
Final Exam January 26th, 2012

Dynamic Programming & Optimal Control (151-0563-01) Prof. R. D’Andrea

Solutions

Exam Duration: 150 minutes

Number of Problems: 4

Permitted aids: One A4 sheet of paper.

Use only the provided sheets for your solutions.



Page 2 Final Exam – Dynamic Programming & Optimal Control

Problem 1 25%

Consider the following simplified map of Romania that is represented as a directed graph1.

Bucharest 

Oradea 

Zerind 

Drobeta 

Mehadia 

Lugoj 

Timisoara 

Arad 

Sibiu 

Rimniku 
Vileca 

Fagaras 

Pitesti 
Craiova 

100 

125 

75 

75 
100 

150 

75 

100 

150 

50 

50 

30 

125 

125 
100 

100 

450 

Figure 1: Simplified map of Romania

City Straight-line dist.

Arad 350
Bucharest 0
Craiova 100
Dobreta 150
Fagaras 100
Lugoj 200

Mehadia 175
Oradea 400
Pitesti 50

Rim. Vil. 150
Sibiu 200

Timisoara 325
Zerind 350

Figure 2: Straight-line
distances to Bucharest

Find the shortest path from Arad to Bucharest for the graph given in Figure 1 by applying
the A*-Algorithm. Use the straight-line distances from Figure 2 as heuristics and the best-first
method to determine, at each iteration, which node to remove from the OPEN bin; that is, remove
node i with

di = min
j in OPEN

dj

where the variable di denotes the length of the shortest path from Arad to node i that has been
found so far.

Solve the problem by populating a table of the following form2:

Iteration Node exiting OPEN OPEN dArad dZerind dOradea dT imisoara ... dBucharest

0 - ...
1 Arad ...
...

State the resulting shortest path and its associated cost.

1Though not a realistic model, a directed graph was chosen to reduce the computational burden.
2Please use the paper in landscape orientation for the table.



Final Exam – Dynamic Programming & Optimal Control Page 3

Solution 1

It
er
.

N
o
d
e

ex
it
in
g

O
P
E
N

O
P
E
N

d
A
r
a
d

d
Z
e
r
.

d
O
r
a
d
.

d
T
im

i.
d
L
u
g
o
j

d
M

e
h
.

d
D

r
o
b
.

d
C
r
a
.

d
S
ib
iu

d
R
im

.V
il
.

d
F
a
g
.

d
P
it
.

d
B
u
c
h
.

0
-

A
ra
d

0
∞

∞
∞

∞
∞

∞
∞

∞
∞

∞
∞

∞
1

A
ra
d

Z
er
in
d
,

T
im

is
.,

S
ib
iu

0
7
5

∞
1
0
0

∞
∞

∞
∞

1
5
0

∞
∞

∞
4
5
0

2
∗

Z
er
in
d

T
im

is
.,
S
ib
iu

0
7
5

∞
1
0
0

∞
∞

∞
∞

1
5
0

∞
∞

∞
4
5
0

3
T
im

is
.

S
ib
iu
,
L
u
g
o
j

0
7
5

∞
1
0
0

2
2
5

∞
∞

∞
1
5
0

∞
∞

∞
4
5
0

4
S
ib
iu

L
u
g
o
j,

F
a
g
a
ra
s,

R
im

.V
il
.

0
7
5

∞
1
0
0

2
2
5

∞
∞

∞
1
5
0

2
0
0

2
7
5

∞
4
5
0

5
R
im

.V
il
.

L
u
g
o
j,

F
a
g
a
ra
s,

C
ra
io
va
,
P
it
es
ti

0
7
5

∞
1
0
0

2
2
5

∞
∞

2
5
0

1
5
0

2
0
0

2
7
5

3
0
0

4
5
0

6
∗

L
u
g
o
j

F
a
g
a
ra
s,

C
ra
io
va
,
P
it
es
ti

0
7
5

∞
1
0
0

2
2
5

∞
∞

2
5
0

1
5
0

2
0
0

2
7
5

3
0
0

4
5
0

7
C
ra
io
va

F
a
g
a
ra
s,

P
it
es
ti

0
7
5

∞
1
0
0

2
2
5

∞
∞

2
5
0

1
5
0

2
0
0

2
7
5

2
8
0

4
5
0

8
F
a
g
a
ra
s

P
it
es
ti

0
7
5

∞
1
0
0

2
2
5

∞
∞

2
5
0

1
5
0

2
0
0

2
7
5

2
8
0

4
0
0

9
P
it
es
ti

-
0

7
5

∞
1
0
0

2
2
5

∞
∞

2
5
0

1
5
0

2
0
0

2
7
5

2
8
0

3
8
0

O
p

ti
m

a
l

p
a
th

:
A

ra
d
7→

S
ib

iu
7→

R
im

.V
il

.
7→

C
ra

io
va
7→

P
it

es
ti
7→

B
u

ch
ar

es
t

C
os

t:
3
8
0

∗
H

eu
ri

st
ic

s
p

re
v
en

t
a

ci
ty

fr
o
m

en
te

ri
n

g
O
P
E
N
.



Page 4 Final Exam – Dynamic Programming & Optimal Control

Problem 2 25%

Consider the dynamic system
ẋ(t) = x(t) + u(t)

with the initial state x(0) = x0 and t ∈ [0, T ], T ∈ R+.

Use the Minimum Principle to find the optimal input u∗(t) that minimizes the following cost
function

1

2
x2(T ) +

1

2

∫ T

0
u2(t)dt

and the corresponding optimal trajectory x∗(t).



Final Exam – Dynamic Programming & Optimal Control Page 5

Solution 2

Applying the Minimum Principle:

The system equation is
ẋ(t) = x(t) + u(t). (1)

The Hamiltonian is given by

H(x(t), u(t), p(t)) = g(x(t), u(t)) + p(t)f(x(t), u(t))

=
1

2
u2(t) + p(t)x(t) + p(t)u(t).

The adjoint equation can be calculated as follows

ṗ(t) = −∂H
∂x

(x(t), u(t), p(t)) = −p(t),

with the boundary condition
p(T ) = ∇h(x(T )) = x(T ).

Solving this differential equation leads to

p(t) = ζe−t, ζ = x(T )eT (2)

The optimal input u∗(t) is obtained by minimizing the Hamiltonian along the optimal trajectory

u∗(t) = argmin
u

(
1

2
u2(t) + p(t)x(t) + p(t)u(t))

⇒ u∗(t) = −p(t). (3)

Now, (1), (2), and (3) give
ẋ(t) = x(t)− ζe−t, x(0) = x0.

The general solution of the above inhomogeneous ordinary differential equation is the sum of
the homogeneous solution xh(t) = λet and a particular solution xp(t) = 1

2ζe
−t giving

x(t) = xh(t) + xp(t) = λet +
1

2
ζe−t.

The above general solution with the initial condition x(0) = x0, and ζ = x(T )eT gives

λ =
x0

1 + e2T
and ζ =

2x0e
2T

1 + e2T
.

This implies

u∗(t) = − 2x0e
2T

1 + e2T
e−t

and

x∗(t) =
x0

1 + e2T
et +

x0e
2T

1 + e2T
e−t.



Page 6 Final Exam – Dynamic Programming & Optimal Control

Problem 3 25%

Consider the stochastic shortest path problem shown in Figure 3

1 2

0

p12(u)

p11(u)

p10(u)

p21(u)
p22(u)

p20(u)

p00(u)

Figure 3: Transition graph of the stochastic shortest path problem

with the control sets

U(0) = {a0}
U(1) = {a1, b1, c1}
U(2) = {a2, b2},

the transition probabilities

p10(a1) = 1/3 p20(a2) = 0 p00(a0) = 1

p11(a1) = 1/3 p21(a2) = 2/3

p12(a1) = 1/3 p22(a2) = 1/3

p10(b1) = 1/3 p20(b2) = 1/3

p11(b1) = 2/3 p21(b2) = 1/3

p12(b1) = 0 p22(b2) = 1/3

p10(c1) = 0

p11(c1) = 2/3

p12(c1) = 1/3

and the cost function

g(i, µ(i)) = 1 i = 1, 2 and µ(i) ∈ U(i)

g(0, a0) = 0.

a) Using policy iteration, perform 2 iterations for the given problem. Start with evaluating
the initial policies µ0(1) = a1 and µ0(2) = a2.

b) Has the policy iteration converged after 2 iterations? If so, please explain why. If it has
not converged, please explain the criterion that it would need to fulfill for convergence.
Also, if it has not converged, can you comment on the possible outcome of iteration 3?



Final Exam – Dynamic Programming & Optimal Control Page 7

Solution 3

a) From the given information we can see that node 0 is the cost free terminal node.
Therefore we do not need to consider it.

Iteration 1:
Policy evaluation:

J1(1) = 1 + p11(a1)J
1(1) + p12(a1)J

1(2)

= 1 +
1

3
J1(1) +

1

3
J1(2)

⇒ J1(1) =
3

2
+

1

2
J1(2) (4)

J1(2) = 1 + p21(a2)J
1(1) + p22(a2)J

1(2)

= 1 +
2

3
J1(1) +

1

3
J1(2)

using (4)
= 1 +

2

3

(
3

2
+

1

2
J1(2)

)
+

1

3
J1(2)

= 2 +
2

3
J1(2)

⇒ J1(2) = 6, J1(1) = 9/2

Policy improvement:

µ1(1) = argmin
u∈U(1)

[
1 + p11(a1)J

1(1) + p12(a1)J
1(2),

1 + p11(b1)J
1(1) + p12(b1)J

1(2),

1 + p11(c1)J
1(1) + p12(c1)J

1(2)
]

= argmin
u∈U(1)

[1 + 1/3 · 9/2 + 1/3 · 6, 1 + 2/3 · 9/2 + 0 · 6, 1 + 2/3 · 9/2 + 1/3 · 6]

= argmin
u∈U(1)

[9/2, 4, 6]

µ1(1) = b1

µ1(2) = argmin
u∈U(2)

[
1 + p21(a2)J

1(1) + p22(a2)J
1(2),

1 + p21(b2)J
1(1) + p22(b2)J

1(2)
]

= argmin
u∈U(2)

[1 + 2/3 · 9/2 + 1/3 · 6, 1 + 1/3 · 9/2 + 1/3 · 6]

= argmin
u∈U(2)

[6, 9/2]

µ1(2) = b2



Page 8 Final Exam – Dynamic Programming & Optimal Control

Iteration 2:
Policy evaluation:

J2(1) = 1 +
2

3
J2(1) + 0 ∗ J2(2)

⇒ J2(1) = 3

J2(2) = 1 +
1

3
J2(1) +

1

3
J2(2) = 2 +

1

3
J2(2)

⇒ J2(2) = 3

Policy improvement:

µ2(1) = argmin
u∈U(1)

[1 + 1/3 · 3 + 1/3 · 3, 1 + 2/3 · 3, 1 + 2/3 · 3 + 1/3 · 3]

= argmin
u∈U(1)

[3, 3, 4]

µ2(1) = a1 or b1

µ2(2) = argmin
u∈U(2)

[1 + 2/3 · 3 + 1/3 · 3, 1 + 1/3 · 3 + 1/3 · 3]

= argmin
u∈U(2)

[4, 3]

µ2(2) = b2

b) Policy iteration has converged, if Jk(i) = Jk−1(i) holds for all nodes i at iteration k. This
is clearly not the case for k = 2. Therefore, policy iteration has not converged yet.

Even though policy iteration has not converged yet, we can still comment on the policy
that the iteration will converge to.

Let’s first pick µ2(1) = b1 for iteration 3. In this case we apply the same combination of
inputs as in iteration 2 and the transition probabilities in the policy evaluation step of
iteration 3 will be the same. Therefore it will yield the same costs as in iteration 2, i.e.,
J2(i) = J3(i) for all nodes i. Hence, policy iteration has converged to the policy µ(1) = b1
and µ(2) = b2.

Now, if we pick µ2(1) = a1 for iteration 3 the only thing that we can tell about the
convergence is that this choice will also eventually lead to convergence. But we cannot
say after how many iterations or to which policy.

Additional information:
In fact, if you do iteration 3 with µ2(1) = a1 you would also see that J2(i) = J3(i) holds for
all nodes i. Therefore, both choices for µ2(1) are feasible outcomes of the policy iteration.



Final Exam – Dynamic Programming & Optimal Control Page 9

Problem 4 25%

A burglar broke into a house and found N ∈ Z+ items3. Let vi > 0 denote the value and wi ∈ Z+

the weight of the ith item. There is a limit, W ∈ Z+, on the total weight the burglar can carry
(the total weight of all stolen items must be less than or equal to W ) and obviously he wants to
maximize the total value of the items that he can take.

a) Case A: A burglar who did not take the Dynamic Programming and Optimal Control class

How many different combinations of items does the burglar have to consider to find the
combination with the highest value that he can take?

b) Case B: A burglar who did take the Dynamic Programming and Optimal Control class

b.1) Formulate the burglar’s problem by defining the state space, control space, system
dynamics, stage cost and terminal cost.

b.2) State the Dynamic Programming Algorithm that is required to solve the burglar’s prob-
lem.

b.3) Using the Dynamic Programming Algorithm from b.2, solve the burglar’s problem where
N = 3, W = 5, v1 = 6, v2 = 10, v3 = 12, w1 = 1, w2 = 2 and w3 = 3.

c) Briefly compare Case A and Case B in terms of computational cost.

3Z+ denotes the set of positive integers



Page 10 Final Exam – Dynamic Programming & Optimal Control

Solution 4

a) 2N (Cardinality of the power set)

b) b.1) Let xk, k > 1, be the total weight of the items the burglar has decided to take from
the set of {1, .., k − 1} items and x1 = 0. Furthermore, let uk ∈ {0, 1} be the binary
decision variable that controls if item k goes into the burglar’s bag or not.

State space Sk ∈ [0,W ] ⊂ {0,Z+}, k = 1, . . . , N + 1.
Control space Uk: if xk + wkuk > W , Uk = {0} else, Uk = {0, 1}, k = 1, . . . , N.
System dynamics: xk+1 = xk + wkuk, x1 = 0, k = 1, . . . , N.
Stage cost: gk(xk, uk) = −vkuk, k = 1, . . . , N.
Terminal cost: gN+1(xN+1) = 0, ∀xN+1 ∈ SN+1.

b.2) Now applying the Dynamic Programming Algorithm (DPA) gives

JN+1(xN+1) = gN+1(xN+1) = 0, ∀xN+1 ∈ SN+1

Jk(xk) = min
uk

{−vkuk + Jk+1(xk+1)}, k = 1, . . . , N.

b.3) Applying the above DPA for N = 3, W = 5, v1 = 6, v2 = 10, v3 = 12, w1 = 1, w2 = 2
and w3 = 3, gives:
J4(x4) = 0, ∀x4 ∈ {0, 1, 2, 3, 4, 5}
k = 3

J3(0) = min{−12 · 0 + J4(0 + 0 · 3),−12 · 1 + J4(0 + 1 · 3)} = −12, µ3(0) = 1

J3(1) = min{−12 · 0 + J4(1 + 0 · 3),−12 · 1 + J4(1 + 1 · 3)} = −12, µ3(1) = 1

J3(2) = min{−12 · 0 + J4(2 + 0 · 3),−12 · 1 + J4(2 + 1 · 3)} = −12, µ3(2) = 1

J3(3) = min{−12 · 0 + J4(3 + 0 · 3)} = 0, µ3(3) = 0

J3(4) = min{−12 · 0 + J4(4 + 0 · 3)} = 0, µ3(4) = 0

J3(5) = min{−12 · 0 + J4(5 + 0 · 3)} = 0, µ3(5) = 0

k = 2

J2(0) = min{−10 · 0 + J3(0 + 0 · 2),−10 · 1 + J3(0 + 1 · 2)} = −22, µ2(0) = 1

J2(1) = min{−10 · 0 + J3(1 + 0 · 2),−10 · 1 + J3(1 + 1 · 2)} = −12, µ2(1) = 0

J2(2) = min{−10 · 0 + J3(2 + 0 · 2),−10 · 1 + J3(2 + 1 · 2)} = −12, µ2(2) = 0

J2(3) = min{−10 · 0 + J3(3 + 0 · 2)− 10 · 1 + J3(3 + 1 · 2)} = −10, µ2(3) = 1

J2(4) = min{−10 · 0 + J3(4 + 0 · 2)} = 0, µ2(4) = 0

J2(5) = min{−10 · 0 + J3(5 + 0 · 2)} = 0, µ2(5) = 0

k = 1

J1(0) = min{−6 · 0 + J2(0 + 0 · 1),−6 · 1 + J2(0 + 1 · 1)} = −22, µ1(0) = 0.

Therefore, optimal solution is to leave the first item and take the second and third items.

c) Case A has a time complexity O(2N ) which is exponential in N and Case B has a time com-
plexity O(WN) which is linear in N . Therefore, for large N Case B (DPA) is computationally
less expensive than Case A (Brute force approach).


