
Final Exam January 28th, 2010

Dynamic Programming & Optimal Control (151-0563-00) Prof. R. D’Andrea

Solutions

Exam Duration: 150 minutes

Number of Problems: 4

Permitted aids: One A4 sheet of paper.

Use only the provided sheets for your solutions.

Page 2 Final Exam – Dynamic Programming & Optimal Control

Problem 1 25%

Consider the dynamic system
xk+1 = xk + uk ,

where the state is constrained to be in the range −1 ≤ xk ≤ 3 and the input uk is restricted to
be 1 or −1.

Given the initial state x0 = 1, the goal is to minimize the cost

E
w0,w1

{
1∑

k=0

(xk + uk + wk)
2

}
.

The disturbance wk takes the values 0 and 1. If xk ̸= 0, both values have equal probability. If
xk = 0, the disturbance wk is 0 with probability 1.

Apply the Dynamic Programming algorithm to find the optimal control policy and the optimal
cost J0(1).

Final Exam – Dynamic Programming & Optimal Control Page 3

Solution 1

The optimal control problem is considered over a time horizon N = 2 and the cost, to be
minimized, is defined by

g2(x2) = 0 and gk(xk, uk, wk) = (xk + uk + wk)
2 , k = 0, 1.

Note that the state xk takes on only integer values since wk ∈ {0, 1} , uk ∈ {−1, 1}, and x0 = 1.

The DP algorithm proceeds as follows:

2nd stage:

The initial condition for the Dynamic Programming recursion is

J2(x2) = 0

for all feasible x2 ∈ {−1, 0, 1, 2, 3}.

1st stage:

Proceeding backwards, we get:

J1(x1) = min
u1∈{−1, 1}

E
w1

{
(x1 + u1 + w1)

2 + J2
(
x2

)}
= min

u1∈{−1, 1}
E
w1

{
(x1 + u1 + w1)

2
}
.

Given the initial condition x0 = 1 and the input constraint u1 ∈ {−1, 1}, we know from the
deterministic dynamic relationship, x1 = x0+u0, that x1 ∈ {0, 2}. That is, only the two values,
J1(0) and J1(2), need to be considered:

J1(0) = min
u1∈{−1, 1}

[
0 · (0 + u1 + 1)2 + 1 · (0 + u1 + 0)2

]
= 1 , with µ∗

1(0) = 1,−1 .

J1(2) = min
u1∈{−1, 1}

[
0.5 · (2 + u1 + 1)2 + 0.5 · (2 + u1 + 0)2

}
= min [2 + 0.5 , 8 + 4.5]

= 2.5 , with µ∗
1(2) = −1 .

0th stage:

Finally, the optimal cost is calculated for the initial condition x0 = 1:

J0(1) = min
u0∈{−1, 1}

E
w0

{
(1 + u0 + w0)

2 + J1
(
x1

)}
= min

u0∈{−1, 1}

[
E
w0

{
(1 + u0 + w0)

2
}
+ J1

(
1 + u0

)]
.

= min
u1∈{−1, 1}

[
0.5 · (1 + u0 + 1)2 + 0.5 · (1 + u0 + 0)2 + J1

(
1 + u0

)]
= min [0.5 + 0 + 1 , 4.5 + 2 + 2.5]

= 1.5 , with µ∗
0(1) = −1 .

Page 4 Final Exam – Dynamic Programming & Optimal Control

To sum up, the optimal (expected) cost is J0(1) = 1.5 and the optimal policy is to choose −1
at stage 0, whereas both input values, −1 and 1, lead to the same cost in stage 1.

Final Exam – Dynamic Programming & Optimal Control Page 5

Problem 2 25%

2

S

1

4 5

3

6

T2
7

2

1

3

2

2

2

1

Figure 1

a) Find the shortest path from node S to node T for the graph given in Figure 1. Apply the
Label Correcting Method. Use Best-First Search to determine at each iteration which node
to remove from OPEN; that is, remove node i with

di = min
j in OPEN

dj ,

where the variable di denotes the length of the shortest path from node S to node i that
has been found so far.

Solve the problem by populating a table of the form given in Table 1. State the resulting
shortest path and its length.

Iteration Node exiting OPEN OPEN dS d1 d2 d3 d4 d5 d6 dT
0 - ...
...

Table 1

b) Assume the graph in Figure 1 originates from the map shown in Figure 2, where again the
problem is to find the shortest path from node S to node T .

Traveling is only possible along the x- and y-axis, and the travel cost per unit distance is
at least 1. Therefore, a lower bound on the cost to go from node i to node T is given by

li = |3− xi|+ |3− yi|, (1)

where (xi, yi) are the coordinates of node i.

Use the lower bound (1) to strengthen the condition on whether a node enters OPEN (this
is known as the A∗ algorithm). Use Best-First Search to determine at each iteration which
node to remove from OPEN. Solve the problem by populating a table of the form given in
Table 1.

Page 6 Final Exam – Dynamic Programming & Optimal Control

2

S 2

4 5

3 6 T

1

possible path

i node i

obstacle

3

2

2 1

2

2

1

7

1 2 3

0

1

2

3

0

x

y

Figure 2

Final Exam – Dynamic Programming & Optimal Control Page 7

Solution 2

a) For the first part, the (standard) Label Correcting method is applied: at each iteration
the condition

di + aij < dT

is used to decide if the node j enters the OPEN list.

Iteration Node exiting OPEN OPEN dS d1 d2 d3 d4 d5 d6 dT

0 – S 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
1 S 1,2 0 2 1 ∞ ∞ ∞ ∞ ∞
2 2 1 0 2 1 ∞ ∞ ∞ ∞ 8

3 1 3,4 0 2 1 4 5 ∞ ∞ 8

4 3 4,6 0 2 1 4 5 ∞ 6 8

5 4 6,5 0 2 1 4 5 7 6 8

6 6 5 0 2 1 4 5 7 6 7

7 5 – 0 2 1 4 5 7 6 7

The shortest path is S → 1 → 3 → 6 → T with a total length of 7.

b) The extra information, the lower bound li on the cost to go from state i to T , can be used
to strengthen the condition on whether a node enters the OPEN bin:

di + aij + lj < dT ,

which is known as the A∗ algorithm. With this stricter condition, the state 4 and 5 can
be excluded and do not enter OPEN.

Iteration Node exiting OPEN OPEN dS d1 d2 d3 d4 d5 d6 dT

0 – S 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
1 S 1,2 0 2 1 ∞ ∞ ∞ ∞ ∞
2 2 1 0 2 1 ∞ ∞ ∞ ∞ 8

3 1 3 0 2 1 4 ∞ ∞ ∞ 8

4 3 6 0 2 1 4 ∞ ∞ 6 8

5 6 – 0 2 1 4 ∞ ∞ 6 7

Page 8 Final Exam – Dynamic Programming & Optimal Control

Problem 3 25%

t = T

u

z = 0 z = 0
ż = 0 ż = 1

t = 0

Figure 3

At time t = 0, a unit mass is at rest at location z = 0. The mass is on a frictionless surface and
it is desired to apply a force u(t), 0 ≤ t ≤ T , such that at time t = T the mass is at the same
location z = 0, but with unit velocity ż = 1. The force is constrained by −1 ≤ u(t) ≤ 1. The
objective is to perform the maneuver in minimum time.

The dynamics are given by

z̈(t) = u(t), 0 ≤ t ≤ T,

with initial and terminal conditions:

z(0) = 0, ż(0) = 0,

z(T) = 0, ż(T) = 1.

Find the optimal input u(t) that minimizes the terminal time T ,

T =

∫ T

0
1 dt.

State the minimizing input u∗(t) and the minimum time T ∗.

Final Exam – Dynamic Programming & Optimal Control Page 9

Solution 3

Introducing the state vector

x(t) =

[
x1(t)
x2(t)

]
=

[
z(t)
ż(t)

]
,

the dynamics read [
ẋ1(t)
ẋ2(t)

]
=

[
x2(t)
u(t)

]

with initial and terminal conditions,

x1(0) = 0, x2(0) = 0,

x1(T) = 0, x2(T) = 1.

We apply the Minimum Principle.

• The Hamiltonian is given by

H(x, u, p) = g(x, u) + pT f(x, u)

= 1 + p1x2 + p2u.

• The adjoint equations

ṗ1(t) = 0

ṗ2(t) = −p1(t)

are integrated and result in the following equations for the co-states:

p1(t) = c1, c1 constant

p2(t) = −c1t+ c2, c2 constant.

• The optimal input u∗(t) is obtained by minimizing the Hamiltonian along the optimal
trajectory

u∗(t) = arg min
−1≤u≤1

(
1 + p1x

∗
2 + p2u

)
.

Since the Hamiltonian is linear in u, the minimum is attained on the boundaries of the
control space C = [−1, 1]. (The solution is thus called a bang-bang solution.) In particular,

u∗(t) =


−1 if p2(t) > 0

1 if p2(t) < 0

undefined if p2(t) = 0.

It remains to compute the switching conditions using knowledge about the co-states and
initial and terminal conditions.

Page 10 Final Exam – Dynamic Programming & Optimal Control

• Since p2(t) is affine-linear in t, p2(t) has at most one zero crossing. Therefore the input
u∗(t) switches at most once. From physical intuition, it is clear that the mass has to
decelerate first (z̈ < 0) and then (after the switch) accelerate (z̈ > 0) so that it can end up
at the same location as before with a positive velocity.1 Therefore, we will integrate the
system equation with input u(t) = −1 for 0 ≤ t < τ , where τ is the switching time to be
determined, and u(t) = 1 for τ < t ≤ T . We will then use initial and terminal conditions
on x to determine the switching time τ and the terminal time T .

• For 0 ≤ t ≤ τ ,

ẋ2 = −1 ⇒ x2(t) = −t+ c3, c3 constant,

ẋ1 = x2 = −t+ c3 ⇒ x1(t) = −1
2 t

2 + c3t+ c4, c4 constant.

Using x1(0) = x2(0) = 0, it follows that c3 and c4 are both 0. At the switching time τ the
states are thus

x1(τ) = −1
2τ

2 and x2(τ) = −τ. (2)

For τ ≤ t ≤ T ,

ẋ2 = 1 ⇒ x2(t) = t+ c5, c5 constant, (3)

ẋ1 = x2 = t+ c5 ⇒ x1(t) =
1
2 t

2 + c5t+ c6, c6 constant. (4)

To ensure continuity of the states x (a discontinuity in position or velocity would not make
physical sense), we require that the equations (3), (4) satisfy (2). It follows that c5 = −2τ
and c6 = τ2. Furthermore, at time T , the terminal conditions x1(T) = 0 and x2(T) = 1
need to be satisfied, i. e.

x2(T) = T − 2τ = 1 (5)

x1(T) =
1
2T

2 − 2τT + τ2 = 0. (6)

Solving (5) for τ and inserting this in (6), we obtain a quadratic equation for T

1
2T

2 − 2
(
−1

2 + T
2

)
T +

(
−1

2 + T
2

)2
= 0

T 2 − 2T − 1 = 0,

which is solved by
T = 1±

√
2.

Since T > 0, the minimum terminal time is T ∗ = 1 +
√
2. Using (5), we obtain the

switching time τ =
√
2
2 , and thus, the optimal input

u∗(t) =

{
−1 if 0 ≤ t <

√
2
2

1 if
√
2
2 ≤ t < 1 +

√
2.

1Without this physical interpretation one could alternatively integrate the system equation with u = c for
0 ≤ t < τ , where c = ±1, and with u = −c for τ < t ≤ T . One will then find that c = −1 is the only solution
satisfying τ ≤ T .

Final Exam – Dynamic Programming & Optimal Control Page 11

Problem 4 25%

Consider the following two-player game, played around a table with four corners. One player,
the so-called pursuer, is attempting to catch the other player, called evader. The game evolves
in stages where, in each stage, both players implement actions simultaneously. In each stage, the
evader randomly moves one corner clockwise with probability p, one corner counter-clockwise
with probability p, or stays where he is with probability (1 − 2p), p < 0.5 . In the situation
when the players are across from one another (see Figure 4(a)), the pursuer has the option to
stay where he is, move one corner clockwise, or move one corner counter-clockwise. When the
two players are adjacent to one another (see Figure 4(b)), again, the pursuer decides whether
to stay where he is, move toward the other’s current location, or move away from the other’s
current location. The pursuer catches the evader only by arranging to land on the same side
of the table as the evader at the end of a period. (The possibility exists that, when they are
adjacent, they can both move toward each other’s current location. This does not result in the
evader being caught in “mid-air”.)

The pursuer’s objective is to capture the evader in minimum expected time. The game ends
when the evader is caught. (There is no cost involved for moving around the table.)

(a) Across from one another. (b) Adjacent to one another.

Figure 4: Table with the two players.

Formulate the problem as a stochastic shortest path problem:

xk+1 = wk, k = 0, 1, . . . ,

with xk, wk ∈ S, uk ∈ U(xk) and transition probabilities pij(u) = P (wk = j |xk = i, uk = u),
where the objective is to minimize

lim
N→∞

E

{
N−1∑
k=0

g(xk, uk)

}
.

That is, define the set of states S, the control sets U(xk), the corresponding transition proba-
bilities pij(u), and the stage costs g(xk, uk). Explain your steps. You do not have to solve
the problem.

Hint: Try to use as few states as possible.

Page 12 Final Exam – Dynamic Programming & Optimal Control

Solution 4

Set of states:
S = {0, 1, 2} ,

where 0 represents the termination state ’evader caught’, 1 stands for ’players adjacent to one
another’, and 2 is ’players across from one another’.

Set of control sets:

U(1) = {0, 1, 2} ,
U(2) = {0, 1} .

Different input sets are defined for the two situations: adjacent and across from one another. If
the two players are adjacent to one another, there are three options: 0 which means ’not move’,
1 which denotes ’move towards evader’, and 2 which is ’move away from evader’. If the two
players are across from each other, we only have the input values 0 or 1. The input set U(0) is
not relevant for the problem solution and could be anything.

Transition probabilities:

p10(0) = p ,

p10(1) = 1− 2p ,

p10(2) = 0 ,

p11(0) = 1− 2p ,

p11(1) = 2p ,

p11(2) = 2p ,

p12(0) = p ,

p12(1) = 0 ,

p12(2) = 1− 2p ,

p20(0) = 0 ,

p20(1) = p ,

p21(0) = 2p ,

p21(1) = 1− 2p ,

p22(0) = 1− 2p ,

p22(1) = p ,

and the probability of staying in the termination state is p00(u) = 1 , ∀u ∈ U(0). All other
probabilities are zero.

Cost:

g(i, u) = c > 0 i = 1, 2 , u ∈ U(i) ,

g(i, u) = 0 i = 0 , u ∈ U(0) .

Since the goal is to minimize the expected time for the pursuer to catch the evader, c can be
any constant positive value but, for simplicity, might be chosen to be 1. As soon as the evader
is caught, we assume zero cost to get a well-defined problem with finite overall cost.

