
Dynamic Programming and
Optimal Control

Fall 2009

Problem Set:
Deterministic Systems and the Shortest Path Problem

Notes:

• Problem marked with BERTSEKAS are taken from the book Dynamic Programming and
Optimal Control by Dimitri P. Bertsekas, Vol. I, 3rd edition, 2005, 558 pages, hardcover.

• The solutions were derived by the teaching assistants in the previous class. Please report
any error that you may find to strimpe@ethz.ch or aschoellig@ethz.ch.



Problem Set

Problem 1 (BERTSEKAS, p. 98, exercise 2.1)

Find a shortest path from each node to node 6 for the graph of Fig. 1 by using the DP algorithm.

Figure 1: The arc lenghts are shown next to the arcs.

Problem 2 (BERTSEKAS, p. 98, exercise 2.2)

Find a shortest path from node 1 to node 5 for the graph of Fig. 2 by using the label correcting
method of Section 2.3.1 (see BERTSEKAS).

Figure 2: The arc lenghts are shown next to the arcs.

Problem 3 (BERTSEKAS, p. 103, exercise 2.14)

Consider the shortest path problem of Section 2.3 (see BERTSEKAS), except that the number
of nodes in the graphs may be countably infinite (although the number of outgoing arcs from
each node is finite). We assume that the length of each arc is a positive integer. Furthermore,
there is at least one path from the origin node s to the destination node t. Consider the label
correcting algorithm as stated and initialized in Section 2.3.1, except that UPPER is initially
set to some integer that is an upper bound to the shortest distance from s to t. Show that the
algorithm will terminate in a finite number of steps with UPPER equal to the shortest distance
from s to t. Hint : Show that there is a finite number of nodes whose shortest distance from s
does not exceed the initial value of UPPER.

2



Sample Solutions

Problem 1 (Solution)

We use the definitions and derivation on pages 67-68 (see BERTSEKAS):

• set of nodes S = {1, 2, 3, 4, 5} , N = 5

• destination node t: node 6

Start DP Algorithm

• JN−1(i) = αit

That is, only one move to the end,

J4(1) = 8

J4(2) = ∞

J4(3) = 9

J4(4) = 2

J4(5) = 5

• Jk(i) = min
j∈{1,2,...,5}

(

αij + Jk+1(j)
)

, k = 0, 1, . . . , N − 2

For k = 3, i.e. two moves to the end,

J3(1) = min
(

α11 + J4(1), α12 + J4(2), α13 + J4(3), α14 + J4(4), α15 + J4(5)
)

= 7 (path 1-4-6)

Analogously,

J3(2) = min
(

α21 + J4(1), α22 + J4(2), α23 + J4(3), α24 + J4(4), α25 + J4(5)
)

= 3 (path 2-4-6).

By directly omitting paths with cost infinity, i.e. only considering paths/ways which exist
in Fig. 1, we get

J3(3) = min
(

α33 + J4(3), α35 + J4(5)
)

= 9 (path 3-6)

J3(4) = min
(

α44 + J4(4)
)

= 2 (path 4-6)

J3(5) = min
(

α53 + J4(3), α55 + J4(5)
)

= 5 (path 5-6)

3



Then, for k = 2 and three moves to the end,

J2(1) = min
(

α11 + J3(1), α12 + J3(2), α13 + J3(3), α14 + J3(4)
)

= 7 (path 1-4-6, 1-2-4-6, 1-4-6)

J2(2) = min
(

α22 + J3(2), α24 + J3(4)
)

= 3 (path 2-4-6, 2-4-6)

J2(3) = min
(

α33 + J3(3), α35 + J3(5)
)

= 9 (path 3-6)

J2(4) = min
(

α44 + J3(4)
)

= 2 (path 4-6)

Since J2(i) = J3(i) ∀i ∈ S, the algorithm is terminated.

Problem 2 (Solution)

Note that, considering the Label Correcting Method, there are different methods for selecting
the node i to be removed from the open bin at each iteration.

• In general, removing a node i with small (recent) arrival distance di is more successful,
since this might result in a small dj = di + αij and, finally, in a low distance/cost for the
path s → t : dt

• Having a small dt, many paths can be neglected because of di > dt or di,new > di,old

As in the lecture’s example, we use depth-first search (see p.85). However, since nodes have
more than one incoming arrow, we have to keep track of not only di, the cost associated with
node i, but also the parent node of node i, called Pi.

It # Remove Open Bin dt = d5

0 - 1 ∞

1 1 2 (d2 = 2, P2 = 1), 3 (d3 = 1, P3 = 1) ∞

2 3 (d3 = 1, P3 = 1) 2 (d2 = 2, P2 = 1)1, 4 (d4 = 4, P4 = 3) ∞

3 4 (d4 = 4, P4 = 3) 2 (d2 = 2, P2 = 1) 4 (P5 = 4)

4 2 (d2 = 2, P2 = 1) 4 (d4 = 3, P4 = 2)2 2 (P5 = 2)

5 4 (d4 = 3, P4 = 2) - 2 (P5 = 2)
1 Unchanged since 1→ 2 and 1→ 3→ 2 have same cost.
2 Node 3 is not added since cost d2 + α23 > d3 = 1.

⇒ Optimal path: 1 → 2 → 5, d5 = 2

Problem 3 (Solution)

Given

1. Number of nodes countably infinite

4



2. αij ≥ 1, αij ∈ N, ∀i, j ∈ S (arc length)

3. Number of outgoing arcs from each node is finite

4. ∃ path s → t

5. shortest distance between s and t, d∗t , is bounded by dt

d∗t ≤ dt,max ∈ N, dt,max < ∞

Note that, with 4. and 5., we know that there exist a path s → t consisting of a finite number
of nodes since αij ≥ 1 (assumption 2.). The maximum number of arcs between s and t is dt,max!

Define a set R = U
dt,max

i=1
Si, where Si is the set of all nodes k with minimum number of

arcs between s and k is i.

Way of Proceeding

A) Show that R is a finite set of nodes
B) Show that nodes i /∈ R will never enter the open bin

Only the set R has to be taken into account. R is finite and, with 4., we know that there exist
at least one path s → t.
By Proposition 2.3.1 (p. 82), the label correcting algorithm terminates with dt = shortest dis-
tance from origin s to destination t in a finite number of steps. q.e.d

To be done: steps A) and B)

A) Proof by Induction

• start:
S1 = {i|i is child of S}, finite because of 3.

• hypothesis:
Sk is finite (*)

• proof:
Sk+1 ≤ {i|i is child of a node in Sk}, where Sk is finite (*) and each node j ∈ Sk has only
a finite number of childs, see 3.
→ Sk+1 is finite.

⇒ R =
dt,max

U
i=1

Si is finite, since dt,max < ∞, see 5.

B)

For i /∈ R, minimum number of arcs between s and i is larger than dt,max. With 2. all paths
from s to i have length greater than dt,max and, therefore, i will never enter the open bin.

5


