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Figure 1

Find the shortest path from node S to node T for the graph given in Figure 1. Apply the label
correcting method. Use best-first search to determine at each iteration which node to remove
from OPEN; that is, remove node i with

d; = min dj,
7 in OPEN

where the variable d; denotes the length of the shortest path from node S to node i that has
been found so far.

Solve the problem by populating a table of the following form:

Iter-
ation

di | dy | d3 | ds | ds | de | dr|dg|dg| dio

Node exiting | OPEN | dg
OPEN
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Solution 1

Iter- Node exiting | OPEN | dg | dy | do | d3 | dy | ds | dg | d7 | dg | do | dig | dp =
ation | OPEN UPPER
0 - S 0 |loo|oo|ow|o0|o0|oo|oo|oo]|oo]| o |0

1 S 1231 0 | 3|1 |3 ||| |oo|ow|x]| oo | o0

2 2 1341 0| 2| 1|3 |5 |co|oo|o0|oco|o0| o0 | o0

3 1 3,4 0| 2 1 |3 ] 4 ||| |oo|o0]| oo | oo

4 3 4,5 0| 2|13 |4]|]8|c0|oco|ow|x0| 0|00

5 4 5,6 02|13 |4 ] 7|5 |0|ow|oco]| o0 |x

6 6 5,9 0| 2| 1|34 ]|7]|5|oco|loco|6]|]|9

7 9 5 02| 1|3 |4 ]| 7|5 |co|locw| 6 |oc|T7

8 5 - 0| 2| 1|3 |4]|7]|]5|c0|low| 6| x|T7

The shortest pathis S —2—1—-4—6—9—T with a total length of 7.
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Problem 2 25%

Consider the dynamic system

Tpe1 =1 —a)wp +au,, 0<a<1l,  k=0,1,
with initial state o = —1. The cost function, to be minimized, is given by
1
E 2 2 2 w2y b
wo,w1 {$2 + kZ—O (mk +uj + wk)

The disturbance wy takes the values 0 and 1. If x > 0, both values have equal probability. If
x < 0, the disturbance wy is 0 with probability 1. The control wuy is constrained by

0<u,<1, k=01

Apply the Dynamic Programming algorithm to find the optimal control policy and the optimal
final cost Jo(—1).
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Solution 2

The optimal control problem is considered over a time horizon N = 2 and the cost, to be
minimized, is defined by

g2(z2) = x% and gk (T, ug, W) = l’i + u% + w,%,, k=0,1.

The DP algorithm proceeds as follows:

2nd stage:

Jo(x2) = 3

1st stage:

Jl(xl) = 02}121 E{$% +u% +w% + JQ(SL‘Q)}

: 2 2 2
= min E{x1+u1+w1 + J2((1 = a)wy +awq) }

. 2
= dnin E{x%%—u%—i—w%—i—((l—a)wl—l—aul) }

Distinguish two cases: 1 > 0 and x; < 0.

I)z, >0:

Ji(z1) = 0%15111%1 {x% +ul + % (1 +((1-a) +au1)2> + % (0+ (1—a)- O+au1)2>}

L(z1,u1)
Find the minimizing u; by
oL o ! - —a(l—a)
bur |, (1-a)a+2(1+a”)wm a1 Si+a?) = ("

Recall that the feasible set of inputs u; is given by 0 < uy < 1.

However, using the information that L (z1,u1) is convex in up; that is,

0L

oL _ 2
a2 2(1+a)>0,

it follows that u; is a local minimum and the feasible optimal control uj is given by

= uy =p; (r1)=0 Vx> 0.
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IT) 1 <O:

Ji(z1) = Oér;ilrél {a1+ (1 +a®)ui}

L(z1,u1)

Find the minimizing %; by

oL 2y = L =
8u1ﬁ1—2(1+a)u1—0 < up =0.

Since the sufficient condition for a local minimum > 0, holds, the optimal control is

92L
) 8u% o

= ul=pj(z1)=0 V1 <O.

Oth stage:

Jo(—1) = 02}021 B {(4)2 +ud +wi + J1((1—a)w + auo)}

Since xg < 0, we get

Jo(—1) = min1 {1+u%—|—J1(au0)},

0<up<

L(zo,u0)

where aug > 0. From above’s results, the optimal cost-to-go function for z; > 0 is

[

1
Ji(wn) =5+ 5 (1= a)® + 22.

\)

Finally, the minimizing @ results from

oL 1
—— | =2up+2d%u=0 < ay=0.
811,0 i
0
Since ?;é > 0, the optimal control u is
Up Uo

= uj = p (~1) = 0.

With this, the optimal final cost reads as

—

B =54 51—,

\V)

In brief, the optimal control policy is to always set the input to zero, which can also be verified
by carefully looking at the equations given in the problem statement.
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Problem 3 25%

//3/////////3//
z=0 z=1

Figure 2

At time t = 0, a unit mass is at rest at location z = 0. The mass is on a frictionless surface and
it is desired to apply a force u(t), 0 < t < 1, such that at time ¢t = 1, the mass is at location
z =1 and again at rest. In particular,

Bty =u(t), 0<t<1, (1)

Of all the functions u(t) that achieve the above objective, find the one that minimizes

1ty
— [ wu*(t)dt.
2 Jo

Hint: The state for this system is x(t) = [z1(t), z2(t)]7, where x1(t) = 2(t) and xo(t) = 2(t).
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Solution 3

Introduce the state vector
Using this notation, the dynamics read as

=L

xl(O)
.%'1(1)

with initial and terminal conditions,

o o

O, 1‘2(0)
1, L[,‘Q(l)

Apply the Minimum Principle.

e The Hamiltonian is given by

H(z,u,p) = g(z,u)+p" f(z,u)
1 2
= §u + p1x2 + pau.

e The optimal input w*(¢) is obtained by minimizing the Hamiltonian along the optimal
trajectory. Differentiating the Hamiltonian with respect to u yields,

u (t) +p2(t) =0 & u'(t) = —pa(t).
Since the second derivative of H with respect to u is 1, u*(¢) is indeed a minimum.

e The adjoint equations,

pi(t) =0
p2(t) = —p1(t),

are integrated and result in the following equations:

p1(t) =¢1, ¢ constant

pa(t) = —c1t — c2, co constant.
Using this result, the optimal input is given by
u*(t) = e1t + co.

e Recalling the initial and terminal conditions on x, we can solve for ¢; and cs.

With above’s results, the optimal state trajectory z3(t) is

1
T5(t) =ct+ca = x5(t) = 501752 + cot +c3, c3 constant,
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and, therefore,

25(0) =0 = ¢3=0

z5(l) =0 = %cl +c=0 = ¢ =—2c,
yielding to

z5(t) = —cot® + cot.

The optimal state z7(t) is given by
1

1
Pi(t) = 25(t) = —cot® +cot = x}(t) = ——cot® + —cot® + ey,

3 2

With the conditions on x;, we get

21(0)=0 = ¢ =0

1 1
.’L’T(l) =1 = ——-co+=-c0=1 = c3=06 and c1 = —12.

3 2
e Finally, we obtain the optimal control
u*(t) = —12t + 6,

and the optimal state trajectory

c4 constant.
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Problem 4 25%

Recall the Minimum Principle.

Under suitable technical assumptions, the following Proposition holds:
Given the dynamic system

&= f(x(t), u(t)), x(0)=z9, 0<t<T
and the cost function, .
b))+ [ o), uo)
to be minimized, define the Hamiltonian function
H(z,u,p) = g (z,u) +p" f (z,0).

Let u*(t), t € [0,7] be an optimal control trajectory and x*(¢) the resulting state trajectory.
Then,

Lo pt) = =52 (2*(t),u*(t),p(t)), p(T) =% (x(T)),
2. w*(t) =argmin, g H (x*(t),u,p(t)),

3. H(z*(t),u*(t),p(t)) is constant.

Show that if the dynamics and the cost are time varying — that is, f (z,u) is replaced by f (x, u, t)
and g (x,u) is replaced by g (x,u,t) — the Minimum Principle becomes:

o))
>

Lo p(t) = =G (@* (1), w (1), p(t),1), p(T) = G («*(T)),
2. w*(t) =argmin, g H (x*(t), u,p(t),t)
3. H(z*(t),u*(t),p(t),t) not necessarily constant,

where the Hamiltonian function is now given by

H(z,u,p,t) :g(a:,u,t)—i—pr(x,u,t).
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Solution 4

General idea:

Convert the problem to a time-independent one, apply the standard Minimum Principle pre-
sented in class, and simplify the obtained equations.
Follow the subsequent steps:

e Introduce an extra state variable y(¢) representing the time:

y(t) =t, with g(t)=1 and y(0)=0.

e Convert the problem into standard form by introducing the extended state £ = [z, y]T:

The dynamics read now as
) = f(&u) = [ fx,uy), 1]7
and the cost is defined by
e + [ i,

where §(¢,u) = g(z,u,y) and h(§) = h(z).
The Hamiltonian follows from above’s definitions:

H(Eu,p) = §(&,u) + 5" f(&,u)  with p=[p, p,]".

e Apply the Minimum Principle:

Denoting the optimal control by u*(¢) and the corresponding optimal state by £*(t), we
get the following:

1. The adjoint equation is given by

OH oh

p(t) = ——— (& “(t),p p(T) = — (£5(T)) . 2
50 = -5 €O 0.50), BT) = 55 (€(D) @)
However,
H(u,p) = g(@,u,y) +p" fe,u,y) +py = H(,u,p,y) + py;
that is, B B
of _om  of _om
or Oz’ oy Oy’
Moreover, y ~
oh  Oh oh
% = % and 87y =0
From (2), we recover the first equation

In addition, replacing y(t) by t again, we get

py(t) = —%j (27 (1), w" (), p(t),t),  py(T) = 0.
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2. The optimal input u*(t) is obtained by
w () = avgmin, ey { H(@"(t),w"(8),p(2), 1) + 1, (1)}
= argmin,c; H(x*(t),u"(t),p(t),1).
3. Finally, the standard formulation gives us
H(z*(t),u"(t),p(t),t) + py(t) is constant.

However, p,(t) is constant only if %—Ij = 0, which, in general, is only true if f and g
do not depend on time.



