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“Design a Linear Quadratic Regulator (LQR) for the Sideways Motion of a
Quadrocopter!”

For our quadrocopter, see Figure 1(a), which is currently executing first maneuvers in the ’Flying
Machine Arena’ in ML hall, a controller is to be designed with the goal of performing fast
sideways motions.

(a) Picture of the real quadrocopter. (b) Schematic of the 2D model.

Figure 1: The Quadrocopter.

The controller design is based on a 2D model of the quadrocopter illustrated in Figure 1(b):

ÿ(t) = −a(t) sin (θ (t))

z̈(t) = a(t) cos (θ (t)) − g

θ̈(t) = q(t),

where a(t) and u(t) represent the control inputs to the system. The gravitational constant is
approximated by [10 m/s2]. The position variables y(t) and z(t) have units of [m], θ is given in
[rad], and the inputs a(t) and u(t) are in [m/s2] and [rad/s2], respectively.

Only concentrating on the horizontal control, the input a(t) is set to

a(t) =
10

cos (θ(t))
,

resulting in z̈(t) = 0 and the simplified dynamics

ÿ(t) = −10 tan (θ (t)) (1)

θ̈(t) = q(t). (2)



1. Linearize Equations (1),(2) about θ = 0.

We will control the system with a digital computer. Let τ be the sampling period and
define time-discrete states as follows

x1(k) = y(kτ)

x2(k) = ẏ(kτ)

x3(k) = θ(kτ)

x4(k) = θ̇(kτ), k = 0, 1, 2, . . .

Find an linear, time-discrete expression

x(k + 1) = Ax(k) + Bu(k),

of the quadrocopter dynamics with x(k) = [x1(k), x2(k), x3(k), x4(k)]T and q(t) = u(k)
for kτ ≤ t ≤ (k + 1)τ .

2. Our objective is to design an infinite horizon LQR controller that brings the system from
the initial state,

y(0) = 1, ẏ(0) = θ(0) = θ̇(0) = 0,

to the final state,

y(T ) = ẏ(T ) = θ(T ) = θ̇(t) = 0,

for a value T as small as possible.

In particular, we want to find a gain matrix F , such that, for u(k) = Fx(k) and the initial
condition x(0) = [1, 0, 0, 0]T ,

x(k) → 0 for k → ∞.

In addition, we have constraints on the input u(k),

|u(k)| = |q(kτ)| ≤ 100, ∀ k,

since the vehicle is limited in how quickly it can rotate. Furthermore, the angle x3(k) is
constrained by

|x3(k)| = |θ(kτ)| ≤
π

6
, ∀ k,

guaranteeing that the linearization is reasonably accurate and also that a(t) =
10/ (cos (θ(t))) is feasible. Finally, our sampling period is τ = 1/50.

By appropriately choosing the matrices Q and R and using the dare function in Matlab,
find a feedback control strategy u(k) = Fx(k), which brings the system to within

|xi(k)| ≤ 0.01, i = 1, 2, 3, 4, (3)

as quickly as possible while satisfying the constraints.1

This will be an iterative process and numerical in nature. In particular, there is no direct
way to capture the constraints in the LQR design or to minimize the time, it takes to get
within a tolerance of the destination.

1Note that the time T , to be minimized, corresponds to the time, at which conditions (3) are fulfilled for the
first time.



You will have to find the solution iteratively by modifying the matrices Q and R based on
your simulation results.

Please hand in a short description of your solution strategy, your well-commented Matlab

code, and, of course, the set of best parameters Q, R and the resulting F and T . Include

plots showing the performance of your quadrocopter.

3. Using the results from Exercise 2 as a starting point, develop, how much you can improve
your design by using a finite horizon LQR controller.

Show your improvements by plots and explain how you got your solution. Also attach your

Matlab code. What is your best choice for Qk, Rk and your minimum time T?

“Who can do best?”

And this is what Prof. D’Andrea got:
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(a) The input.
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(b) The state trajectories.

Figure 2: Results for the infinite horizon LQR controller.
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(a) The input.
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(b) The state trajectories.

Figure 3: Results for the finite horizon LQR controller.



4. BERTSEKAS, p. 211, exercise 4.22

5. BERTSEKAS, p. 212, exercise 4.23

Exercises 4 to 5 are taken from the book Dynamic Programming and Optimal Control by Dimitri

P. Bertsekas, Vol. I, 3rd edition, 2005, 558 pages, hardcover.


