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Solutions

Exam Duration: 150 minutes

Number of Problems: 4 (25% each)

Permitted Aids: Textbook Dynamic Programming and Optimal Control by

Dimitri P. Bertsekas, Vol. I, 3rd edition, 2005, 558 pages.

Your written notes and class handouts.

No calculators.

Important: Use only these prepared sheets for your solutions.

General Hints: E(·) denotes the expected value.

E(rs) = E(r)E(s) , if two random variables r, s are inde-

pendent.
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Problem 1 25%
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Figure 1

Find the shortest path from node S to node T for the graph given in Figure 1. Apply the Label

Correcting Method. Use Depth-First Search to determine at each iteration which node to remove
from OPEN; that is, the node is always removed from the top of OPEN and each node entering
OPEN is placed at the top of OPEN (last-in/first-out policy).

Solve the problem by populating a table of the following form:

Iter-
ation

Node exiting
OPEN

OPEN dS d1 d2 d3 d4 d5 d6 d7 d8 d9 dT

0 - ...
1 S ...
2 4 ...
...

where the variable di denotes the length of the shortest path from node S to node i that has
been found so far. Note that the first two nodes exiting OPEN are given.

State the resulting shortest path and its length.
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Solution 1

Iter-
ation

Node exiting
OPEN

OPEN dS d1 d2 d3 d4 d5 d6 d7 d8 d9 dT

0 - S 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

1 S 4,3,1 0 2 ∞ 1 3 ∞ ∞ ∞ ∞ ∞ ∞

2 4 5,3,1 0 2 ∞ 1 3 4 ∞ ∞ ∞ ∞ ∞

3 5 6,3,1 0 2 ∞ 1 3 4 6 ∞ ∞ ∞ ∞

4 6 8,3,1 0 2 ∞ 1 3 4 6 ∞ 7 ∞ ∞

5 8 3,1 0 2 ∞ 1 3 4 6 ∞ 7 ∞ 8

6 3 4,1 0 2 ∞ 1 2 4 6 ∞ 7 ∞ 8

7 4 5,1 0 2 ∞ 1 2 3 6 ∞ 7 ∞ 8

8 5 6,1 0 2 ∞ 1 2 3 5 ∞ 7 ∞ 8

9 6 8,1 0 2 ∞ 1 2 3 5 ∞ 6 ∞ 8

10 8 1 0 2 ∞ 1 2 3 5 ∞ 6 ∞ 7

11 1 - 0 2 ∞ 1 2 3 5 ∞ 6 ∞ 7

Alternative solution:

Iter-
ation

Node exiting
OPEN

OPEN dS d1 d2 d3 d4 d5 d6 d7 d8 d9 dT

0 - S 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

1 S 4,1,3 0 2 ∞ 1 3 ∞ ∞ ∞ ∞ ∞ ∞

2 4 5,1,3 0 2 ∞ 1 3 4 ∞ ∞ ∞ ∞ ∞

3 5 6,1,3 0 2 ∞ 1 3 4 6 ∞ ∞ ∞ ∞

4 6 8,1,3 0 2 ∞ 1 3 4 6 ∞ 7 ∞ ∞

5 8 1,3 0 2 ∞ 1 3 4 6 ∞ 7 ∞ 8

6 1 2,3 0 2 7 1 3 4 6 ∞ 7 ∞ 8

7 2 3 0 2 7 1 3 4 6 ∞ 7 ∞ 8

8 3 4 0 2 7 1 2 4 6 ∞ 7 ∞ 8

9 4 5 0 2 7 1 2 3 6 ∞ 7 ∞ 8

10 5 6 0 2 7 1 2 3 5 ∞ 7 ∞ 8

11 6 8 0 2 7 1 2 3 5 ∞ 6 ∞ 8

12 8 - 0 2 7 1 2 3 5 ∞ 6 ∞ 7

The shortest path is S → 3 → 4 → 5 → 6 → 8 → T with a total length of 7.
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Problem 2 25%

Consider the following system

xk+1 = fik(xk, uk, wk) , ik = 1, 2 ,

where

f1(xk, uk, wk) = wkxk + wkuk

f2(xk, uk, wk) = wkxk − 2wkuk .

The disturbance wk takes the values 0 and 1 with equal probability. The input uk is restricted

to be 1 or −1.

State constraints are given as follows:

−2k ≤ xk ≤ 2k .

Starting from an initial state x0 = 0, the goal is to minimize the cost

E
w0,w1

{

x20 + x21 + x22
}

.

The control inputs are uk and ik.

Apply the Dynamic Programming algorithm to find the optimal control policy and the optimal
cost J0(0).
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Solution 2

The optimal control problem is considered over a time horizon N = 2 and the cost, to be
minimized, is defined by

g2(x2) = x22 and gk(xk, uk, wk) = x2k, k = 0, 1.

Note that the state xk takes on only integer values since wk ∈ {0, 1} , uk ∈ {−1, 1}, and x0 = 0.

The DP algorithm proceeds as follows:

2nd stage:

The recursion is started with

J2(x2) = x22

for all feasible x2 ∈ {−4, −3, . . . , 2, 3, 4}.

1st stage:

Proceeding backwards, we get:

J1(x1) = min
i1∈{1, 2}

u1∈{−1, 1}

E
w1

{

x21 + J2
(

fi1 (x1, u1, w1)
)

}

= min
i1∈{1, 2}

u1∈{−1, 1}

E
w1

{

x21 +
(

fi1 (x1, u1, w1)
)2
}

.

The functions f1(xk, uk, wk) and f2(xk, uk, wk) are rewritten as

f1(xk, uk, wk) = wk (xk + uk) = wk h1(xk, uk)

f2(xk, uk, wk) = wk (xk − 2uk) = wk h2(xk, uk) .

Using these definitions, we get

J1(x1) = min
i1∈{1, 2}

u1∈{−1, 1}

E
w1

{

x21 + w2
1

(

hi1 (x1, u1)
)2
}

= min
i1∈{1, 2}

u1∈{−1, 1}

{

x21 + 0.5 · 02 + 0.5 · 12 ·
(

hi1 (x1, u1)
)2
}

= x21 + 0.5 · min
i1∈{1, 2}

u1∈{−1, 1}

{

(

hi1 (x1, u1)
)2
}

.

Now, by evaluating hi1 (x1, u1) for all feasible x1 ∈ {−2, −1, 0, 1, 2} considering possible input
pairs,

(u1, i1) ∈
{

(1,−1), (1, 1), (2,−1), (2, 1)
}

,
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the state-dependent minimizing input and the corresponding cost-to-go J1(x1) are found:

J1(−2) = 4 + 0 = 4 , with µ∗(−2) = (2,−1)

J1(−1) = 1 + 0 = 1 , with µ∗
1(−1) = (1, 1)

J1(0) = 0 + 0.5 = 0.5 , with µ∗
1(0) = (1,±1)

J1(1) = 1 + 0 = 4 , with µ∗
1(1) = (1,−1)

J1(2) = 4 + 0 = 4 , with µ∗
1(2) = (2, 1) .

0th stage:

Finally with the initial condition x0 = 0, the optimal cost is calculated by

J0(0) = min
i0∈{1, 2}

u0∈{−1, 1}

E
w0

{

02 + J1
(

fi0 (0, u0, w0)
)

}

= min
i0∈{1, 2}

u0∈{−1, 1}

{

0.5 · J1
(

fi0 (0, u0, 0)
)

+ 0.5 · J1
(

fi0 (0, u0, 1)
)

}

= min
i0∈{1, 2}

u0∈{−1, 1}

{

0.5 · J1
(

0
)

+ 0.5 · J1
(

fi0 (0, u0, 1)
)

}

.

The input,

µ∗
0(0) = (1,±1) ,

minimizes the cost function and results in

J0(0) = 0.5 · J1
(

0
)

+ 0.5 · J1
(

±1)

= 0.25 + 0.5 = 0.75 .
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Problem 3 25%

Consider the following discrete-time system:

xk+1 = xk + uk + wk , k = 0, 1, . . . ,∞

yk = xk ,

where xk, uk, wk, and yk are real numbers. The initial condition is x0 = 1. The wk are
independent random numbers with E(wk) = 0 and E(w2

k) = 1.
The cost function is the following:

J = lim
N→∞

1

N

N−1
∑

k=0

E

(

x2k
2

+ u2k

)

.

We restrict ourselves to the following class of feedback laws:

uk = Fyk ,

where F is a constant gain.

a) Find the gain F that minimizes the cost J .

b) Now consider the measurement corrupted by noise:

yk = xk + vk ,

where the vk are independent random numbers with E(vk) = 0 and E(v2k) = 1. What is
the cost J if the same feedback gain that you found in part a) is used?
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Solution 3

a) This is an infinite horizon, perfect information problem for a linear system with a quadratic
cost function. The optimal feedback strategy is a constant gain, which coincides with the
class of feedback laws that we are considering in this problem. We therefore just have to
find the optimal LQR gain for

A = 1, B = 1, Q =
1

2
, and R = 1.

Solve the Riccati equation:

K = K −
K2

K + 1
+

1

2
⇔

K2

K + 1
=

1

2
.

The positive solution therefore is K = 1. The optimal feedback gain is thus

F =
−K

K + 1
= −

1

2
.

b) Consider the closed loop with uk = −1
2
yk = −1

2
xk −

1
2
vk :

xk+1 = xk −
1

2
xk −

1

2
vk + wk =

1

2
xk −

1

2
vk + wk. (1)

The cost becomes

J = lim
N→∞

1

N

N−1
∑

k=0

(

E

(

x2k
2

+ u2k

))

= lim
N→∞

1

N

N−1
∑

k=0

(

1

2
E(x2k) + E

(

1

4
x2k +

1

2
xkvk +

1

4
v2k

))

= lim
N→∞

1

N

N−1
∑

k=0

(

1

2
E(x2k) +

1

4
E(x2k) +

1

4
E(v2k)

)

= lim
N→∞

1

N

N−1
∑

k=0

(

3

4
E(x2k) +

1

4

)

,

where we used E(xkvk) = E(xk)E(vk) = 0, which holds because vk is an independent
random variable and E(vk) = 0.

Now, using (1) and by independence of vk and wk, we have

E(x2k+1) = E

(

1

4
x2k +

1

4
v2k + w2

k −
1

2
xkvk + xkwk − vkwk

)

=
1

4
E(x2k) +

1

4
E(v2k) + E(w2

k)

=
1

4
E(x2k) +

1

4
+ 1

=
1

4
E(x2k) +

5

4
. (2)

Let α = limk→∞E(x2k), which exists since the recursion (1) is stable. Substituting this in
(2), we can solve for α,

α =
1

4
α+

5

4
⇔ α =

5

3
.
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Therefore, the cost is

J = lim
N→∞

1

N

N−1
∑

k=0

(

3

4
·
5

3
+

1

4

)

= lim
N→∞

1

N

N−1
∑

k=0

(

3

2

)

=
3

2
.
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Problem 4 25%

Consider the following nonlinear differential equations

ẋ1(t) = x2(t)u1(t)

ẋ2(t) = x1(t)u2(t)

with initial conditions

x1(0) = −1

x2(0) = 0 ,

where all variables are real numbers.

The control inputs have the following constraints:

|u1(t)| ≤ 1 and |u2(t)| ≤ 1.

a) Find control inputs u1(t), u2(t) which drive the system to (x1, x2) = (1, 0) as quickly as
possible.

b) Does it take longer or shorter to drive the system to (x1, x2) = (0, 0) ?



Final Examination – Dynamic Programming & Optimal Control Page 11

Solution 4

a) The goal is to find an input trajectory (u1(t), u2(t)), t ∈ [0, T ] which accomplishes the
transfer from

(x1(0), x2(0)) = (−1, 0) to (x1(T ), x2(T )) = (1, 0)

in minimum time. Thus, we want to

minimize T =

∫ T

0

1 dt .

Using the standard notation of the cost functional,

h(x(T )) +

∫ T

0

g(x(t), u(t))dt ,

that is
g(x) = 1 and h(x(T )) = 0 .

Apply the Minimum Principle.

• The Hamiltonian is given by

H(x, u, p) = g(x, u) + pT f(x, u)

= 1 + p1x2u1 + p2x1u2 .

• The adjoint equations follow from the equation above:

ṗ1(t) = −
∂H

∂x1
(x∗(t), u∗(t), p(t)) = −p2(t)u

∗
2(t)

ṗ2(t) = −
∂H

∂x2
(x∗(t), u∗(t), p(t)) = −p1(t)u

∗
1(t) .

Since we have a Fixed Terminal State Problem, there are no boundary conditions on
p.

• In addition, for optimal time problems, the Hamiltonian satisfies

H (x∗(t), u∗(t), p(t)) = 1 + p1(t)x
∗
2(t)u

∗
1(t) + p2(t)x

∗
1(t)u

∗
2(t) = 0 (3)

for all t ∈ [0, T ].

• The optimal input u∗(t) is obtained by minimizing the Hamiltonian along the optimal
trajectory

u∗(t) = argmin
|u1|≤1

|u2|≤1

{

H (x∗(t), u, p(t))
}

= argmin
|u1|≤1

|u2|≤1

{

1 + p1x
∗
2u1 + p2x

∗
1u2

}

Since the Hamiltonian is linear in u1 and u2, it follows that the optimal strategy is
bang-bang; that is,

u∗1(t) =

{

−1, if p1x
∗
2 ≥ 0

1, if p1x
∗
2 < 0

(4)
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and

u∗2(t) =

{

−1, if p2x
∗
1 ≥ 0

1, if p2x
∗
1 < 0 ,

(5)

assuming that there are no intervals T = [t1, t2] , 0 ≤ t1 < t2 ≤ T, where

p1(t)x
∗
2(t) = 0 or p2(t)x

∗
1(t) = 0, ∀ t ∈ T . (6)

Prove bang-bang strategy.

In order to have a bang-bang time-optimal solution, we have to show that assumption (6)
holds.

First, assume x∗1(t) ≡ 0 ∀t ∈ T . Then,

ẋ∗2(t) = x∗1(t)u
∗
2(t) ≡ 0 ∀t ∈ T .

It follows that
x∗2(t) ≡ const ∀t ∈ T .

That is, we do not move anywhere! Since the differential equations for x1 and x2 are
symmetric, we can proceed in the same way for x∗2(t) ≡ 0 ∀t ∈ T . So, the case, where x1
or x2 are 0 for any interval T , is not interesting, since nothing happens. We do not move.

Now, assume p1(t) ≡ 0 ∀t ∈ T . Then,

ṗ1(t) = −p2(t)u
∗
2(t)

!
= 0 ∀t ∈ T .

In order to satisfy the equation above, we have two options:

a) p2(t) ≡ 0 ∀t ∈ T ; however, this is a contradiction to (3).

b) u∗2(t) ≡ 0 ∀t ∈ T ; but then, (3) does not hold either.

Because of symmetry, we can do the same for p2(t) ≡ 0 ∀t ∈ T .

To sum up, above’s considerations show that the optimal input u∗(t) has to be bang-bang.

Consider zero-switch solution.

We first consider the case, where u∗1(t) = const and u∗2(t) = const over the whole time
horizon 0 ≤ t ≤ T .

Distinguish two different cases:

I) u∗
1
= u∗

2
= u = ±1 :

In this case,

ẋ∗1 = x∗2u

ẋ∗2 = x∗1u .

That is,

ẍ∗1 = u2x∗1 = x∗1 and (7)

x∗2 =
ẋ∗1
u

. (8)
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It follows that,

x∗1(t) = A cosh t+B sinh t

x∗2(t) =
A

u
sinh t+

B

u
cosh t ,

where A, B are constant and cosh and sinh denote the hyperbolic cosines and sines:

cosh t :=
et + e−t

2
and cosh t :=

et − e−t

2
.

The constants A and B are chosen, such that the initial conditions are satisfied:

x∗1(0) = A = −1

x∗2(0) =
B

u
= 0 .

Finally, we get

x∗1(t) = − cosh t and x∗2(t) = −
1

u
sinh t .

However, this solution does not solve our problem. It never reaches our final destina-
tion (x1, x2) = (1, 0) ; that is, x∗1(t) 6= 1 and x∗2(t) 6= 0 for any t > 0.

II) u1 = −u2 = u = ±1 :

In this case,

ẋ∗1 = x∗2u

ẋ∗2 = −x∗1u .

That is,

ẍ∗1 = −u2x∗1 = −x∗1 and

x∗2 =
ẋ∗1
u

.

It follows that

x∗1(t) = A cos t+B sin t

x∗2(t) = −
A

u
sin t+

B

u
cos t

with A, B being constant. From the initial conditions, we determine

x∗1(0) = A = −1

x∗2(0) =
B

u
= 0 .

Finally, we get

x∗1(t) = − cos t and x∗2(t) =
1

u
sin t . (9)

Note that for T = π, the final state is reached, x∗1(T ) = 1 and x∗2(T ) = 0.

What still has to be checked, is that (9) and the corresponding costates p1(t) and
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p2(t) satisfy the necessary conditions of the Minimum Principle, namely Equations
(5), (3), and (4). In order to verify these conditions, we have to calculate the costates:

ṗ1 = p2u

ṗ2 = −p1u .

That is,

p̈1 = −u2p1 = −p1

ṗ2 =
ṗ1

u
.

It follows that

p1(t) = C cos t+D sin t (10)

p2(t) = −
C

u
sin t+

D

u
cos t . (11)

With these results, Equations (10) and (11), and the state trajectory (9), Equation
(3) reads as

H (x∗(t), u∗(t), p(t)) = 1 + p1(t)x
∗
2(t)̈ı?‘

1

2
, u− p2(t)x

∗
1(t)u

= 1 + C cos t sin t+D sin2 t− C cos t sin t+D cos2 t

= 1 +D

!
= 0 .

That is D = −1. Moreover, in order to satisfy Equations (4) and (5), the constant C
has to be chosen: C = 0.

To conclude, we found a trajectory (9) transfering the state from

(

x1(0), x2(0)
)

= (−1, 0) to
(

x1(T ), x2(T )
)

= (1, 0) , in time T = π ,

and satisfying the necessary conditions of the Minimum Principle. The trajectory
describes a circle which, depending on the choice of u ∈ {1,−1}, lies above or under
the x1-axis.

Important to note is that the Minimum Principle is just a necessary condition. There
might be a multiple-switch solution which is faster; i.e., with T < π. Proving that there is
actually no other trajectory satisfying the necessary conditions is quite cumbersome and
not required here. Nevertheless, intuition tells us that for a fast transition from the initial
to the final state, ẋ1(t) = x2(t)u1(t) should be chosen large. Therefore, for an optimal
solution, |x2(t)| should increase quickly during the first half of the trajectory and decrease
at the end. This behavior can be observed when carefully looking at (9).

⇒ Grading: Required for full grade was the derivation of the zero switch
solution II), which results in a circular trajectory from the initial state to
the final destination, and the verification of the necessary conditions for
this trajectory.



Final Examination – Dynamic Programming & Optimal Control Page 15

b) Longer. In fact, it takes an infinite amount of time to drive the system to (0, 0). Why?
Assume that we can drive the system to (0, 0) in a finite time T , T < ∞. Define

z1(t) = x1(T − t), v1(t) = u1(T − t),

z2(t) = x2(T − t), v2(t) = u2(T − t).

Then,

ż1(t) = −ẋ1(T − t) = −x2(T − t)u1(T − t) = −z2(t) v1(t)

ż2(t) = −ẋ2(T − t) = −x1(T − t)u2(T − t) = −z1(t) v2(t)

with initial conditions

z1(0) = 0

z2(0) = 0 .

The inputs u1 and u2 are bounded and, therefore, v1 and v2 are bounded. From the initial
conditions, it follows

ż1(t) = ż2(t) = 0 ∀ t > 0 ,

which is a contradiction to z1(T ) = −1, our initial condition in the original problem
definition.


