Dynamic Programming and Optimal Control

Fall 2009

Problem Set:
The Dynamic Programming Algorithm

Notes:

- Problems marked with BERTSEKAS are taken from the book Dynamic Programming and Optimal Control by Dimitri P. Bertsekas, Vol. I, 3rd edition, 2005, 558 pages, hardcover.
- The solutions were derived by the teaching assistants in the previous class. Please report any error that you may find to strimpe@ethz.ch or aschoellig@ethz.ch.

Problem Set

Problem 1 (BERTSEKAS, p. 51, exercise 1.1 a, c)
Consider the system

$$
x_{k+1}=x_{k}+u_{k}+w_{k}, \quad k=0,1,2,3,
$$

with initial state $x_{0}=5$, and the cost function

$$
\sum_{k=0}^{3}\left(x_{k}^{2}+u_{k}^{2}\right) .
$$

Apply the DP algorithm for the following two cases:
a) The control constraint set $U_{k}\left(x_{k}\right)$ is $\left\{u \mid 0 \leq x_{k}+u \leq 5, u\right.$: integer $\}$ for all x_{k} and k, and the disturbance w_{k} is equal to zero for all k.
b) The control constraint is as in part (a) and the disturbance w_{k} takes the values -1 and 1 with equal probability $\frac{1}{2}$ for all x_{k} and u_{k}, except if $x_{k}+u_{k}$ is equal to 0 or 5 , in which case $w_{k}=0$ with probability 1 .

Problem 2 (BERTSEKAS, p. 52, exercise 1.3)

Suppose we have a machine that is either running or is broken down. If it runs throughout one week, it makes a gross profit of $\$ 100$. If it fails during the week, gross profit is zero. If it is running at the start of the week and we perform preventive maintenance, the probability that it will fail during the week is 0.4 . If we do not perform such maintenance, the probability of failure is 0.7 . However, maintenance will cost $\$ 20$. When the machine is broken down at the start of the week, it may either be repaired at cost of $\$ 40$, in which case it will fail during the week with a probability of 0.4 , or it may be replaced at a cost of $\$ 150$ by a new machine that is guaranteed to run through its first week of operation. Find the optimal repair, replacement, and maintenance policy that maximizes total profit over four weeks, assuming a new machine at the start of the first week.

Problem 3 (Discounted Cost per Stage, BERTSEKAS, p. 53, exercise 1.6)

In the framework of the basic problem, consider the case where the cost is of the form

$$
\underset{\substack{w_{k} \\ k=0,1, \ldots, N-1}}{\mathrm{E}}\left\{\alpha^{N} g_{N}\left(x_{N}\right)+\sum_{k=0}^{N-1} \alpha^{k} g_{k}\left(x_{k}, u_{k}, w_{k}\right)\right\},
$$

where α is a discount factor with $0<\alpha<1$. Show that an alternative form of the DP algorithm is given by

$$
\begin{aligned}
& V_{N}\left(x_{N}\right)=g_{N}\left(x_{N}\right), \\
& V_{k}\left(x_{k}\right)=\min _{u_{k} \in U_{k}\left(x_{k}\right)} \underset{w_{k}}{\mathrm{E}}\left\{g_{k}\left(x_{k}, u_{k}, w_{k}\right)+\alpha V_{k+1}\left(f_{k}\left(x_{k}, u_{k}, w_{k}\right)\right)\right\} .
\end{aligned}
$$

Problem 4 (Exponential Cost Function, BERTSEKAS, p. 53, exercise 1.7)

In the framework of the basic problem, consider the case where the cost is of the form

$$
\underset{\substack{w_{k} \\ k=0,1, \ldots, N-1}}{\mathrm{E}}\left\{\exp \left(g_{N}\left(x_{N}\right)+\sum_{k=0}^{N-1} g_{k}\left(x_{k}, u_{k}, w_{k}\right)\right)\right\} .
$$

a) Show that the optimal cost and optimal policy can be obtained from the DP-like algorithm

$$
\begin{aligned}
& J_{N}\left(x_{N}\right)=\exp \left(g_{N}\left(x_{N}\right)\right) \\
& J_{k}\left(x_{k}\right)=\min _{u_{k} \in U_{k}\left(x_{k}\right)} \underset{w_{k}}{\mathrm{E}}\left\{J_{k+1}\left(f_{k}\left(x_{k}, u_{k}, w_{k}\right)\right) \exp \left(g_{k}\left(x_{k}, u_{k}, w_{k}\right)\right)\right\}
\end{aligned}
$$

b) Define the function $V_{k}\left(x_{k}\right)=\ln J_{k}\left(x_{k}\right)$. Assume also that g_{k} is a function of x_{k} and u_{k} only (and not of w_{k}). Show that the above algorithm can be rewritten as

$$
\begin{aligned}
& V_{N}\left(x_{N}\right)=g_{N}\left(x_{N}\right) \\
& V_{k}\left(x_{k}\right)=\min _{u_{k} \in U_{k}\left(x_{k}\right)}\left\{g_{k}\left(x_{k}, u_{k}\right)+\ln \underset{w_{k}}{\mathrm{E}}\left\{\exp \left(V_{k+1}\left(f_{k}\left(x_{k}, u_{k}, w_{k}\right)\right)\right)\right\}\right\}
\end{aligned}
$$

Note: the exponential cost function is an example of a risk-sensitive cost function that can be used to encode a preference for policies with a small variance of the cost $g_{N}\left(x_{N}\right)+$ $\sum_{k=0}^{N-1} g_{k}\left(x_{k}, u_{k}, w_{k}\right)$. The associated problems have a lot of interesting properties, which are discussed in several sources, e.g. Whittle [Whi90], Fernandez-Gaucherand and Markus [FeM94], James, Baras, and Elliott [JBE94]. Basar and Bernhard [BaB95].

Problem 5 (Terminating Process, BERTSEKAS, p. 54, exercise 1.8)

In the framework of the basic problem, consider the case where the system evolution terminates at time i when a given value \bar{w}_{i} of the disturbance at time i occurs, or when a termination decision \bar{u}_{i} is made by the controller. If termination occurs at time i, the resulting cost is

$$
T+\sum_{k=0}^{i} g_{k}\left(x_{k}, u_{k}, w_{k}\right)
$$

where T is a termination cost. If the process has not terminated up to the final time N, the resulting cost is $g_{N}\left(x_{N}\right)+\sum_{k=0}^{N-1} g_{k}\left(x_{k}, u_{k}, w_{k}\right)$. Reformulate the problem into the framework of the basic problem. Hint: Augment the state space with a special termination state.

Problem 6 (Inscribed Polygon of Maximal Perimeter, BERTSEKAS, p. 59, exercise 1.22)

Consider the problem of inscribing an N-side polygon in a given circle, so that the polygon has maximal perimeter.
a) Formulate the problem as a DP problem involving sequential placement of N points in the circle.
b) Use DP to show that the optimal polygon is regular (all sides are equal).

Sample Solutions

Problem 1 (Solution)

System:

$$
x_{k+1}=x_{k}+u_{k}+w_{k}, \quad k=0,1,2,3
$$

Cost to minimize:

$$
\sum_{k=0}^{3}\left(x_{k}^{2}+u_{k}^{2}\right)
$$

a) - $w_{k}=0$ (no disturbance)

- control constraint set $U_{k}\left(x_{k}\right):=\left\{u \mid 0 \leq x_{k}+u \leq 5, u\right.$: integer $\}$

$$
\begin{aligned}
0 \leq x_{k}+u_{k} \leq 5 & \forall k \\
\Leftrightarrow \quad 0 \leq x_{k+1} \leq 5 & \forall k
\end{aligned}
$$

with $x_{0}=5 \quad \Rightarrow \quad 0 \leq x_{k} \leq 5 \quad \forall k$
$\Rightarrow \quad$ states only take the values $0, \ldots, 5$

- $N=4$

Apply the Dynamic Programming Algorithm (DPA)

- $k=N$

$$
J_{N}\left(x_{N}\right)=0=J_{4}\left(x_{4}\right)
$$

- $k=3$

$$
\begin{aligned}
J_{3}\left(x_{3}\right) & =\min _{-x_{3} \leq u_{3} \leq 5-x_{3}}\left(x_{3}^{2}+u_{3}^{2}+J_{4}\left(x_{3}+u_{3}\right)\right) \\
& =\min _{-x_{3} \leq u_{3} \leq 5-x_{3}}\left(x_{3}^{2}+u_{3}^{2}+0\right)
\end{aligned}
$$

\Rightarrow optimal control: $\underline{\underline{u_{3}=\mu_{3}\left(x_{3}\right)=0}}$

$$
\Rightarrow \quad \underline{\underline{J_{3}\left(x_{3}\right)}=x_{3}^{2}}
$$

- $k=2$

$$
\begin{aligned}
J_{2}\left(x_{2}\right) & =\min _{-x_{2} \leq u_{2} \leq 5-x_{2}}\left(x_{2}^{2}+u_{2}^{2}+J_{3}\left(x_{2}+u_{2}\right)\right) \\
& =\min _{-x_{2} \leq u_{2} \leq 5-x_{2}}\left(2 x_{2}^{2}+2 x_{2} u_{2}+2 u_{2}^{2}\right)
\end{aligned}
$$

Evaluate expression for all possible x_{2}, u_{2} :

	$u_{2}=-5$	-4	-3	-2	-1	0	1	2	3	4	5
$x_{2}=0$	-	-	-	-	-	0	2	8	18	32	50
1	-	-	-	-	2	2	6	14	24	42	-
2	-	-	-	8	6	8	14	24	38	-	-
3	-	-	18	14	14	18	26	38	-	-	-
4	-	32	26	24	26	32	42	-	-	-	-
5	50	42	38	38	42	50	-	-	-	-	-

Therefore, the optimal cost and policy:

x_{2}	$J_{2}\left(x_{2}\right)$	$\mu_{2}\left(x_{2}\right)$
0	0	0
1	2	-1 or 0
2	6	-1
3	14	-2 or -1
4	24	-2
5	38	-3 or -2

- $k=1$

- $\underline{k=0}$

$$
J_{0}\left(x_{0}\right)=\min _{-x_{0} \leq u_{0} \leq 5-x_{0}}\left(x_{0}^{2}+u_{0}^{2}+J_{1}\left(x_{0}+u_{0}\right)\right)
$$

given: $\quad x_{0}=5$

$$
J_{0}(5)=\min _{-5 \leq u_{0} \leq 0}\left(25+u_{0}^{2}+J_{1}\left(5+u_{0}\right)\right)
$$

$$
\begin{array}{c|cccccc}
x_{0} & -5 & -4 & -3 & -2 & -1 & 0 \\
\hline 5 & 50 & 43 & 41 & 44 & 52 & 65
\end{array}
$$

$$
\rightarrow \quad \mu_{0}\left(x_{0}=5\right)=-3 \quad, \quad J_{0}\left(x_{0}=5\right)=41
$$

System evolution:

$$
\begin{array}{lll}
x_{0}=5 & \rightarrow & u_{0}=-3 \\
x_{1}=2 & \rightarrow & u_{1}=-1 \\
x_{2}=1 & \rightarrow & u_{2}=-1 \text { or } 0 \\
x_{3}=0 \text { or } 1 & \rightarrow & u_{1}=5 \\
x_{3}=0 & g_{2}=2 \text { or } 1 \\
& & g_{3}=0 \text { or } 1
\end{array}
$$

b)

$$
\begin{aligned}
& \sum_{k=0}^{3}\left(x_{k}^{2}+u_{k}^{2}\right) \\
& x_{k+1}=x_{k}+u_{k}+w_{k} \quad, \quad u_{k} \in U_{k}\left(x_{k}\right):=\left\{u \mid 0 \leq x_{k}+u \leq 5, u: \text { integer }\right\}
\end{aligned}
$$

- As noted in a) $x_{k}+u_{k}$ is always between 0 and 5 .
- In case where $x_{k}+u_{k}$ equals 0 or $5, w_{k}=0$; otherwise w_{k} can take values $\{-1,1\}$. Thus x_{k+1} also takes values $0 \ldots 5$ only.

Apply DPA

- $k=N$

$$
J_{4}\left(x_{4}\right)=0
$$

- $k=3$

$$
\begin{aligned}
& J_{3}\left(x_{3}\right)=\min _{-x_{3} \leq u_{3} \leq 5-x_{3}} \underset{w_{3}}{\mathrm{E}}\left(x_{3}^{2}+u_{3}^{2}+J_{4}\left(x_{4}\right)\right) \\
&=\min _{-x_{3} \leq u_{3} \leq 5-x_{3}}\left(x_{3}^{2}+u_{3}^{2}\right) \\
&=x_{3}^{2} \\
& \rightarrow \quad \underline{\underline{\mu_{3}\left(x_{3}\right)=0}}, \underline{\underline{J_{3}\left(x_{3}\right)=x_{3}^{2}}}
\end{aligned}
$$

- $k=2$

$$
J_{2}\left(x_{2}\right)=\min _{-x_{2} \leq u_{2} \leq 5-x_{2}} \underset{w_{2}}{\mathrm{E}}\left(x_{2}^{2}+u_{2}^{2}+J_{3}\left(x_{2}+u_{2}+w_{2}\right)\right)
$$

Case $u_{2}+x_{2}=5$ or $u_{2}+x_{2}=0$:

$$
J_{2}\left(x_{2}\right)=\min \left(x_{2}^{2}+u_{2}^{2}+J_{3}\left(x_{2}+u_{2}\right)\right)
$$

Case $u_{2}+x_{2} \neq 5$ and $u_{2}+x_{2} \neq 0$:

$$
J_{2}\left(x_{2}\right)=\min \left(x_{2}^{2}+u_{2}^{2}+\frac{1}{2} J_{3}\left(x_{2}+u_{2}+1\right)+\frac{1}{2} J_{3}\left(x_{2}+u_{2}-1\right)\right)
$$

x_{2}	$J_{2}\left(x_{2}\right)$	$\mu_{2}\left(x_{2}\right)$
0	0	0
1	2	-1
2	7	-1
3	15	-2 or -1
4	25	-2
5	39	-2 or -3

- $k=1$

$$
J_{1}\left(x_{1}\right)=\min _{-x_{1} \leq u_{1} \leq 5-x_{1}} \underset{w_{1}}{\mathrm{E}}\left(x_{1}^{2}+u_{1}^{2}+J_{2}\left(x_{1}+u_{1}+w_{1}\right)\right)
$$

Case $u_{2}+x_{2}=5$ or $u_{2}+x_{2}=0$:

$$
J_{1}\left(x_{1}\right)=\min \left(x_{1}^{2}+u_{1}^{2}+J_{2}\left(x_{1}+u_{1}\right)\right)
$$

Case $u_{2}+x_{2} \neq 5$ and $u_{2}+x_{2} \neq 0$:

$$
J_{1}\left(x_{1}\right)=\min \left(x_{1}^{2}+u_{1}^{2}+\frac{1}{2} J_{2}\left(x_{1}+u_{1}+1\right)+\frac{1}{2} J_{2}\left(x_{1}+u_{1}-1\right)\right)
$$

x_{1}	$J_{1}\left(x_{1}\right)$	$\mu_{1}\left(x_{1}\right)$
0	0	0
1	2	-1
2	8	-2
3	16.5	-2
4	28.5	-3 or -2
5	42.5	-3

- $\underline{k=0}$

$$
\begin{aligned}
& J_{0}\left(x_{0}\right)=\min _{-x_{0} \leq u_{0} \leq 5-x_{0}} \mathrm{E}\left(x_{0}^{2}+u_{0}^{2}+J_{1}\left(x_{0}+u_{0}+w_{0}\right)\right) \\
& \rightarrow \quad \underline{\left.\underline{\mu_{0}\left(x_{0}\right.}=5\right)=-3} \quad, \quad \underline{\underline{J_{0}\left(x_{0}=5\right)=43.25}}
\end{aligned}
$$

Problem 2 (Solution)

- States $x: \quad R$: machine running, $\quad B$: machine broken
- Control actions u :

$$
\left.\begin{array}{rl}
n: & \text { no maintenance } \\
m: & \text { maintenance } \\
r: & \text { repair } \\
l: & \text { replace }
\end{array}\right\} \text { if } x=B
$$

- Costs C :

$$
\begin{array}{rll}
n & \rightarrow & 0 \\
m & \rightarrow & 20 \\
r & \rightarrow & 40 \\
l & \rightarrow & 150
\end{array}
$$

- Gain (\triangleq negative cost): -100 if not broken

Week 3

$$
\begin{array}{clll}
x_{3}=R & u_{3}=n & C=0.7(0)+0.3(-100) & =-30 \\
u_{3}=m & C=20+0.6(-100) & =-40 \\
x_{3}=B & C=40+0.6(-100) & =-20 \\
u_{3}=r & C=150+(-100) & =50 \\
u_{3}=l & & \\
\rightarrow \quad J_{3}(R)=-40 & \mu_{3}(R)=m & \\
J_{3}(B)=-20 & \mu_{3}(B)=r &
\end{array}
$$

Week 2

$$
\begin{array}{llll}
x_{2}=R & u_{2}=n & C=0+0.7(-20)+0.3(-100-40) & =-56 \\
& u_{2}=m & C=20+0.4(-20)+0.6(-140) & =-72 \\
x_{2}=B & u_{2}=r & C=40+0.4(-20)+0.6(-140) & =-52 \\
& u_{2}=l & C=150-100-40 & =10
\end{array}
$$

$$
\begin{array}{ll}
\rightarrow & \mu_{2}(R)=m \\
J_{2}(R)=-72 & \mu_{2}(B)=r
\end{array}
$$

Week 1

$$
\begin{array}{clll}
x_{1}=R & u_{1}=n & C=0+0.7(-52)+0.3(-100-72) & =-88 \\
u_{1}=m & C=20+0.4(-52)+0.6(-172) & =-104 \\
x_{1}=B & C=40+0.4(-52)+0.6(-172) & =-84 \\
u_{1}=r & C=150-100-72 & =-22 \\
u_{1}=l & & \\
\rightarrow \quad & & \\
& \mu_{1}(R)=m & \\
J_{1}(R)=-104 & & \mu_{1}(B)=r &
\end{array}
$$

Week 0

$$
x_{0}=R \quad \text { Machine is guaranteed to run in the } 1^{\text {st }} \text { week (since it is new) }
$$

$$
\rightarrow \quad J_{0}(R)=-100-104=-204 \quad, \quad \mu_{0}(R)=n
$$

- Conclusion:
- always maintain a running machine
- always repair a broken machine
- expected profit $-J_{0}(R)=204$

Problem 3 (Solution)

Proof. Apply the general DP algorithm to the given problem:

$$
\begin{aligned}
& J_{N}\left(x_{N}\right)=\alpha^{N} g_{N}\left(x_{N}\right) \Leftrightarrow \underbrace{J_{N}\left(x_{N}\right) \cdot \alpha^{-N}}_{=: V_{N}\left(x_{N}\right)}=g_{N}\left(x_{N}\right) \\
& J_{k}\left(x_{k}\right)=\min _{u_{k} \in U_{k}\left(x_{k}\right)} \underset{w_{k}}{\mathrm{E}}\left(\alpha^{k} g_{k}\left(x_{k}, u_{k}, w_{k}\right)+J_{k+1}\left(f_{k}\left(x_{k}, u_{k}, w_{k}\right)\right)\right) \\
& \Leftrightarrow \quad J_{k}\left(x_{k}\right) \cdot \alpha^{-k}=\min _{u_{k}} \underset{w_{k}}{\mathrm{E}}\left(g_{k}\left(x_{k}, u_{k}, w_{k}\right)+\alpha^{-k} J_{k+1}\left(f_{k}\left(x_{k}, u_{k}, w_{k}\right)\right)\right) \\
& \Leftrightarrow \quad \underbrace{J_{k}\left(x_{k}\right) \cdot \alpha^{-k}}_{V_{k}\left(x_{k}\right)}=\min _{u_{k}} \underset{w_{k}}{\mathrm{E}}(g_{k}\left(x_{k}, u_{k}, w_{k}\right)+\alpha \cdot \underbrace{J_{k+1}\left(x_{k+1}\right) \cdot \alpha^{-(k+1)}}_{V_{k+1}\left(x_{k+1}\right)})
\end{aligned}
$$

In general, defining $V_{k}\left(x_{k}\right):=J_{k}\left(x_{k}\right) \cdot \alpha^{-k}$, yields

$$
\begin{aligned}
V_{N}\left(x_{N}\right) & =g_{N}\left(x_{N}\right) \\
V_{k}\left(x_{k}\right) & =\min _{u_{k}} \underset{w_{k}}{\mathrm{E}}\left(g_{k}\left(x_{k}, u_{k}, w_{k}\right)+\alpha \cdot V_{k+1}\left(f_{k}\left(x_{k}, u_{k}, w_{k}\right)\right)\right)
\end{aligned}
$$

Problem 4 (Solution)

a) Proof. Definitions:

$$
\begin{aligned}
& \pi^{k}:=\left\{\mu_{k}, \mu_{k+1}, \ldots, \mu_{N-1}\right\} \\
& J_{k}^{*}\left(x_{k}\right):=\min _{\pi^{k}} \underset{i=k, \ldots, N-1}{\mathrm{E}} \underset{i}{\mathrm{E}}\left(\exp \left(g_{N}\left(x_{N}\right)+\sum_{i=k}^{N-1} g_{i}\left(x_{i}, \mu_{i}, w_{i}\right)\right)\right) \\
& J_{N}^{*}\left(x_{N}\right):=\exp \left(g_{N}\left(x_{N}\right)\right)
\end{aligned}
$$

Show by induction that J_{k}^{*} are equal to J_{k}, i.e. for $k=0$ we obtain desired result.

Start:

$$
k=N \quad \rightarrow \quad J_{N}^{*}\left(x_{N}\right)=\exp \left(g_{N}\left(x_{N}\right)\right)=J_{N}\left(x_{N}\right) \text { (by definition) }
$$

Hypothesis: Assume, for k and all x_{k+1}, we have $J_{k+1}^{*}\left(x_{k+1}\right)=J_{k+1}\left(x_{k+1}\right)$.
Step: Since $\pi^{k}=\left\{\mu_{k}, \pi^{k+1}\right\}, \forall x_{k}$

$$
J_{k}^{*}\left(x_{k}\right)=\min _{\pi^{k}} \underset{\substack{w_{i} \\ i=k, \ldots, N-1}}{\mathrm{E}}\left(\exp \left(g_{N}\left(x_{N}\right)+\sum_{i=k+1}^{N-1} g_{i}\left(x_{i}, \mu_{i}, w_{i}\right)+g_{k}\left(x_{k}, \mu_{k}, w_{k}\right)\right)\right)
$$

\Downarrow Principle of Optimality argument

$$
=\min _{\mu^{k}} \underset{w_{k}}{\mathrm{E}}\left(\exp \left(g_{k}\left(x_{k}, \mu_{k}, w_{k}\right)\right) .\right.
$$

$$
\left.\min _{\pi^{k+1}} \underset{\substack{w_{i} \\ i=k+1, \ldots, N-1}}{\mathrm{E}}\left(\exp \left(g_{N}\left(x_{N}\right)+\sum_{i=k+1}^{N-1} g_{i}\left(x_{i}, \mu_{i}, w_{i}\right)\right)\right)\right)
$$

$$
=\min _{\mu^{k}} \underset{w_{k}}{\mathrm{E}}\left(\exp \left(g_{k}\left(x_{k}, \mu_{k}, w_{k}\right)\right) \cdot J_{k+1}^{*}\left(x_{k+1}\right)\right)
$$

$$
=\min _{u_{k} \in U_{k}} \underset{w_{k}}{\mathrm{E}}\left(J_{k+1}\left(x_{k+1}\right) \cdot \exp \left(g_{k}\left(x_{k}, u_{k}, w_{k}\right)\right)\right)=J_{k}\left(x_{k}\right)
$$

b) Definitions

$$
\begin{aligned}
g_{k} & =g_{k}\left(x_{k}, u_{k}\right) \\
V_{k}\left(x_{k}\right): & =\ln J_{k}\left(x_{k}\right) .
\end{aligned}
$$

Proof.

$$
\begin{aligned}
V_{N}\left(x_{N}\right) & =\ln J_{N}\left(x_{N}\right)=\ln \left(\exp \left(g_{N}\left(x_{N}\right)\right)\right)=g_{N}\left(x_{N}\right) \\
V_{k}\left(x_{k}\right) & =\ln J_{k}\left(x_{k}\right) \\
& =\ln \left(\min _{u_{k} \in U_{k}} \underset{w_{k}}{\mathrm{E}}\left(J_{k+1}\left(x_{k+1}\right) \cdot \exp \left(g_{k}\left(x_{k}, u_{k}\right)\right)\right)\right) \\
& \Downarrow * \\
& =\min _{u_{k} \in U_{k}} \ln \left(\exp \left(g_{k}\left(x_{k}, u_{k}\right)\right) \underset{w_{k}}{\mathrm{E}}\left(J_{k+1}\left(x_{k+1}\right)\right)\right) \\
& =\min _{u_{k} \in U_{k}}\left(g_{k}\left(x_{k}, u_{k}\right)+\ln \left(\underset{w_{k}}{\mathrm{E}}\left(J_{k+1}\left(x_{k+1}\right)\right)\right)\right) \\
& =\min _{u_{k} \in U_{k}}\left(g_{k}\left(x_{k}, u_{k}\right)+\ln \underset{w_{k}}{\mathrm{E}}\left(J_{k+1}\left(f_{k}\left(x_{k}, u_{k}, w_{k}\right)\right)\right)\right)
\end{aligned}
$$

* Interchange of $l n$ and \min is admissible since $l n$ is monotonically increasing for positive arguments.

Problem 5 (Solution)

Augment the state space by state \bar{x} :

$$
\bar{x}_{k}= \begin{cases}1 & \text { the process has not been terminated at } 0, \ldots, k-1 \\ 0 & \text { otherwise }\end{cases}
$$

With this, the system equation reads:

$$
\widetilde{x}_{k+1}:=\left[\begin{array}{l}
x_{k+1} \\
\bar{x}_{k+1}
\end{array}\right]=\left[\begin{array}{l}
x_{k+1}=f_{k}\left(x_{k}, u_{k}, w_{k}\right) \\
\bar{x}_{k+1}=\left\{\begin{array}{ll}
0 & \text { if } \bar{x}_{k}=0 \vee u_{k}=\bar{u}_{k} \vee w_{k}=\bar{w}_{k} \\
1 & \text { otherwise }
\end{array}\right],
\end{array}\right.
$$

where \bar{u}_{k} : termination decision
\bar{w}_{k} : termination disturbance.

The cost function reads:

$$
\widetilde{g}_{k}\left(\widetilde{x}_{k}, u_{k}, w_{k}\right)= \begin{cases}g_{k}\left(x_{k}, u_{k}, w_{k}\right)+T & \text { if }\left(u_{k}=\bar{u}_{k} \vee w_{k}=\bar{w}_{k}\right) \wedge \bar{x}_{k}=1 \\ \bar{x}_{k} \cdot g_{k}\left(x_{k}, u_{k}, w_{k}\right) & \text { otherwise }\end{cases}
$$

The total cost is

$$
\sum_{k=0}^{N} \widetilde{g}_{k}\left(\widetilde{x}_{k}, u_{k}, w_{k}\right)
$$

with $g_{N}\left(x_{N}, u_{N}, w_{N}\right)=g_{N}\left(x_{N}\right)$.

Problem 6 (Solution)

a) Formulate DP algorithm

- Let state x_{k} denote the angle on the circle specifying the location of the k-th point.
- Without loss of generality, we set $x_{0}=0$. Furthermore, $x_{k} \in[0,2 \pi) \quad \forall k=1, \ldots, N$.
- Let u_{k} be the difference between x_{k+1} and x_{k}.
- Thus the update equation reads:

$$
\begin{equation*}
x_{k+1}=x_{k}+u_{k}, \text { with } x_{0}=0, x_{N}<2 \pi, u_{k}>0 \quad \forall k=1, \ldots, N-1 . \tag{1}
\end{equation*}
$$

- The length l of the line joining x_{k+1} and x_{k} is

$$
\sin \left(\frac{u_{k}}{2}\right)=\frac{l}{2 r} \quad \Leftrightarrow \quad l=2 r \sin \left(\frac{u_{k}}{2}\right),
$$

where r denotes the radius of the circle.

- The length of the last segment joining x_{N} and x_{0} is

$$
2 r \sin \left(\frac{2 \pi-x_{N}}{2}\right)=2 r \sin \left(\pi-\frac{x_{N}}{2}\right)=2 r \sin \left(\frac{x_{N}}{2}\right),
$$

where we used

$$
\left.\begin{array}{c}
\sin (x-\pi)=-\sin (x) \tag{2}\\
\sin (+x)=-\sin (-x)
\end{array}\right\} \quad \sin (-x+\pi)=\sin (x) .
$$

- Defining

$$
\begin{aligned}
g_{N}\left(x_{N}\right) & :=2 r \sin \left(\frac{x_{N}}{2}\right) \\
g_{k}\left(u_{k}\right) & :=2 r \sin \left(\frac{u_{k}}{2}\right)
\end{aligned}
$$

the Dynamic Programming Problem is given by (1) and the objective to maximize the perimeter

$$
\begin{equation*}
\max _{\pi}\left[g_{N}\left(x_{N}\right)+\sum_{k=0}^{N-1} g_{k}\left(u_{k}\right)\right] . \tag{3}
\end{equation*}
$$

b) Apply the DPA:

- Stage $k=N$:

$$
J_{N}\left(x_{N}\right)=g_{N}\left(x_{N}\right)=2 r \sin \left(\frac{x_{N}}{2}\right)
$$

- Stage $k=N-1$:

$$
\begin{aligned}
J_{N-1}\left(x_{N-1}\right) & =\max _{u_{N-1}}\left[g_{N-1}\left(u_{N-1}\right)+J_{N}\left(x_{N-1}+u_{N-1}\right)\right] \\
& =2 r \max _{u_{N-1}>0}\left[\sin \left(\frac{u_{N-1}}{2}\right)+\sin \left(\frac{x_{N-1}+u_{N-1}}{2}\right)\right]
\end{aligned}
$$

differentiate with respect to u_{N-1} and set to zero:

$$
\frac{1}{2} \cos \left(\frac{u_{N-1}}{2}\right)+\frac{1}{2} \cos \left(\frac{x_{N-1}+u_{N-1}}{2}\right)=0
$$

A sufficient condition for optimality is

$$
\begin{aligned}
& \frac{u_{N-1}}{2}=-\frac{x_{N-1}+u_{N-1}}{2}+\pi \\
& u_{N-1}=\pi-\frac{x_{N-1}}{2}
\end{aligned}
$$

One can show graphically that this is indeed the maximum.

Plug this into $J_{N-1}\left(x_{N-1}\right)$:

$$
\begin{aligned}
J_{N-1}\left(x_{N-1}\right) & =2 r\left[\sin \left(\frac{\pi}{2}-\frac{x_{N-1}}{4}\right)+\sin \left(\frac{x_{N-1}}{2}+\frac{\pi}{2}-\frac{x_{N-1}}{4}\right)\right] \\
& =\underline{4 r \sin \left(\frac{\pi}{2}-\frac{x_{N-1}}{4}\right)}
\end{aligned}
$$

- Stage $k=N-2$:

$$
\begin{aligned}
J_{N-2}\left(x_{N-2}\right) & =\max \left[2 r \sin \left(\frac{u_{N-2}}{2}\right)+J_{N-1}\left(x_{N-2}+u_{N-2}\right)\right] \\
& =2 r \max \left[\sin \left(\frac{u_{N-2}}{2}\right)+2 \sin \left(\frac{\pi}{2}-\frac{x_{N-2}}{4}-\frac{u_{N-2}}{4}\right)\right]
\end{aligned}
$$

differentiate, set to 0 :

$$
\frac{1}{2} \cos \left(\frac{u_{N-2}}{2}\right)-\frac{1}{2} \cos \left(\frac{\pi}{2}-\frac{x_{N-2}}{4}-\frac{u_{N-2}}{4}\right)=0
$$

sufficient condition:

$$
u_{N-2}=\underline{\frac{2 \pi}{3}-\frac{x_{N-2}}{3}}
$$

plug in into $J_{N-2}\left(x_{N-2}\right)$:

$$
J_{N-2}\left(x_{N-2}\right)=6 r \sin \left(\frac{\pi}{3}-\frac{x_{N-2}}{6}\right)
$$

- From the first two iterations, we guess the general form:

$$
\begin{align*}
J_{N-k}\left(x_{N-k}\right) & =2(k+1) \cdot r \sin \left(\frac{\pi}{k+1}-\frac{x_{N-k}}{2(k+1)}\right) \tag{4}\\
u_{N-k} & =\frac{2 \pi}{k+1}-\frac{x_{N-k}}{k+1} \tag{5}
\end{align*}
$$

We prove by induction that this is indeed the solution.
Proof. (by induction)

- We have shown that (4), (5) are true for $k=0,1,2$.
- Assume that (4), (5) are true for k; show that (4), (5) are true for $k+1$,

$$
\begin{aligned}
& J_{N-k-1}\left(x_{N-k-1}\right) \\
& =\max _{u_{N-k-1}}\left[2 r \sin \left(\frac{u_{N-(k+1)}}{2}\right)+J_{N-k}\left(x_{N-k}\right)\right] \\
& \Downarrow \text { Induction hypothesis } \\
& =2 r \max _{u_{N-k-1}}\left[\sin \left(\frac{u_{N-k-1}}{2}\right)+(k+1) \sin \left(\frac{\pi}{k+1}-\frac{x_{N-k}}{2(k+1)}\right)\right] \\
& =2 r \max _{u_{N-k-1}}\left[\sin \left(\frac{u_{N-k-1}}{2}\right)+(k+1) \sin \left(\frac{\pi}{k+1}-\frac{x_{N-k-1}+u_{N-k-1}}{2(k+1)}\right)\right]
\end{aligned}
$$

differentiate, set to 0 , solve for u_{N-k-1} :

$$
u_{N-k-1}=\frac{2 \pi}{k+2}-\frac{x_{N-k-1}}{k+2}
$$

plug into J_{N-k-1} :

$$
J_{N-k-1}\left(x_{N-k-1}\right)=2 r(k+2) \sin \left(\frac{\pi}{k+2}-\frac{x_{N-k-1}}{2(k+2)}\right)
$$

In particular, for $k=N$, we have

$$
\begin{aligned}
J_{N-N}\left(x_{N-N}\right)=J_{0}\left(x_{0}\right) & =2(N+1) \cdot r \cdot \sin \left(\frac{\pi}{N+1}-\frac{x_{0}}{2(N+1)}\right) \\
& =2 r(N+1) \sin \left(\frac{\pi}{N+1}\right),
\end{aligned}
$$

which is the perimeter of a $(N+1)$-side polygon and

$$
u_{0}=\frac{2 \pi}{N+1} \quad, \quad x_{0}=0
$$

It still needs to be shown that $u_{k}=u_{0}=\frac{2 \pi}{N+1} \forall k=0, \ldots, N-1$, i.e. all segments are the same length.

Conjecture:

$$
x_{k}=\frac{k \cdot 2 \pi}{N+1} \quad u_{k}=\frac{2 \pi}{N+1}
$$

Proof. (by induction)

- Conjecture is true for $k=0$.
- Assume true for some k, show that true for $k+1$:

$$
\begin{aligned}
& x_{k+1} \stackrel{(1)}{=} x_{k}+u_{k}=\frac{k \cdot 2 \pi}{N+1}+\frac{2 \pi}{N+1}=\frac{(k+1) \cdot 2 \pi}{N+1} \\
& u_{k+1} \stackrel{(5)}{=} \frac{2 \pi}{(N-(k+1))+1}-\frac{x_{N-(N-(k+1))}^{(N-(k+1))+1}}{} \\
& \quad=\frac{2 \pi}{N+1}
\end{aligned}
$$

\rightarrow All side lengths are the same, $\frac{2 \pi}{N+1}$, thus the $(N+1)$-side polygon is regular.

