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Abstract

This paper describes a computationally inexpensive, yet high performance trajectory generation algorithm for omnidi-
rectional vehicles. It is shown that the associated non-linear control problem can be made tractable by restricting the set of
admissible control functions. The resulting problem is linear with coupled control efforts and a near-optimal control strategy is
shown to be piecewise constant (bang–bang type). A very favorable trade-off between optimality and computational efficiency
is achieved. The proposed algorithm is based on a small number of evaluations of simple closed-form expressions and is thus
extremely efficient. The low computational cost makes this method ideal for path planning in dynamic environments.
© 2003 Published by Elsevier B.V.
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1. Introduction

Omnidirectional vehicles provide superior maneuvering capability compared to the more common car-like ve-
hicles. The ability to move along any direction, irrespective of the orientation of the vehicle, makes it an attractive
option in dynamic environments. The annual RoboCup competition, where teams of fully autonomous robots engage
in soccer matches, is an example of where omnidirectional vehicles have been used in computationally intensive,
dynamic environments[1,4,11,19].

Most papers on trajectory control of omnidirectional vehicles have dealt with relatively static environments
[10,13]; the trajectory control is essentially performed by first building a geometric path and then by using feedback
control to track the path. This strategy is effective when reaching the goal without collisions is much more important
than time-optimality. In fast paced environments, however, the dynamic capabilities of the vehicles must be taken
into account. Muñoz et al.[14] presented methods for planning mobile robot trajectories by considering kinematic
and dynamic constraints on the motion of the vehicle. Fiorini and Shiller[8] reformulated the problem of obstacle
avoidance subject to the robot’s dynamics and actuator constraints as an optimization problem, and solved it
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numerically using the steepest descent method. Faiz and Agrawal[6] recently proposed a trajectory planning
scheme that takes the dynamics of the system into account, as well as inequality constraints. Watanabe et al.[20]
demonstrated that with a resolved-acceleration type feedback full omnidirectionality can be achieved with decoupled
rotational and translational motion. A novel trajectory generation method based on a time-scaled artificial potential
field was put forth by Tanaka et al.[18].

The objective of this paper is to establish a real-time control strategy that will move the robot to a given location,
with zero final velocity, as quickly as possible, based on measurements of the vehicle position and orientation. The
results of this paper can then be used as a basis for real-time trajectory generation in dynamic environments. The
success of the Cornell RoboCup team is partly due to the effectiveness of the proposed algorithm[4]. The organization
of the paper is as follows.Section 2describes the kinematic and dynamic model of the omnidirectional vehicle.
Section 3shows that the translational and rotational degrees of freedom (DOF) of the vehicle can be independently
controlled by imposing constraints on the control efforts.Section 4describes the construction of one-dimensional
minimum time and fixed-time trajectories as well as the solution to the relaxed trajectory generation problem.
Simulations are presented inSection 5. The paper ends with some concluding remarks inSection 6.

2. Kinematic and dynamic modeling of the omnidirectional vehicle

The omnidirectional drive consists of three sets of wheel assemblies equally spaced at 120 degrees from one
another (seeFig. 1). Each of the wheel assembly consists of a pair of ‘orthogonal wheels’[16] with an active (the
propelling direction of the actuator) and a passive (free-wheeling) direction which are orthogonal to each other. The
point of symmetry is assumed to be co-incident with the center of mass (CM) of the robot.

2.1. Vehicle kinematics

The schematic arrangement of the wheel assemblies is shown inFig. 2.
The positions (P0i) of these units are easily given (in the frame which is fixed to the center of mass of the robot)

with the help of the rotation matrix (θ is the angle of counterclockwise rotation)
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whereL is the distance of the drive units from the CM. The unit vectorsDi that specify the drive direction theith
motor (also relative to the CM) are given by
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2.2. The motor characteristics

In general, the optimal control problem for independent actuator driven wheels is treated with either bounded
velocity [10] or bounded acceleration[17] but not both. A reasonably accurate model that captures the torqueT

produced by a direct current (DC) motor is

T = ᾱU − β̄ω, (4)
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Fig. 1. Bottom view of the omnidirectional vehicle.

Fig. 2. Geometry of the omnidirectional vehicle.
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Fig. 3. Torque-speed characteristics of a DC motor.

whereU (V) is the voltage applied to the motor, andω (1/s) is the angular velocity of the motor shaft. Inductance can
be neglected. The motor is characterized by the constantsᾱ (N m/V) andβ̄ (N m s).Fig. 3shows typical torque-speed
characteristics of a DC motor. These profiles are also assumed to capture losses in the transfer of torques to the
wheels. The salient feature of this model is that the amount of torque available for acceleration is a function of the
speed of the motor.

With the no-slip condition, the force generated by a DC motor driven wheel is simply

f = αU − βv, (5)

wheref (N) is the magnitude of the force generated by a wheel attached to the motor, andv (m/s) is the velocity of
the wheel. The constantsα (N/V) andβ (kg/s) can readily be determined from̄α, β̄, and the geometry of the vehicle.

2.3. Equations of motion

The vectorP0 = (
x y

)T is the position of the CM in a Newtonian frame as shown inFig. 2. The drive positions
and velocities are given by

ri = P0 + R(θ)P0i, (6)

vi = Ṗ0 + Ṙ(θ)P0i, (7)

while the individual wheel velocities are

vi = vT
i (R(θ)Di). (8)

SubstitutingEq. (7)into Eq. (8)results in

vi = ṖT
0 R(θ)Di + PT

0iṘ
T(θ)R(θ)Di. (9)

The second term of the right hand side is just the tangential velocity

PT
0iṘ

T(θ)R(θ)Di = Lθ̇. (10)

The drive velocities are thus linear functions of the velocity and the angular velocity of the robot
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Linear and angular momentum balance can be written as

3∑
i=1

fiR(θ)Di = mP̈0, (12)

L

3∑
i=1

fi = Jθ̈, (13)

wherefi is the magnitude of the force produced by theith motor,m is the mass of the robot andJ is its moment of
inertia.

UsingEq. (5)together with the balance laws(12) and (13)and replacing thevi’s from the kinematic relation(9)
results
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L
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This system of differential equations can be expressed as
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ẋ

ẏ
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We next introduce the new time and length scales
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and the new non-dimensional variables
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The non-dimensional equations of motion (after dropping the bars) become
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ÿ

θ̈


+




ẋ
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whereq(θ, t) is thecontrol action

q(θ, t) = P(θ)U(t) (21)
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with
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3. Restricting admissible controls

Moving the robot from a point to another requires specifying the three voltagesUi(t). Clearly, real-time-optimal
control of the differential equation(20)is not feasible with modest computational resources. There have been several
attempts to overcome the complexity emerging from non-linearity and coupling. d’Andréa-Novel et al.[3] showed
that dynamic feedback linearization can lead to the simplification of the control problem of three-wheeled robots.
Time-optimal trajectories were constructed by Balkcom and Mason[5] for differential drive robots. Faiz et al.[7]
proposed a trajectory generation scheme for differentially flat systems by replacing the non-linear constraints by
linear ones.

The goal of this section is to find a simplified, computationally tractable optimal control problem whose solution
yields feasible, albeit sub-optimal, trajectories. This will be achieved by restricting the set of admissible controls.

The set of feasible voltagesU is a cube given by

U(t) = {U(t)||Ui(t)| ≤ 1}. (23)

The set of admissible controlsP(θ)U(t) depends on the vehicle orientationθ. Sinceθ is responsible for the coupling
of Eq. (20), replacing this set with a set ofθ-independent controls would greatly simplify the problem. The maximal
such set is found by taking the intersection of all possible sets of allowable controls

Q(t) = ∩
θ∈[0,2π)

P(θ)U(t). (24)

Obviously, anyq(t)∈Q is a suitable replacement for theθ-dependent control action. In the following we give the
explicit representation ofQ.

For a givenθ, the linear transformationP(θ)maps the cubeU(t) into the tilted cuboid (the set of allowable controls)
P(θ)U(t). The matrixP(θ) can be decomposed as a product of a rotation and aθ-independent linear transformation

P(θ) = Rz(θ)P(0), (25)

where
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The linear transformationP(0) maps cubeU(t) into the tilted cuboidP(0)U(t) with a diagonal|qθ| ≤ 3 along the
qθ axis (Fig. 4). Note that since the mappingP(0) is linear, the surface of the cube gets mapped onto that of the
cuboid. The transformationRz(θ) then rotates this cuboid about theqθ axis (or equivalently: about its diagonal).
The problem is to find the solid of revolution that is the intersection of all possible rotationsRz(θ)P(0)U(t) of the
cuboid. This solid of revolution is characterized by (seeAppendix Afor details)

q2
x(t) + q2

y(t) ≤ r2(qθ(t)), (27)
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Fig. 4. The mappingP(0).

Fig. 5. Restricted set for admissible controls.

where the radius is

r(qθ(t)) = 3 − |qθ(t)|
2

. (28)

The solid of revolution is illustrated inFig. 5, while its cross-section is shown inFig. 6.
With this result the equations of motion decouple

ẍ + ẋ = qx(t), (29)

ÿ + ẏ = qy(t), (30)

θ̈ + 2mL2

J
θ̇ = qθ(t). (31)

While these equations are linear, the control efforts are coupled, i.e. the constraints
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2

)2

, (32)

Fig. 6. Cross-section of the admissible set.
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|qθ(t)| ≤ 3 (33)

have to be satisfied.
In the remainder of the paper we focus our attention on controlling the translational DOFs. In particular, we will

assume that the translational DOFs are controlled independently from the rotational DOF. The reasons for this are
two-fold: (1) it substantially simplifies the exposition and development of the results, and the results can readily be
extended to encompass all three DOFs simultaneously; (2) we envision that the main use of the results in this paper
will be in applications where rotation control is independent of translation control.

To decouple theθ-equation from those of the translational ones, we set

|qθ(t)| ≤ 1. (34)

Then the constraint forx andy becomes

q2
x(t) + q2

y(t) ≤ 1. (35)

Clearly other bounds onqθ could be chosen.

4. Trajectory generation

In this section we are concerned with finding a solution to the following system of linear equations:

ẍ + ẋ = qx(t), (36)

ÿ + ẏ = qy(t) (37)

with the boundary conditions

x(0) = 0, x(tf ) = xf , ẋ(0) = vx0, ẋ(tf ) = 0, (38)

y(0) = 0, y(tf ) = yf , ẏ(0) = vy0, ẏ(tf ) = 0, (39)

and the constraint on the control inputs

q2
x(t) + q2

y(t) ≤ 1. (40)

The final timetf is the free variable that needs to be minimized. Note that the initial positions are assumed to be 0,
since this can always be achieved with a translation. The final velocities are specified to be zero.1

This system can also be written as

ż(t) = Az(t) + Bq(t), (41)

where
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1 Note that specifying a non-zero final velocity together with a final position often leads to solutions that do not continuously depend on the
boundary conditions, which is not a desirable property in most applications.
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with the boundary conditions

z(0) =




0
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subject to

q2
x(t) + q2

y(t) ≤ 1. (44)

4.1. Minimum time trajectory

It is shown by Athans and Falb[2] that the optimal control strategy is achieved when

q2
x(t) + q2

y(t) = 1, t ∈ [0, tf ]. (45)

Further, the time-optimal control is given by (‖ · ‖ denotes the Euclidean norm)

q(t) = − BTp(t)
‖BTp(t)‖ , (46)

wherep(t) is the solution to the adjoint problem

ṗ(t) = −ATp(t). (47)

The two components of the time-optimal control are thus

qx(t) = λ1 + et−tf (λ2 − λ1)√
(λ1 + et−tf (λ2 − λ1))2 + (λ3 + et−tf (λ4 − λ3))2

, (48)

qy(t) = λ3 + et−tf (λ4 − λ3)√
(λ1 + et−tf (λ2 − λ1))2 + (λ3 + et−tf (λ4 − λ3))2

, (49)

where the parametersλi, tf can be determined from the boundary conditions(38) and (39). The solution to system
(42) and (43)is

z(t) = eAtz(0) +
∫ t

0
eA(t−τ)Bq(τ)dτ (50)

with this, the boundary conditions are written as (note that the initial conditions are automatically satisfied)

xf = vx0(1 − e−tf ) +
∫ tf

0
(1 − eτ−tf )qx(τ)dτ, (51)

0 = e−tf vx0 +
∫ tf

0
eτ−tf qx(τ)dτ, (52)

yf = vy0(1 − e−tf ) +
∫ tf

0
(1 − eτ−tf )qy(τ)dτ, (53)

0 = e−tf vy0 +
∫ tf

0
eτ−tf qy(τ)dτ. (54)
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An additional equation can be obtained from the fact that the Hamiltonian of the system (see[2]) is zero on [0, tf ]

H = 1 + (Az(t) + Bq(t),p(t)) = 1 − λ2qx(tf ) − λ4qy(tf ) = 0, (55)

where(·, ·) denotes scalar product. This is equivalent to

λ2
2 + λ2

4 = 1. (56)

The integrals in(51)–(54)can be obtained in closed-form. Unfortunately, the resulting non-linear equations (together
with (56)) have to be solved numerically for the five unknowns. The authors could not find a computationally efficient
method of solving this problem, both in the literature and using standard optimization packages.

In order to gain numerical tractability, the problem is further relaxed by restricting the space of possible solutions
to

|qx(t)| = constant, |qy(t)| = constant, (57)

that is

qz(t) =
{

qz 0 < t ≤ t1,

−qz t1 < t ≤ tf ,
(58)

wherez represents eitherx or y, andqz ∈ [−1,1] is a constant. It will be shown that these assumptions result in
extremely computationally “cheap” solutions, and that the difference between the resultingtf and the optimal one
is small.

The rest of the section is organized as follows: inSection 4.2we construct optimal solutions separately for the
translational degrees of freedomx andy without the coupling constraint(45). These separate solutions will in
general yield different final times and so they must be synchronized. It will be shown inSection 4.3that this can
always be achieved and that the solution will also satisfy the required constraint(45).

4.2. Bang–bang trajectory

We first focus on solving the optimal control problem(36) and (38)with the constraint

|qz(t)| = constant, (59)

wherez represents eitherx or y. This constant can always be taken as 1 by rescaling the equations. The minimum
time problem consists of finding a solution with as small atf as possible. It can be shown (for example,[15]),
that this boundary value problem always has a solution, and that the control which minimizes the final timetf
consists of two piecewise constant segments of magnitude 1. This type of control strategy is commonly referred to
as “bang–bang” control. Koh and Cho[12] formulated a path tracking problem for a two-wheeled robot based on
bang–bang control. In our case, the following must be solved forq, t1 andt2:

z̈ + ż = qz, 0 < t ≤ t1, (60)

z̈ + ż = −qz, t1 < t ≤ t1 + t2 = tf , (61)

z(0) = 0, z(tf ) = zf , ż(0) = v0, ż(tf ) = 0. (62)

Subject to the boundary conditions(62), Eqs. (60) and (61)can be solved to yield

z(t) =
{

e−t(qz − v0) + qz(t − 1) + v0, 0 ≤ t < t1,

qz(tf − t − etf −t + 1) + zf , t1 ≤ t ≤ tf ,
(63)
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v(t) =
{

(v0 − qz)e−t + qz, 0 ≤ t < t1,

(etf −t − 1)qz, t1 ≤ t ≤ tf .
(64)

Position and velocity should be continuous att = t1, that is

(qz − v0)e
−t1 + qz(t1 − 1) + v0 = −et2qz + qz(1 + t2) + zf , (65)

(v0 − qz)e−t1 + q = qz(e
t2 − 1). (66)

These conditions are equivalent to

t1 = t2 − c

qz
, (67)

qz(e
t2)2 − 2qze

t2 + (v0 − qz)e
c/qz = 0, (68)

wherec = v0 − zf . The second equation can be solved as

e
t2
1,2 = 1 ± sgn(qz)

√
D, (69)

where

D = 1 + ec/qz
(
v0

qz
− 1

)
. (70)

We also requiret1 ≥ 0, t2 ≥ 0 which will then provide

t2 = ln(1 +
√
D). (71)

The following inequalities should hold:

D ≥ 0, (72)
√
D ≥ ec/qz − 1. (73)

If c/qz ≤ 0 then(72)has to be true, that is

e−c/qz − 1 ≥ −v0

qz
. (74)

If c/qz ≥ 0 then

D ≥ (ec/qz − 1)2 (75)

should be satisfied, which is equivalent to

ec/qz − 1 ≤ v0

qz
. (76)

Multiplying (74) and (76)by c/qz (and taking its sign into account) yields

c

qz
(e|c/qz | − 1) ≤

∣∣∣∣ cqz
∣∣∣∣ v0

qz
, (77)

which can be further simplified to

sgn
c

qz
(e|c/qz | − 1) ≤ v0

qz
. (78)
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The sign of the first segment (±1) is thus given by

qz = sgn(v0 − sgn(c)(e|c| − 1)). (79)

Onceqz, t1 andt2 are determined,z(t) is given in(63). The execution time for this trajectory (using(67) and (71))
is

tf min := t1 + t2 = 2 ln(1 +
√
D) − c

qz
. (80)

4.3. Trajectory synchronization

Generally, execution times for the minimum time problems for the different degrees of freedom will be different.
To find a solution to the boundary value problem(36)–(39), these solutions must be synchronized, that istfx = tfy
should hold. If we could vary the execution time for the different degrees of freedom, this synchronization might
be possible. The question naturally arises: does a bang–bang trajectory exist for a fixed-timetf > tf min? Since the
boundary conditions are given, we only have control over the control effort. If the control effortq̄ = |qz| is decreased
one intuitively expects the execution timetf to increase. The following proposition is proved inAppendix B.

Proposition 1. For all tf ≥ tf min there exists āq ∈ (0,1] such that

qz = q̄ sgn

(
v0

q̄
− sgn(c)(e|c/q̄| − 1)

)
, (81)

satisfies(60) and (61). Furthermore, the execution time is a continuous, strictly monotonously decreasing function
of q̄ with lim q̄→0 tf → ∞ andtf (q̄ = 1) = tf min.

This result means that reaching the desired final position in the prescribed amount of time (provided that this time
is greater than the minimum time to reach this position with zero final velocity) is always possible with a reduced
effort bang–bang control strategy. Note that the execution time depends on the boundary conditions, as well as on
the control effort, i.e.

tf z(|qz|) = tf (zf , vz0, qz). (82)

With this notation, we want to find the control effortsqx andqy for which

tfx(|qx|) = tfy(|qy|). (83)

Using the constraint(45) this is written as

tfx(|qx|) = tfy(|
√

1 − q2
x|). (84)

Sincetfx(|qx|) is a strictly monotonously decreasing function on|qx| ∈ |(0,1], tfy(|
√

1 − q2
x|) is strictly monoto-

nouslyincreasingthere (and thustfx(|qx|)− tfy(|
√

1 − q2
x|) is strictly monotonously decreasing). Hence there exists

a unique|qx| satisfying(84). Furthermore, these control efforts satisfy the constraint(45)and thus yield the solution
of the boundary value problem(36)–(39) and (45). This solution will also depend continuously on the boundary
conditions (seeAppendix B) which ensures robustness to disturbances.

5. Numerical solutions and simulations

To demonstrate the computational efficiency and robustness of the algorithm, simulations were performed (with
α = 1 N/V andβ = 1 kg/s). Position and velocity of the vehicle are assumed to be measured 60 times a second
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(dt = 0.017 s). The inputs to the algorithm are initial and desired positions and velocities (x0, y0, vx0, vy0, xf , yf )
and the outputs are the velocities (vx, vy) that should be reached in the next timestep. The inputs are first translated
(so thatznew

0 = 0, znew
f = zf − z0) then non-dimensionalized (in(19))). The control efforts are found by performing

bisections on theqx axis to find the zero oftfx(|qx|) − tfy(|
√

1 − q2
x|) (this strictly monotonic quantity goes to

positive infinity forqx → 0 and negative infinity asqx → 1, so care must be taken with the bounds). The bisection
algorithm is stopped when the function value is less than dt. With qx, qy the positions and velocities after a timestep
can be calculated as (see(63) and (64)))

z = e−dt(qz − vz0) + qz(dt − 1) + vz0, (85)

vz = (vz0 − qz)e
−dt + qz. (86)

These non-dimensional quantities should then be scaled back to dimensional ones.
A representative simulation is now discussed, where the following initial and final conditions were used:

x0 = y0 = 0 m, xf = yf = 1 m, (87)

vx0 = 0.2 m/s, vy0 = −0.5 m/s. (88)

The position and velocity of the vehicle is calculated in(85) and (86). To account for errors present in a real system
(arising from slippage, measurement errors, etc.) noise was added to the actual position and velocity of the robot at
the end of every simulation step. The disturbances were modeled as white noise, with amplitude of 1 cm and 3 cm/s
from a uniform distribution for positions and velocities, respectively. This was repeated until both coordinates were
within 5 cm of the target position and the velocities were less than 5 cm/s in absolute value. The results are shown in
Fig. 7. This closed-loop trajectory is close to the trajectory generated att = 0 (the open-loop trajectory), showing
the robustness of the proposed method. Note that the most pronounced effect of the noise on the trajectory is in the
vicinity of the destination. The position error coupled with the discretization effect gives rise to jerky motion. This
can be avoided for example by switching to open-loop control near the target, or by simply stopping.

For this particular example, the difference between the approximate bang–bang solution and the optimal trajectory
is very small.Fig. 8shows the piecewise constant bang–bang solution compared to the optimal one.

To demonstrate how well the optimal solutions are approximated by our solutions, 1000 simulations were per-
formed with randomly generated initial velocities (≤ 1 m/s in magnitude) and final positions (≤ 3 m in magnitude)
from uniform distributions. The difference between the optimal solution and the reduced effort bang–bang solutions
is shown inTable 1.

For example, the optimal solution was 1% or more better than the bang–bang solution in only 1.3% of the random
examples; in none of the 1000 random examples did the optimal solution yield an improvement of more than 2.6%.
The computational cost of the proposed algorithm is extremely low, approximately 300 FLOPS (floating point
operations) for one timestep.

Fig. 7. Simulation with noise.
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Fig. 8. Comparison of optimal and approximate solution.

Table 1
Comparison of optimal and near-optimal solutions

tf opt/tf is less than Percentage of problems

99.9% 16.4
99.5% 2.7
99% 1.3
97.4% 0

6. Conclusions

The main benefit of the omnidirectional drive mechanism is a simplification of the resulting control problem,
whichgreatlyreduces the computation required for generating nearly optimal trajectories. The proposed algorithms
provide an efficient, yet high performance, method of path planning. The algorithms are in general conservative;
however, this is justified by the extremely reduced computational costs. The extremely low computational cost means
that these nearly optimal trajectories can be used extensively as low overhead primitives by higher level decision
making strategies, allowing a large number of possible scenarios to be explored in real-time. For example, these
trajectory primitives can readily be used as a basis for obstacle avoidance in randomized path planning algorithms
(see for example,[9]).

Appendix A

Fig. 9shows the cuboid. The radius of the largest contained solid of revolution at a fixedqθ is simply the radius of
the biggest circle that can be inscribed into the polygonal intersection of the cuboid and the planeqθ(t) = constant.
(Fig. 9also shows this circle atqθ(t) = 1.) Because of the symmetry of the cuboid it is enough to study the plane
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Fig. 9. Geometry of the cuboid.

containing the line segmentab. It is easy to see that the radius sought is just the distance of this line from theqθ
axis at a given height. The segmentabconnects point(0,0,−3) and(0,−2,1) so its equation is

qy(t) = 1
2(3 + qθ(t)), qx(t) = 0, −3 ≤ qθ(t) ≤ 1. (A.1)

The solid of revolution is thus characterized by

q2
x(t) + q2

y(t) ≤
(

3 − |qθ(t)|
2

)2

= r2(qθ(t)). (A.2)

Appendix B

To proveProposition 1we first define

w = 1
2q. (B.1)

Thent2 can be expressed as

t2 = 1
2tf + cw. (B.2)

With (67) and (B.2), Eq. (66)can be recast as

e−cw = cosh(1
2tf ) − v0 e−tf /2w. (B.3)

Fig. 10shows the left and right hand side ofEq. (B.4)as a function ofw for the case ofc > 0.

Fig. 10. Solution to the fixed-time problem.
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Proposition 2. For all tf > tf min there exists a w that satisfies

e−cw = cosh(1
2tf ) − v0 e−tf /2w, (B.4)

and|w| > 1/2. Further, the execution timetf is a strictly monotonous function of q withlim tf → ∞ asq → 0.

Proof. First we show that

tf ≥ |c|, (B.5)

or equivalently

cosh(1
2tf ) ≥ cosh

( c
2

)
. (B.6)

To see this, consider the inequalities

tf = t1 + t2 ≥ t2, (B.7)

t1 = t2 − c

q
≥ 0 ⇒ t2 ≥ c

q
(B.8)

if sgn(c/q) = 1
c

q
= |c| ⇒ t2 ≥ |c| ⇒ tf ≥ |c| (B.9)

if sgn(c/q) = −1

tf = ln(1 +
√
D)2 − c

q
= ln(1 +

√
D)2 + |c| ≥ |c| (B.10)

sinceD ≥ 0.
Using this we are able to show the existence of roots with|w| > 1/2.
If v0 < 0 then the slope of the line

cosh(1
2tf ) − v0 e−tf /2w, tf > tf min (B.11)

will decrease, so thew coordinate of its intersection with the exponential function will always be less than−1/2.
If v0 > 0 then the line(B.11)will have one intersections with the exponential function e−cw, for which

w > w∗ = 1
2 or w < w∗ = −1

2. (B.12)

If ec/2 ≤ cosh(tf /2) then the line(B.11)and e−cw will have one intersection (since the positive slope of the line is
decreasing with increasingtf ) with

w < −1
2. (B.13)

These arguments also shows that increasing|w| corresponds to increasingtf (that is |w| (|q|) is a monotonously
increasing (decreasing) function oftf ). The converse is also true:tf is a strictly monotonously increasing function
of q with lim tf → ∞ asq → 0. Thec < 0 case can similarly be proved. This concludes the proof. �
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