Dynamic Programming and Optimal Control

Fall 2009

Problem Set:
Deterministic Continuous-Time Optimal Control

Notes:

- Problems marked with BERTSEKAS are taken from the book Dynamic Programming and Optimal Control by Dimitri P. Bertsekas, Vol. I, 3rd edition, 2005, 558 pages, hardcover.
- The solutions were derived by the teaching assistants in the previous class. Please report any error that you may find to strimpe@ethz.ch or aschoellig@ethz.ch.

Problem Set 3

Problem 1 (LQR)

In the LQR problem discussed in class we assumed that

1. the optimal cost to go is of the form $x^{T} K(t) x$,
2. the matrix $K(t)$ is symmetric.

To rigorously show that (1) is true a-priori is not trivial, and is beyond the scope of the class. We will tackle (2): prove that if the optimal cost to go is of the form $x^{T} K(t) x$, then one can assume, without loss of generality, that $K(t)$ is symmetric.

Problem 2 (BERTSEKAS, p. 143, exercise 3.2)

A young investor has earned in the stock market a large amount of money S and plans to spend it so as to maximize his enjoyment through the rest of his life without working. He estimates that he will live exactly T more years and that his capital $x(t)$ should be reduced to zero at time T, i.e., $x(T)=0$. Also he models the evolution of his capital by the differential equation

$$
\frac{d x(t)}{d t}=\alpha x(t)-u(t)
$$

where $x(0)=S$ is his initial capital, $\alpha>0$ is a given interest rate, and $u(t) \geq 0$ is his rate of expenditure. The total enjoyment he will obtain is given by

$$
\int_{0}^{T} e^{-\beta t} \sqrt{u(t)} d t
$$

Here β is some positive scalar, which serves to discount future enjoyment. Find the optimal $\{u(t) \mid t \in[0, T]\}$.

Problem 3 (Isoperimetric Problem, BERTSEKAS, p. 144, exercise 3.5)

Analyze the problem of finding a curve $\{x(t) \mid t \in[0, T]\}$ that maximizes the area under x,

$$
\int_{0}^{T} x(t) d t
$$

subject to the constraints

$$
x(0)=a, \quad x(T)=b, \quad \int_{0}^{T} \sqrt{1+(\dot{x}(t))^{2}} d t=L
$$

where a, b, and L are given positive scalars. The last constraint is known as an isoperimetric constraint; it requires that the length of the curve be L. Hint: Introduce the system $\dot{x}_{1}=u$, $\dot{x}_{2}=\sqrt{1+u^{2}}$, and view the problem as a fixed terminal state problem. Show that the sine of the optimal $u^{*}(t)$ depends linearly on $t .{ }^{1}$ Under some assumptions on a, b and L, the optimal curve is a circular arc.

[^0]
Problem 4 (BERTSEKAS, p. 145, exercise 3.7)

A boat moves with constant unit velocity in a stream moving at constant velocity s. The problem is to find the steering angle $u(t), 0 \leq t \leq T$, which minimizes the time T required for the boat to move between the point $(0,0)$ to a given point (a, b). The equations of motion are

$$
\dot{x}_{1}(t)=s+\cos u(t), \quad \dot{x}_{2}(t)=\sin u(t)
$$

where $x_{1}(t)$ and $x_{2}(t)$ are the positions of the boat parallel and perpendicular to the stream velocity, respectively. Show that the optimal solution is to steer at a constant angle.

Sample Solutions

Problem 1 (Solution)

Consider a solution of the form

$$
V(t, x)=x^{T} K(t) x=x^{T} K x \quad \text { (drop argument for convenience) }
$$

with a general square matrix $K \in \mathbb{R}^{n \times n}$.

- Decompose K into symmetric and skew-symmetric parts, K_{s} and $K_{\bar{s}}$, respectively,

$$
K=\underbrace{\frac{1}{2} K+\frac{1}{2} K^{T}}_{=: K_{s}}+\underbrace{\frac{1}{2} K-\frac{1}{2} K^{T}}_{=: K_{\bar{s}}},
$$

where $K_{s}^{T}=K_{s}$ and $K_{\bar{s}}^{T}=-K_{\bar{s}}$.

- For a skew-symmetric matrix $K_{\bar{s}}$, it holds

$$
\begin{aligned}
x^{T} K_{\bar{s}} x & =\left(x^{T} K_{\bar{s}} x\right)^{T} \quad\left(x^{T} K_{\bar{s}} x \text { is a scalar }\right) \\
& =x^{T} K_{\bar{s}}^{T} x \\
& =-x^{T} K_{\bar{s}} x \\
\Leftrightarrow x^{T} K_{\bar{s}} x & =-x^{T} K_{\bar{s}} x \quad \Rightarrow \quad x^{T} K_{\bar{s}} x=0
\end{aligned}
$$

- We write for $V(t, x)$,

$$
V(t, x)=x^{T} K x=x^{T}\left(K_{s}+K_{\bar{s}}\right) x=x^{T} K_{s} x+\underbrace{x^{T} K_{\bar{s}} x}_{0}=x^{T} K_{s} x .
$$

Therefore, without loss of generality, one can assume $V(t, x)=x^{T} K x$ with K symmetric.

Problem 2 (Solution)

- system:

$$
\frac{d x}{d t}=\alpha x-u, \quad x(T)=0, \quad x(0)=S, \quad \alpha>0
$$

- "control" \rightarrow expenditure $u(t) \geq 0 \quad \forall t$
- total gain \rightarrow total enjoyment ${ }^{2}$

$$
\int_{0}^{T} e^{-\beta t} \sqrt{u(t)} d t \quad, \quad \beta>0
$$

Apply Minimum Principle

- Hamiltonian:

$$
\begin{aligned}
& H(x, u, p)=g(x, u)+p^{T} f(x, u) \\
& H(x, u, p)=-e^{-\beta t} \sqrt{u}+p(\alpha x-u)
\end{aligned}
$$

[^1]- Adjoint equation:

$$
\begin{aligned}
& \dot{p}=-\nabla_{x} H\left(x^{*}, u^{*}, p\right)=-\alpha p \\
\Rightarrow \quad & \underline{p(t)}=c_{1} e^{-\alpha t}
\end{aligned}
$$

- Find minimizing u^{*} :

$$
\begin{aligned}
u^{*} & =\arg \min _{u \geq 0} H\left(x^{*}, u, p\right) \\
& =\arg \min _{u \geq 0}\left[-e^{-\beta t} \sqrt{u}+p\left(\alpha x^{*}-u\right)\right]
\end{aligned}
$$

necessary condition: $1^{\text {st }}$ derivative $=0$:

$$
\begin{aligned}
\frac{d}{d u} H & =-e^{-\beta t} \frac{1}{2} u^{-\frac{1}{2}}-p=0 \\
& \Rightarrow \quad u^{*}(t)=\frac{1}{4 p^{2}} e^{-2 \beta t}
\end{aligned}
$$

sufficient condition: $2^{\text {nd }}$ derivative $\neq 0$

$$
\begin{aligned}
\frac{d^{2}}{d u^{2}} H & =e^{-\beta t} \frac{1}{2} \cdot \frac{1}{2} u^{-\frac{3}{2}}=\frac{1}{4} e^{-\beta t} \frac{1}{\sqrt{u^{3}}}>0 \quad \forall t, u \\
& \Rightarrow \quad u^{*}(t)=\frac{1}{4 p^{2}} e^{-2 \beta t} \text { is a minimum. }
\end{aligned}
$$

- Thus, minimizing u^{*} is

$$
u^{*}(t)=\frac{1}{4 c_{1}^{2}} e^{(2 \alpha-2 \beta) t}
$$

We still need to determine c_{1}, which will be done in the following.

- System equation with optimal u^{*} :

$$
\begin{equation*}
\dot{x}=\alpha x-\frac{1}{4 c_{1}^{2}} e^{(2 \alpha-2 \beta) t} \tag{1}
\end{equation*}
$$

Equation (1) is a linear ODE. Its solution consists of the homogeneous solution $x_{h}(t)$ and a particular solution $x_{p}(t): x(t)=x_{h}(t)+x_{p}(t)$.

Homogeneous solution:

$$
x_{h}(t)=c_{2} e^{\alpha t} \quad, \quad c_{2}=\mathrm{constant}
$$

Particular solution:

Case: $\alpha \neq 2 \beta$:
Guessing

$$
x_{p}(t)=c_{3} e^{(2 \alpha-2 \beta) t}
$$

and plugging it into the ODE, yields

$$
c_{3}(2 \alpha-2 \beta) e^{(2 \alpha-2 \beta) t}=\alpha c_{3} e^{(2 \alpha-2 \beta) t}-\frac{1}{4 c_{1}^{2}} e^{(2 \alpha-2 \beta) t} .
$$

Thus,

$$
\begin{aligned}
& c_{3}=-\frac{1}{4 c_{1}^{2}(\alpha-2 \beta)} \\
& \Rightarrow \quad x_{p}(t)=-\frac{1}{4 c_{1}^{2}(\alpha-2 \beta)} e^{(2 \alpha-2 \beta) t} \text { is a particular solution. }
\end{aligned}
$$

Thus, the general solution is

$$
x(t)=x_{h}(t)+x_{p}(t)=c_{2} e^{\alpha t}-\frac{1}{4 c_{1}^{2}(\alpha-2 \beta)} e^{(2 \alpha-2 \beta) t}
$$

Determine c_{1} and c_{2} from $x(0)=S$ and $x(T)=0$:

$$
\begin{aligned}
\frac{1}{4 c_{1}^{2}} & =\frac{-S(\alpha-2 \beta)}{1-e^{(\alpha-2 \beta) T}} \\
c_{2} & =\frac{-S e^{(\alpha-2 \beta) T}}{1-e^{(\alpha-2 \beta) T}}
\end{aligned}
$$

Case: $\alpha=2 \beta$:

ODE:

$$
\dot{x}=\alpha x-\frac{1}{4 c_{1}^{2}} e^{\alpha t}
$$

Guessing

$$
x_{p}(t)=c_{4} t e^{\alpha t}
$$

and plugging it into ODE, yields

$$
c_{4} e^{\alpha t}+c_{4} \alpha t e^{\alpha t}=c_{4} \alpha t e^{\alpha t}-\frac{1}{4 c_{1}^{2}} e^{\alpha t}
$$

Thus,

$$
c_{4}=-\frac{1}{4 c_{1}^{2}}
$$

General solution:

$$
x(t)=x_{h}(t)+x_{p}(t)=c_{2} e^{\alpha t}-\frac{1}{4 c_{1}^{2}} t e^{\alpha t}
$$

Determine c_{1} and c_{2} from $x(0)=S$ and $x(T)=0$:

$$
\begin{aligned}
\frac{1}{4 c_{1}^{2}} & =\frac{S}{T} \\
c_{2} & =S
\end{aligned}
$$

Therefore, the resulting optimal control u^{*} and optimal state trajectory x^{*} are:

$$
\begin{aligned}
\underline{\alpha \neq 2 \beta}: x^{*}(t) & =\frac{-S e^{(\alpha-2 \beta) T}}{1-e^{(\alpha-2 \beta) T}} e^{\alpha t}+\frac{S}{1-e^{(\alpha-2 \beta) T}} e^{(2 \alpha-2 \beta) t} \\
u^{*}(t) & =\frac{S(2 \beta-\alpha)}{1-e^{(\alpha-2 \beta) T}} e^{(2 \alpha-2 \beta) t} \\
\underline{\alpha=2 \beta}: x^{*}(t) & =S e^{\alpha t}-\frac{S}{T} t e^{\alpha t}=S\left(1-\frac{t}{T}\right) e^{\alpha t} \\
u^{*}(t) & =\frac{S}{T} e^{(2 \alpha-2 \beta) t}=\frac{S}{T} e^{\alpha t}
\end{aligned}
$$

Problem 3 (Solution)

- system:

$$
\begin{aligned}
& \dot{x}_{1}(t)=\dot{x}(t)=u(t) \\
& \dot{x}_{2}(t)=\sqrt{1+(u(t))^{2}} \\
& x_{1}(0)=a \quad, \quad x_{1}(T)=b \\
& x_{2}(0)=0, \quad x_{2}(T)=L \\
& \text { since } \int_{0}^{T} \sqrt{1+u^{2}} d t=\int_{0}^{T} \dot{x}_{2} d t=\left.x_{2}\right|_{0} ^{T}=x_{2}(T)-x_{2}(0)=L
\end{aligned}
$$

- maximize

$$
\int_{0}^{T} x_{1} d t=\int_{0}^{T} x d t \quad \Leftrightarrow \quad \min \int_{0}^{T}-x_{1} d t
$$

Apply Minimum Principle

- Hamiltonian:

$$
\begin{aligned}
& H=g+p^{T} f=(-x)+\left[\begin{array}{ll}
p_{1} & p_{2}
\end{array}\right]\left[\begin{array}{c}
u \\
\sqrt{1+u^{2}}
\end{array}\right] \\
& H=-x_{1}+p_{1} u+p_{2} \sqrt{1+u^{2}}
\end{aligned}
$$

- Adjoint equation:

$$
\begin{gathered}
\dot{p}=-\nabla_{x} H=-\left[\begin{array}{c}
-1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
\Rightarrow \quad p_{1}(t)=t-c_{1} \quad, \quad c_{1}=\mathrm{constant} \\
p_{2}(t)=c_{2} \quad, \quad c_{2}=\mathrm{constant}
\end{gathered}
$$

- Optimal control:

$$
u^{*}=\arg \min _{u} H=\arg \min _{u} \underbrace{\left(-x_{1}^{*}+p_{1} u+p_{2} \sqrt{1+u^{2}}\right)}_{(*)}
$$

Differentiate (*) with respect to u :

$$
\begin{align*}
& \frac{d}{d u}: \quad p_{1}+p_{2} \frac{u}{\sqrt{1+u^{2}}}=0 \\
& \quad \Leftrightarrow \quad \frac{u}{\sqrt{1+u^{2}}}=\frac{-p_{1}}{p_{2}}=\frac{c_{1}-t}{c_{2}} \tag{2}
\end{align*}
$$

Second derivative of $(*)$:

$$
\frac{d^{2}}{d u^{2}}: \quad \frac{p_{2}}{\sqrt{1+u^{2}}}\left(\frac{1}{1+u^{2}}\right)>0 \quad\left(\text { since } p_{2}>0\right. \text { which will be seen later) }
$$

- We have from (2),

$$
\begin{equation*}
\frac{\dot{x}^{*}}{\sqrt{1+\dot{x}^{* 2}}}=\frac{c_{1}-t}{c_{2}}, \tag{3}
\end{equation*}
$$

which has to be solved by the wanted curve $x^{*}(t)$. We will show next, that (3) is solved by a circular arc.

We consider a graphical solution: ${ }^{3}$

- Let ϕ be the slope angle, i.e. the angle defined by $\tan (\phi(t))=\dot{x}(t)=\frac{d x}{d t}$.

- Note that

$$
\sin \phi=\frac{d x}{\sqrt{d t^{2}+d x^{2}}}=\frac{\frac{d x}{d t}}{\sqrt{1+\frac{d x^{2}}{d t^{2}}}}=\frac{\dot{x}}{\sqrt{1+\dot{x}^{2}}} .
$$

- With (3), we have

$$
\begin{equation*}
\sin (\phi(t))=\frac{c_{1}-t}{c_{2}} \tag{4}
\end{equation*}
$$

that is, the sine of ϕ is affine linear in t.

- The condition (4) is satisfied by a circle, which can be seen from the following drawing:

and by noting that $\alpha=\phi$ and

$$
\sin (\alpha)=\frac{t_{m}-\tilde{t}}{r}
$$

where \tilde{t} is the parameter that changes as one moves along the curve.

[^2]Now that we have shown that the problem is solved by a circular arc, we can derive the parameters defining the circle from geometric reasoning. From the following drawing, we get:

- Arc length: $L=\beta r$
- Length l of secant from $(0, \alpha)$ to $(T, b): l=\sqrt{(b-a)^{2}+T^{2}}$
- For β, it holds

$$
\sin \left(\frac{\beta}{2}\right)=\frac{\frac{l}{2}}{r}
$$

with $\beta=\frac{L}{r}$ can solve this for r (e.g. numerically).

- The missing parameters t_{m}, x_{m} in the circle equation $\left(x-x_{m}\right)^{2}+\left(t-t_{m}\right)^{2}=r^{2}$ can be obtained by plugging in the points $(0, a),(T, b)$:

$$
\begin{aligned}
x(0) & =\sqrt{r^{2}-t_{m}^{2}}+x_{m}=a \\
x(T) & =\sqrt{r^{2}-\left(T-t_{m}\right)^{2}}+x_{m}=b,
\end{aligned}
$$

which can be solved for t_{m}, x_{m}.

Such a circular arc does not exist if L is either too small or too large.

Problem 4 (Solution)

- system:

$$
\begin{aligned}
\dot{x}_{1}(t) & =s+\cos (u(t)) \\
\dot{x}_{2}(t) & =\sin (u(t)) \\
0 & \leq t \leq T
\end{aligned}
$$

- minimize the time T to go from $\left[x_{1}(0), x_{2}(0)\right]=[0,0]$ to $\left[x_{1}(T), x_{2}(T)\right]=[a, b]$

$$
\begin{aligned}
& \rightarrow \operatorname{cost}=\int_{0}^{T} 1 d t=T \\
& \rightarrow g(x, u)=1
\end{aligned}
$$

Apply Minimum Principle

- Hamiltonian:

$$
\begin{aligned}
& H=1+p^{T} f(x, u) \\
& H=1+p_{1}(s+\cos (u))+p_{2}(\sin (u))
\end{aligned}
$$

- Adjoint equation:

$$
\begin{aligned}
& \dot{p}(t)=-\nabla_{x} H=-\left[\begin{array}{l}
\frac{\partial H}{\partial x_{1}} \\
\frac{\partial H}{\partial x_{2}}
\end{array}\right]=0 \\
& \Rightarrow \quad p_{1}(t)=c_{1}=\mathrm{const} \\
& p_{2}(t)=c_{2}=\mathrm{const}
\end{aligned}
$$

- Optimal $u^{*}(t)$:

$$
u^{*}=\arg \min _{u \in U} H=\arg \min _{u}\left(1+p_{1}(s+\cos (u))+p_{2}(\sin (u))\right)
$$

Differentiate with respect to u and set to $0:^{4}$

$$
\begin{aligned}
\frac{d}{d u}: & -p_{1} \sin (u)+p_{2} \cos (u)=0 \\
& \Rightarrow \quad u=\tan ^{-1}\left(\frac{c_{2}}{c_{1}}\right)=: \Theta=\mathrm{const}
\end{aligned}
$$

- To get the optimal angle, we plug in $u=\Theta$ into the system equation and solve the ODE:

$$
\begin{aligned}
& \dot{x}_{1}=s+\cos (\Theta) \\
& \dot{x}_{2}=\sin (\Theta) \\
& \rightarrow x_{1}(t)=(s+\cos (\Theta)) t+c_{3} \\
& \quad x_{2}(t)=\sin (\Theta) t+c_{4}
\end{aligned}
$$

with constants $c_{3}, c_{4} \in \mathbb{R}$.

- Plug in initial and terminal values

$$
\begin{aligned}
& x_{1}(0)=c_{3}=0 \quad \Rightarrow \quad c_{3}=0 \\
& x_{2}(0)=c_{4}=0 \quad \Rightarrow \quad c_{4}=0 \\
& x_{1}(T)=(s+\cos (\Theta)) T=a \\
& x_{2}(T)=\sin (\Theta) T=b
\end{aligned}
$$

The last to equations can be solved for the unknowns Θ and T for given a, b, s.

[^3]
[^0]: ${ }^{1}$ This is partly misleading. It should read: Show that the sine of the slope angle ϕ, defined by $\tan (\phi)=\frac{d x}{d t}$, is affine linear in t, i.e. $c t+d$ with constants c and d.

[^1]: ${ }^{2}$ Here, the cost function $g(\cdot)$ explicitly depends on t. Refer to Sec. 3.4.4 of the class textbook for time-varying cost.

[^2]: ${ }^{3}$ Alternatively, it can be shown that the circle equation $\left(x-x_{m}\right)^{2}+\left(t-t_{m}\right)^{2}=r^{2}$ solves (3).

[^3]: ${ }^{4}$ Note that we would have to check that this is indeed a minimum (e.g. by checking $2^{n d}$ derivative). Here, however, we only want to show that the minimum, which we know that it exists from the problem description, is constant.

