
Dynamic Programming and
Optimal Control

Fall 2009

Problem Set:

Problems with Perfect State Information

Notes:

• Problem marked with BERTSEKAS are taken from the book Dynamic Programming and
Optimal Control by Dimitri P. Bertsekas, Vol. I, 3rd edition, 2005, 558 pages, hardcover.

• The solutions were derived by the teaching assistants in the previous class. Please report
any error that you may find to strimpe@ethz.ch or aschoellig@ethz.ch.

Problem Set

Design a Linear Quadratic Regulator (LQR) for the Sideways Motion of a
Quadrocopter

A controller is to be designer for our quadrocopter (see Figure 1(a)), which is currently executing
first maneuvers in the ’Flying Machine Arena’ (ML hall). The goal of the controller design is to
perform fast sideways motion.

(a) Picture of the real quadrocopter. (b) Schematic of the 2D model.

Figure 1: The Quadrocopter.

The controller design is based on a 2D model of the quadrocopter as illustrated in Figure 1(b):

ÿ(t) = −a(t) sin (θ (t))

z̈(t) = a(t) cos (θ (t))− g

θ̈(t) = q(t),

where a(t) and u(t) represent the control inputs to the system. The gravitational constant g is
approximated by 10m/s2. The position variables y(t) and z(t) have units of [m], θ is given in
[rad], and the inputs a(t) and u(t) are in [m/s2] and [rad/s2], respectively.

Only concentrating on the horizontal control, the input a(t) is set to

a(t) =
10

cos (θ(t))
,

resulting in z̈(t) = 0 and the simplified dynamics

ÿ(t) = −10 tan (θ (t)) (1)

θ̈(t) = q(t). (2)

Problem 1 (Linearization)

Linearize Equations (1)-(2) about θ = 0.

2

Problem 2 (Discretization)

We control the system with a digital computer. Let τ be the sampling period and define time-
discrete states xi(k), i = 1, 2, 3, 4 as follows

x1(k) = y(kτ)

x2(k) = ẏ(kτ)

x3(k) = θ(kτ)

x4(k) = θ̇(kτ), k = 0, 1, 2, . . .

Find a linear, time-discrete expression of the form

x(k + 1) = Ax(k) +Bu(k),

with x(k) = [x1(k), x2(k), x3(k), x4(k)]
T and q(t) = u(k) for kτ ≤ t ≤ (k + 1)τ .

Problem 3 (Infinite Horizon LQR)

Our objective is to design an infinite horizon linear quadratic regulator (LQR) that moves the
system from the initial state,

y(0) = 1, ẏ(0) = θ(0) = θ̇(0) = 0,

as fast as possible to the final state,

y(T) = ẏ(T) = θ(T) = θ̇(t) = 0.

In particular, we want to find a gain matrix F , such that, for u(k) = Fx(k) and the initial
condition x(0) = [1, 0, 0, 0]T ,

x(k) → 0 for k → ∞.

In addition, we have constraints on the input u(k),

|u(k)| ≤ 100, ∀ k,

since the vehicle is limited in how quickly it can rotate. Furthermore, the angle x3(k) is con-
strained by

|x3(k)| = |θ(kτ)| ≤
π

6
, ∀ k,

guaranteeing that the linearization is reasonably accurate and also that a(t) = 10/ (cos (θ(t)))
is feasible. Finally, our sampling period is τ = 1/50.

By appropriately choosing the matrices Q and R and using the dare function in Matlab, find
a feedback control strategy u(k) = Fx(k), which brings the system to within

|xi(k)| ≤ 0.01, i = 1, 2, 3, 4, (3)

as quickly as possible while satisfying the constraints.1

This will be an iterative process and numerical in nature. In particular, there is no direct way
to capture the constraints in the LQR design or to minimize the time, it takes to get within
a tolerance of the destination. You will have to find the solution iteratively by modifying the
matrices Q and R based on your simulation results.

Find a good strategy to solve this problem. What is your best set of parameters Q, R? And what
is the resulting F and T? Show plots illustrating the performance of your quadrocopter.

1Note that the time to be minimized is the time at which conditions (3) are fulfilled for the first time.

3

Problem 4 (Finite Horizon LQR)

Using the results from Problem 3 as a starting point, how much you can improve your design
by using a finite horizon LQR?

Create plots showing the improvements and explain how you got your solution. What is your
best choice for Qk, Rk and your minimum time T?

“Who can do best?”

Prof. D’Andrea’s results:

0 0.5 1 1.5 2 2.5 3
−20

−10

0

10

20

30

40

50

Time

Best Control Input

In
pu

t

(a) The input.

0 0.5 1 1.5 2 2.5 3
−3

−2

−1

0

1

2

3

Time

Best Trajectory (best time = 3.14 sec)

S
ta

te

pos
vel
rot
rate

(b) The state trajectories.

Figure 2: Results for the infinite horizon LQR.

0 0.2 0.4 0.6 0.8 1 1.2
−30

−20

−10

0

10

20

30

40

50

Time

Best Control Input FH

In
pu

t

(a) The input.

0 0.2 0.4 0.6 0.8 1 1.2
−3

−2

−1

0

1

2

3

Time

Best Trajectory FH (best time = 1.28 sec)

S
ta

te

pos
vel
rot
rate

(b) The state trajectories.

Figure 3: Results for the finite horizon LQR.

4

Problem 5 (BERTSEKAS, p. 211, exercise 4.22)

Consider a situation involving a blackmailer and his victim. In each period the blackmailer
has a choice of: a) Accepting a lump sum payment of R from the victim and promising not to
blackmail again. b) Demanding a payment of u, where u ∈ [0, 1]. If blackmailed, the victim
will either: 1) Comply with the demand and pay u to the blackmailer. This happens with
probability 1 − u. 2) Refuse to pay and denounce the blackmailer to the police. This happens
with probability u. Once known to the police, the blackmailer cannot ask for any more money.
The blackmailer wants to maximize the expected amount of money he gets over N periods by
optimal choice of the payment demand uk. (Note that there is no additional penalty for being
denounced to the police). Write a DP algorithm and find the optimal policy.

Problem 6 (BERTSEKAS, p. 212, exercise 4.23)

The Greek mythological hero Theseus is trapped in King Minos’ Labyrinth maze. He can try
each day one of N passages. If he enters passage i he will escape with probability pi, he will be
killed with probability qi, and he will determine that the passage is a dead end with probability
(1−pi− qi), in which case he will return to the point from which he started. Use an interchange
argument to show that trying passages in order of decreasing pi/qi maximizes the probability of
escape within N days.

5

Sample Solutions

Problem 1 (Solution)

Consider only small deviations of the angle θ from 0. A Taylor series expansion about 0 gives

tan θ ≈ θ.

The linearized equations are:

ÿ(t) = −10 θ(t)

θ̈(t) = q(t).

Problem 2 (Solution)

With given definitions, the time-discrete quadrocopter dynamics are obtained by integration.
For kτ ≤ t ≤ (k + 1)τ ,

∫ t

kτ

θ̈(ξ)dξ = θ̇(t)− θ̇(kτ) = θ̇(t)− x4(k)

=

∫ t

kτ

q(t)dt

= u(k) (t− kτ)

⇒ θ̇(t) = u(k)(t− kτ) + x4(k) (4)

∫ t

kτ

(
u(k)(ξ − kτ) + x4(k)

)
dξ =

1

2
u(k)(t− kτ)2 + x4(k)(t− kτ)

=

∫ t

kτ

θ̇(ξ)dξ

⇒ θ(t) = x3(k) + x4(k)(t− kτ) +
1

2
u(k)(t− kτ)2 (5)

∫ t

kτ

−10 θ(ξ)dξ = −10

[

x3(k)(t− kτ) +
1

2
x4(k)(t− kτ)2 +

1

6
u(k)(t− kτ)3

]

=

∫ t

kτ

ÿ(ξ)dξ = ẏ(t)− x2(k)

⇒ ẏ(t) = x2(k)− 10

[

x3(k)(t− kτ) +
1

2
x4(k)(t− kτ)2 +

1

6
u(k)(t− kτ)3

]

(6)

∫ t

kτ

ẏ(ξ)dξ = x2(k)(t− kτ)− 10

[
1

2
x3(k)(t− kτ)2 +

1

6
x4(k)(t− kτ)3 +

1

24
u(k)(t− kτ)4

]

= y(t)− x1(k)

6

⇒ y(t) = x1(k)+x2(k)(t−kτ)−10

[
1

2
x3(k)(t− kτ)2 +

1

6
x4(k)(t− kτ)3 +

1

24
u(k)(t− kτ)4

]

(7)

We are interested in xi(k + 1), i = 1, 2, 3, 4.
From Eq. (4)-(7), we get:







x1(k + 1)
x2(k + 1)
x3(k + 1)
x4(k + 1)






=







1 τ −10τ2

2
−10τ3

6

0 1 −10τ −10τ2

2
0 0 1 τ
0 0 0 1







︸ ︷︷ ︸

A

x(k) +








−10τ4

24
−10τ3

6
τ2

2
τ








︸ ︷︷ ︸

B

u(k) .

Problem 3 (Solution)

Infinite horizon LQR problem:

• System

xk+1 = Axk +Buk k = 0, 1, 2, 3, . . .

• Cost
∞∑

k=0

xTkQxk + uTkRuk Q ≥ 0, R > 0

• Optimal control

K = AT
(
K −KB(R+BTKB)−1BTK

)
A+Q (Riccati Equation)

F = −(R+BTKB)−1BTKA

and

uk = Fxk

Interpretation: Q penalizes large values x, R penalizes large values u.

One possible strategy is choosing R = 1 and only penalizing the y position; that is,

Qinf hor =









q0 0 · · · 0

0 0
...

...
. . .

...
0 · · · 0









. (8)

Find the optimal q0.

You get

q0 = 2880, Tinf hor = 3.14

Finf hor =
[
45.6615 25.5039 −71.2248 −11.7451

]
,

where Tinf hor is the time at which conditions (6) are satisfied for the first time.

→ A Matlab code example can be found at the end of this problem set.

7

Problem 4 (Solution)

Finite horizon LQR problem:

• System

xk+1 = Axk +Buk k = 0, 1, . . . , N − 1

• Cost

N−1∑

k=0

(xTkQxk + uTkRuk) + xTNQNxN

• Optimal control

KN = QN

Kk = AT
(
Kk+1 −Kk+1B(BTKk+1B +Rk)

−1BKk+1

)
A+Qk

Fk = −(BTKk+1B +Rk)
−1BTKk+1A

and

uk = Fkxk

Interpretation: KN = QN (starting value) represents the weight on the final state xN .

One possible strategy is

• choosing Qk = αQinf hor , see Eq. (8), 0 ≤ α ≤ 1, k = 0, 1, . . . , N − 1

• iterating on the time horizon 0 ≤ Tfin hor ≤ Tinf hor

• keeping R = 1 as before

• starting with KN = βKinf hor

• iterating on Tfin hor and α, β

This results in

α = 0.95, β = 4096, Tfin hor = 1.28

→ A Matlab code example can be found at the end of this problem set.

Problem 5 (Optimal Stopping Problem)

Transform the problem to an optimal stopping problem:

• Time horizon

N periods

8

• State

xk =

(
B
T

)

with

B: blackmailing (blackmailer has not accepted lump sum payment and has not
been denounced to the police),

T: termination (result of accepting the lump sum payment or of denouncement
to the police

• Input

uk ∈ [0, 1] ∪ {−1}

corresponds to the decision of the blackmailer:

uk = −1 accept lump sum payment
uk ∈ [0, 1] demand a payment of uk

• Dynamics

xk+1 = B if xk = B and uk ∈ [0, 1] and wk 6= 0
xk+1 = T if xk = T or

if xk = B and uk = −1 or
if xk = B and uk ∈ [0, 1] and wk = 0 ,

where the random variable wk is defined by wk ∈ {0, uk} = [0, 1],

P (wk = 0) = uk
P (wk = uk) = 1− uk

assuming uk ∈ [0, 1] is demanded.

⇒ initial condition: x0 = B

• Cost

gN (xN) = 0 for both xN = B and xN = T

gk(xk, uk, wk) =







R
wk

0

if uk = −1 and xk = B
if uk ∈ [0, 1] and xk = B
if xk = T

Apply the DP Algorithm

Nth stage:

JN (xN) = 0 → last decision made at stage N − 1

Cost-to-go if xk = T :

Jk(T) = 0 ∀ k = 1, 2, . . . , N

Cost-to-go if xk = B

I) (N-1)th stage:

JN−1(B) = max
uN−1∈[0,1]

uN−1=−1

E
(
gN−1(xN−1, uN−1, wN−1) + JN (xN)

)

= max
{
R, max

uN−1∈[0,1]
(uN−1(1− uN−1)
︸ ︷︷ ︸

L(uN−1)

+0 ·uN−1)
}

9

Find maximizing uN−1:

∂L

∂uN−1
= 1− 2uN−1 = 0 ⇔ uN−1 =

1

2

∂2L

∂u2N−1

= −2 < 0 ⇒ maximum

⇒ JN−1(B) = max

{

R,
1

4

}

=

{
R if R > 1

4 with µ∗

N−1(B) = −1
1
4 if R ≤ 1

4 with µ∗

N−1(B) = 1
2

(9)

II) (N-2)th stage:

a)

JN−2(B) = max
uN−2∈[0,1]

uN−2=−1

E
(
gN−2(xN−2, uN−2, wN−2) + JN−1(xN−1)

)

= max
{

R+ JN−1(T),

max
uN−2∈[0,1]

[
(1− uN−2) (uN−2 + JN−1 (B)) + uN−2 (0 + JN−1 (T))

]}

Note that after chosen R, blackmailing is terminated (first option). Otherwise, there
is a probability of uN−2 for denouncement to the police.

Find maximizing uN−2:

∂L

∂uN−2
= 1− 2uN−2 − JN−1(B) = 0 ⇔ uN−2 =

1− JN−1(B)

2

∂2L

∂u2N−2

= −2 < 0 ⇒ maximum, concave function

Considering the input constraints uk ∈ [0, 1], we get

uN−2 =

{
1−JN−1(B)

2 if JN−1(B) < 1
0 if JN−1(B) ≥ 1

(10)

Note that with (9)

R < 1 ⇒ JN−1(B) < 1

R ≥ 1 ⇒ JN−1(B) = R ≥ 1

b)

JN−2(B) =







max(R, JN−1(B)) = R, for R ≥ 1

max

(

R,
(
1+JN−1(B)

2

)2
)

, for R < 1
(11)

10

The second equation can be simplified since JN−1 ≥ R

(
1 + JN−1(B)

2

)2

≥

(
1 +R

2

)2

≥ R

JN−2(B) =

{
R if R ≥ 1

(
1+JN−1(B)

2

)2
if R < 1

µ∗

N−2(B) =

{

uN−2 = 0 or uN−2 = −1 if R ≥ 1

uN−2 =
1−JN−1(B)

2 if R < 1

III) Assumption:

Jk(B) =

{
R if R ≥ 1

(
1+Jk+1(B)

2

)2
< 1 (!) if R < 1

(12)

µ∗

k(B) =

{

0 or − 1 if R ≥ 1
1−Jk+1(B)

2 if R < 1

for k = 0, 1, . . . , N − 1

Additionally, assume

Jk(B) ≥ R. (13)

IV) Proof.

Proof by Induction:
1) The relationship (12) holds for k = N − 2.
2) Assume (12) is true for k.
3) Prove that (12) also holds for k − 1.

We know,

Jk−1(B) = max

{

R, max
uk−1∈[0,1]

(
(1− uk−1)(uk−1 + Jk(B))

)
}

. (14)

With before’s arguments, maximizing uk−1 is given by

uk−1 =
1− Jk(B)

2
.

Distinguish as in Eq. (10). With (12)

R < 1 ⇒ Jk(B) < 1

R ≥ 1 ⇒ Jk(B) ≥ 1

Using (13) and proceeding as shown above, we get similar equations as (11) and finally

11

Jk−1(B) =

{
R if R ≥ 1

(
1+Jk(B)

2

)2
if R < 1,

µ∗

k−1(B) =

{
0 or − 1 if R ≥ 1
1−Jk(B)

2 if R < 1.

From the maximation (14), we know that Jk−1(B) ≥ R and, with Jk(B) < 1 if R < 1,
see Eq. (12), we conclude

(
1 + Jk(B)

2

)2

<

(
1 + 1

2

)2

= 1.

In brief, if R ≥ 1, the blackmailer should accept R right a the beginning, otherwise, he is
better off demanding

µ∗

k(B) =
1− Jk+1(B)

2
, k = 0, 1, 2, . . . , N − 2

where Jk+1(B) results from the recursion

Jk(B) =

(
1 + Jk+1(B)

2

)2

with initial condition

JN−1(B) = max

{

R,
1

4

}

the last demand is

µ∗

N−1(B) = −1 if R >
1

4

µ∗

N−1(B) =
1

2
if R ≤

1

4
.

Problem 6 (Interchange Argument)

– N different passages, Theseue can try each path only once

– define a sequence of attempted passages:

L = {i1, i2, . . . , iN}

– introduce rewards:

∗ dead end on passage ik: Rik = 0

∗ killed on passage ik: Rik = 0

∗ first escape on passage ik: Rik = 1

∗ after having been killed or having been escaped on passage ik, all rewards: Rim =
0, m > k

12

For a sequence L,

E(reward of L) = p1 + (1− p1 − q1)p2 + (1− p1 − q1)(1− p2 − q2)p3 + · · ·+
N−1∏

i=1

(1− pi − qi)pN

∧
=Probability of escape within N days

with pi: P(escape on i-th passage), (1 − pi − qi): P(dead end on i-th passage),
∏k−1

i=1 (1 −
pi − qi)pk: P(escape on kth passage)

Use interchange argument:

– Let L = {i1, i2, . . . , ik−1, i, j, ik+2, . . . , iN} be an optimal ordering.

– Let L̄ = {i1, i2, . . . , ik−1, j, i, ik+2, . . . , iN} be the swapped ordering.

E(reward of L) = E
(
reward of (i1, i2, . . . , ik−1)

)

+ (1− p1 − q1)(1− p2 − q2) · · · (1− pk−1 − qk−1)pi

+ (1− p1 − q1)(1− p2 − q2) · · · (1− pk−1 − qk−1)(1− pi − qi)pj

+ (1− p1 − q1)(1− p2 − q2) · · · (1− pk−1 − qk−1)(1− pi − qi)(1− pj − qj)

· E
(
reward of (ik+2, . . . , iN)

)

E(reward of L̄) = E
(
reward of (i1, i2, . . . , ik − 1)

)

+ (1− p1 − q1)(1− p2 − q2) · · · (1− pk−1 − qk−1)pj

+ (1− p1 − q1)(1− p2 − q2) · · · (1− pk−1 − qk−1)(1− pj − qj)pi

+ (1− p1 − q1)(1− p2 − q2) · · · (1− pk−1 − qk−1)(1− pj − qj)(1− pi − qi)

· E
(
reward of (ik+2, . . . , iN)

)

E(reward of L) ≥ E(reward of L̄)

pi + (1− pi − qi)pj ≥ pj + (1− pj − qj)pi

−qipj ≥ −qjpi
pj
qj

≤
pi
qi

Conclusion:
Try passage with highest pi

qi
first and then, choose passages in the order of decreasing pi

qi
.

13

15.12.09 23:55 F:\Backups\FilesOnly07-11-2009\Angela\ETH\Teachin...\Script.m 1 of 6

clear

%%
%% 2D Quad Copter problem, for DP class. Only concentrate on horizontal dynamics.
%%

TS = 0.02; % Sampling period, s
G = 10.0; % Acceleration due to gravity, m/s/s

% The thresholds for determining if a maneuver is finished.
% (pos (m), posDot (m/s), rot (rad), rotDot (rad/s)
THRESH_VEC = [0.01; 0.01; 0.01; 0.01];

ANGLE_ACC_LIM = 100; % maximum angular acceleration rad/s/s
ANGLE_LIM = pi/6; % maximum angle deviation, rad/s

%%%%%%%%%%%%%%
%% Linearized equations of motion
%%%%%%%%%%%%%

% The state x = (y,yDot, r, rDot), where y is the horizontal position, r is the angle
% of the vehicle to horizontal.
% y'' = -10r
% r'' = u
A = [1 TS -10*(TS^2)/2 -10*(TS^3)/6; ...
 0 1 -10*TS -10*(TS^2)/2; ...
 0 0 1 TS; ...
 0 0 0 1];
B = [(TS^4)/24; (TS^3)/6; (TS^2)/2; TS];

% Initial condition
x0 = [1;0;0;0];

%%%%%%%%%%%%%%%
%% Set up LQR problem, infinite horizon
%%%%%%%%%%%%%%%

% without loss of generality, penalize control effort by 1
R = 1;

% Only penalize the position of the vehicle. The angle is indirectly penalized
% by the control efforts. This only leaves one parameter to optimize over.
% In fact, by manually playing around with the
% cost matrix Q, it seems that penalizing the velocity helps quite a bit, since this
decreases
% oscillations at the end (damping), causing the system to reach the required
tolerances faster. But
% we won't bother with that here.
Q = zeros(4,4);

%%%%%%%%%%%%%%%
%% Solve infinite horizon LQR problem, iterate until we hit limits
%%%%%%%%%%%%%%%
qMin = 0;
qMax = inf;

15.12.09 23:55 F:\Backups\FilesOnly07-11-2009\Angela\ETH\Teachin...\Script.m 2 of 6

q = 1;
bestTime = inf;

% Outer loop, for optimizing q. The objective here is to find a q that results in
the constraints
% being satisfied, and that achieves the fastest trajectory.
while (1)
 Q(1,1) = q;

 % Solve the DARE
 [K,L,Fneg] = dare(A,B,Q,R);

 k = 1;
 x = x0;
 u = [];
 validTrajectory = 1;

 % Build the trajectory, and check that it satisfies the constraints.
 while (1)

 % Control effort
 u(k) = -Fneg*x(:,k);

 % Have we violated our angular acceleration constraint?
 if abs(u(k)) > ANGLE_ACC_LIM
 validTrajectory = 0;
 break;
 end

 % Update the state, the trajectory is valid so far.
 x(:,k+1) = A*x(:,k) + B*u(k);
 k = k+1;

 % Have we violated our angle constraint?
 if (abs(x(3,k)) > ANGLE_LIM)
 validTrajectory = 0;
 break;
 end

 % Check to see if we are done
 if (abs(x(:,k)) < THRESH_VEC)
 break;
 end
 end

 % If we have a valid trajectory, check if it is better than the best one to date;
 % if it is, we want to increase q and try again. If it isn't, we are done. Note
that
 % we include in the check if we haven't hit our upper bound yet; if we haven't,
we should
 % continue, irrespective if our time was better or not (it could mean that it is
decreasing
 % very slowly, because we are no-where close to being aggressive enough).
 if (validTrajectory)
 if (k < bestTime) || (qMax == inf)

15.12.09 23:55 F:\Backups\FilesOnly07-11-2009\Angela\ETH\Teachin...\Script.m 3 of 6

 if (k < bestTime)
 bestTime = k;
 bestStateTrajectory = x;
 bestControlInput = u;
 bestQ = Q;
 end

 qMin = q;
 if (qMax == inf)
 q = 2*q;
 else
 q = (qMax + qMin)/2;
 end
 else
 break;
 end
 else
 % We don't have a valid trajectory. We need to penalize our position less,
so that we
 % are less agressive with our maneuver;
 qMax = q;
 q = (qMax + qMin)/2;
 end
end

% Plot the results
figure(1)
plot((1:bestTime)*TS, bestStateTrajectory');
xlabel('Time')
title(['Best Trajectory (best time = ',num2str(bestTime*TS),' sec)']);
legend('pos','vel','rot','rate');
grid

figure(2)
plot((2:bestTime)*TS, bestControlInput);
xlabel('Time')
title('Best Control Input');
grid

%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Finite Horizon Problem
%%%%%%%%%%%%%%%%%%%%%%%%%%

% We need a final cost for the state, which is the starting point for the iteration.
Picking the
% steady state solution will clearly give the same result as the infinite horizon
problem. Picking
% 0 as the start of the iteration will result in a less agressive maneuver near the
end, which we
% clearly don't want. So intuitively, we want to initialize with something that is
greater than the
% steady state solution.

% Give ourselves some wiggle room with Q. Make it slightly smaller, which will
result in a less

15.12.09 23:55 F:\Backups\FilesOnly07-11-2009\Angela\ETH\Teachin...\Script.m 4 of 6

% aggressive maneuver at the beginning of the trajectory (once we reach the steady
state gain); this
% is necessary since the aggressive portions at the end of the maneuver will trickle
down to what
% happens at the beginning, for short enough time horizons.
Qfh = bestQ * 0.95;

% Solve the DARE for the steady-state solution
[K,L,Fneg] = dare(A,B,Qfh,R);

% The interval where we will search for the fastest trajectory.
tMin = 0;
tMax = bestTime;
tm = tMax;

% Keep on looping to find the best time. We use a bisection algorithm.
while(1)

 minK = 0;
 maxK = inf;
 muxK = 1;

 % Keep on looping until we find a valid trajectory. In particular, if the
trajectory is not
 % valid, need to decrease our final cost, otherwise increase. Use a bisection
algorithm.
 while (1)

 Kfh{1} = muxK*K;

 % Construct time varying feedback gains
 for l = 1:tm
 Kfh{l+1} = A'*(Kfh{l} - Kfh{l}*B*inv(R + B'*Kfh{l}*B)*B'*Kfh{l})*A + Qfh;
 Ffh{l+1} = -inv(R + B'*Kfh{l}*B)*B'*Kfh{l}*A;
 end

 k = 1;
 x = x0;
 u = [];
 validTrajectory = 1;
 finishedTrajectory = 0;

 for k = 1:tm

 % Control effort
 u(k) = Ffh{tm - k + 2} *x(:,k);

 % Have we violated our angular acceleration constraint?
 if abs(u(k)) > ANGLE_ACC_LIM
 validTrajectory = 0;
 break;
 end

 % Update the state, the trajectory is valid so far.
 x(:,k+1) = A*x(:,k) + B*u(k);

15.12.09 23:55 F:\Backups\FilesOnly07-11-2009\Angela\ETH\Teachin...\Script.m 5 of 6

 % Have we violated our angle constraint?
 if (abs(x(3,k+1)) > ANGLE_LIM)
 validTrajectory = 0;
 break;
 end

 % Check to see if we are done
 if (abs(x(:,k+1)) < THRESH_VEC)
 finishedTrajectory = 1;
 break;
 end
 end

 % If we managed to finish the trajectory, we are done.
 if (finishedTrajectory)
 break;
 end

 % If we did not finish the trajectory, but it was valid, it means that we can
be more
 % aggressive by increasing the final cost
 if (finishedTrajectory == 0) && (validTrajectory == 1)
 minK = muxK;
 if (maxK == inf)
 muxK = 2*muxK;
 else
 muxK = (maxK + minK)/2;
 end
 end

 % If we did not finish the trajectory, and it was not valid, we need to be
less aggressive
 if (finishedTrajectory == 0) && (validTrajectory == 0)
 maxK = muxK;
 muxK = (maxK + minK)/2;
 end

 % Quit if we are too close
 if (maxK - minK)/maxK < 0.01
 break;
 end

 end

 % If we managed to finish the trajectory, can decrease the time
 if (finishedTrajectory)

 bestTimeFh = tm+1;
 bestStateTrajectoryFh = x;
 bestControlInputFh = u;

 tMax = tm;
 tmNew = round((tMax + tMin)/2);
 else

15.12.09 23:55 F:\Backups\FilesOnly07-11-2009\Angela\ETH\Teachin...\Script.m 6 of 6

 % If we didn't finish the trajectory, increase the time
 tMin = tm;
 tmNew = round((tMax + tMin)/2);

 end

 % If the time did not change, we are done
 if (tmNew == tm)
 break;
 else
 tm = tmNew;
 end
end

% Plot the results
figure(3)
plot((1:bestTimeFh)*TS, bestStateTrajectoryFh');
xlabel('Time')
title(['Best Trajectory FH (best time = ',num2str(bestTimeFh*TS),' sec)']);
legend('pos','vel','rot','rate');
grid

figure(4)
plot((2:bestTimeFh)*TS, bestControlInputFh);
xlabel('Time')
title('Best Control Input FH');
grid

	ProblemSet5.pdf
	ProblemSet5_OnlyCode

