B}{u} \cosh t
\end{aligned}
$$

where $A, B$ are constant and cosh and sinh denote the hyperbolic cosines and sines:

$$
\cosh t:=\frac{e^{t}+e^{-t}}{2} \quad \text { and } \quad \cosh t:=\frac{e^{t}-e^{-t}}{2}
$$

The constants $A$ and $B$ are chosen, such that the initial conditions are satisfied:

$$
\begin{aligned}
& x_{1}^{*}(0)=A=-1 \\
& x_{2}^{*}(0)=\frac{B}{u}=0 .
\end{aligned}
$$

Finally, we get

$$
x_{1}^{*}(t)=-\cosh t \quad \text { and } \quad x_{2}^{*}(t)=-\frac{1}{u} \sinh t
$$

However, this solution does not solve our problem. It never reaches our final destination $\left(x_{1}, x_{2}\right)=(1,0)$; that is, $x_{1}^{*}(t) \neq 1$ and $x_{2}^{*}(t) \neq 0$ for any $t>0$.
II) $\mathbf{u}_{\mathbf{1}}=-\mathbf{u}_{\mathbf{2}}=\mathbf{u}= \pm \mathbf{1}$ :

In this case,

$$
\begin{aligned}
& \dot{x}_{1}^{*}=x_{2}^{*} u \\
& \dot{x}_{2}^{*}=-x_{1}^{*} u .
\end{aligned}
$$

That is,

$$
\begin{aligned}
& \ddot{x}_{1}^{*}=-u^{2} x_{1}^{*}=-x_{1}^{*} \quad \text { and } \\
& x_{2}^{*}=\frac{\dot{x}_{1}^{*}}{u}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& x_{1}^{*}(t)=A \cos t+B \sin t \\
& x_{2}^{*}(t)=-\frac{A}{u} \sin t+\frac{B}{u} \cos t
\end{aligned}
$$

with $A, B$ being constant. From the initial conditions, we determine

$$
\begin{aligned}
& x_{1}^{*}(0)=A=-1 \\
& x_{2}^{*}(0)=\frac{B}{u}=0 .
\end{aligned}
$$

Finally, we get

$$
\begin{equation*}
x_{1}^{*}(t)=-\cos t \quad \text { and } \quad x_{2}^{*}(t)=\frac{1}{u} \sin t \tag{9}
\end{equation*}
$$

Note that for $T=\pi$, the final state is reached, $x_{1}^{*}(T)=1$ and $x_{2}^{*}(T)=0$.
What still has to be checked, is that (9) and the corresponding costates $p_{1}(t)$ and
$p_{2}(t)$ satisfy the necessary conditions of the Minimum Principle, namely Equations (5), (3), and (4). In order to verify these conditions, we have to calculate the costates:

$$
\begin{aligned}
& \dot{p}_{1}=p_{2} u \\
& \dot{p}_{2}=-p_{1} u
\end{aligned}
$$

That is,

$$
\begin{aligned}
& \ddot{p}_{1}=-u^{2} p_{1}=-p_{1} \\
& \dot{p}_{2}=\frac{\dot{p}_{1}}{u}
\end{aligned}
$$

It follows that

$$
\begin{align*}
& p_{1}(t)=C \cos t+D \sin t  \tag{10}\\
& p_{2}(t)=-\frac{C}{u} \sin t+\frac{D}{u} \cos t \tag{11}
\end{align*}
$$

With these results, Equations (10) and (11), and the state trajectory (9), Equation (3) reads as

$$
\begin{aligned}
H\left(x^{*}(t), u^{*}(t), p(t)\right) & =1+p_{1}(t) x_{2}^{*}(t) \ddot{\mathrm{i}} ? \cdot \frac{1}{2}, u-p_{2}(t) x_{1}^{*}(t) u \\
& =1+C \cos t \sin t+D \sin ^{2} t-C \cos t \sin t+D \cos ^{2} t \\
& =1+D \\
& \stackrel{!}{=} 0
\end{aligned}
$$

That is $D=-1$. Moreover, in order to satisfy Equations (4) and (5), the constant $C$ has to be chosen: $C=0$.

To conclude, we found a trajectory (9) transfering the state from

$$
\left(x_{1}(0), x_{2}(0)\right)=(-1,0) \quad \text { to } \quad\left(x_{1}(T), x_{2}(T)\right)=(1,0), \quad \text { in time } T=\pi
$$

and satisfying the necessary conditions of the Minimum Principle. The trajectory describes a circle which, depending on the choice of $u \in\{1,-1\}$, lies above or under the $x_{1}$-axis.

Important to note is that the Minimum Principle is just a necessary condition. There might be a multiple-switch solution which is faster; i.e., with $T<\pi$. Proving that there is actually no other trajectory satisfying the necessary conditions is quite cumbersome and not required here. Nevertheless, intuition tells us that for a fast transition from the initial to the final state, $\dot{x}_{1}(t)=x_{2}(t) u_{1}(t)$ should be chosen large. Therefore, for an optimal solution, $\left|x_{2}(t)\right|$ should increase quickly during the first half of the trajectory and decrease at the end. This behavior can be observed when carefully looking at (9).
$\Rightarrow$ Grading: Required for full grade was the derivation of the zero switch solution II), which results in a circular trajectory from the initial state to the final destination, and the verification of the necessary conditions for this trajectory.
b) Longer. In fact, it takes an infinite amount of time to drive the system to ( 0,0 ). Why? Assume that we can drive the system to $(0,0)$ in a finite time $T, T<\infty$. Define

$$
\begin{array}{ll}
z_{1}(t)=x_{1}(T-t), & v_{1}(t)=u_{1}(T-t) \\
z_{2}(t)=x_{2}(T-t), & v_{2}(t)=u_{2}(T-t)
\end{array}
$$

Then,

$$
\begin{aligned}
& \dot{z}_{1}(t)=-\dot{x}_{1}(T-t)=-x_{2}(T-t) u_{1}(T-t)=-z_{2}(t) v_{1}(t) \\
& \dot{z}_{2}(t)=-\dot{x}_{2}(T-t)=-x_{1}(T-t) u_{2}(T-t)=-z_{1}(t) v_{2}(t)
\end{aligned}
$$

with initial conditions

$$
\begin{aligned}
& z_{1}(0)=0 \\
& z_{2}(0)=0
\end{aligned}
$$

The inputs $u_{1}$ and $u_{2}$ are bounded and, therefore, $v_{1}$ and $v_{2}$ are bounded. From the initial conditions, it follows

$$
\dot{z}_{1}(t)=\dot{z}_{2}(t)=0 \quad \forall t>0
$$

which is a contradiction to $z_{1}(T)=-1$, our initial condition in the original problem definition.

